File size: 4,133 Bytes
ad1cce6
 
 
 
 
 
9823daf
ad1cce6
 
 
 
 
 
 
 
 
 
 
7da3b38
ad1cce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: qlora-llama3b-iterative
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qlora-llama3b-iterative

This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the train-iterative dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0051

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 500

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1156        | 0.0889 | 10   | 1.5894          |
| 1.1893        | 0.1778 | 20   | 0.6868          |
| 0.5218        | 0.2667 | 30   | 0.4555          |
| 0.5292        | 0.3556 | 40   | 0.3795          |
| 0.3866        | 0.4444 | 50   | 0.3065          |
| 0.3232        | 0.5333 | 60   | 0.2074          |
| 0.1802        | 0.6222 | 70   | 0.1532          |
| 0.21          | 0.7111 | 80   | 0.1348          |
| 0.158         | 0.8    | 90   | 0.1372          |
| 0.1629        | 0.8889 | 100  | 0.1276          |
| 0.0966        | 0.9778 | 110  | 0.1003          |
| 0.0643        | 1.0667 | 120  | 0.0879          |
| 0.0726        | 1.1556 | 130  | 0.0872          |
| 0.0493        | 1.2444 | 140  | 0.0906          |
| 0.0746        | 1.3333 | 150  | 0.0587          |
| 0.0473        | 1.4222 | 160  | 0.0561          |
| 0.0644        | 1.5111 | 170  | 0.0503          |
| 0.0366        | 1.6    | 180  | 0.0307          |
| 0.0247        | 1.6889 | 190  | 0.0233          |
| 0.01          | 1.7778 | 200  | 0.0215          |
| 0.0393        | 1.8667 | 210  | 0.0122          |
| 0.0299        | 1.9556 | 220  | 0.0180          |
| 0.0166        | 2.0444 | 230  | 0.0082          |
| 0.0319        | 2.1333 | 240  | 0.0083          |
| 0.0077        | 2.2222 | 250  | 0.0072          |
| 0.0141        | 2.3111 | 260  | 0.0031          |
| 0.0017        | 2.4    | 270  | 0.0120          |
| 0.0015        | 2.4889 | 280  | 0.0153          |
| 0.0126        | 2.5778 | 290  | 0.0141          |
| 0.0043        | 2.6667 | 300  | 0.0022          |
| 0.0068        | 2.7556 | 310  | 0.0019          |
| 0.0018        | 2.8444 | 320  | 0.0022          |
| 0.0026        | 2.9333 | 330  | 0.0034          |
| 0.0017        | 3.0222 | 340  | 0.0076          |
| 0.0002        | 3.1111 | 350  | 0.0102          |
| 0.0004        | 3.2    | 360  | 0.0112          |
| 0.006         | 3.2889 | 370  | 0.0094          |
| 0.0003        | 3.3778 | 380  | 0.0075          |
| 0.0003        | 3.4667 | 390  | 0.0069          |
| 0.0002        | 3.5556 | 400  | 0.0067          |
| 0.0005        | 3.6444 | 410  | 0.0066          |
| 0.0003        | 3.7333 | 420  | 0.0072          |
| 0.0037        | 3.8222 | 430  | 0.0063          |
| 0.004         | 3.9111 | 440  | 0.0053          |
| 0.0003        | 4.0    | 450  | 0.0052          |
| 0.0002        | 4.0889 | 460  | 0.0051          |
| 0.0002        | 4.1778 | 470  | 0.0050          |
| 0.0006        | 4.2667 | 480  | 0.0049          |
| 0.0005        | 4.3556 | 490  | 0.0048          |
| 0.0002        | 4.4444 | 500  | 0.0051          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3