pakphum's picture
End of training
7da3b38 verified
metadata
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B-Instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
model-index:
  - name: qlora-llama3b-iterative
    results: []

qlora-llama3b-iterative

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the train-iterative dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
2.1156 0.0889 10 1.5894
1.1893 0.1778 20 0.6868
0.5218 0.2667 30 0.4555
0.5292 0.3556 40 0.3795
0.3866 0.4444 50 0.3065
0.3232 0.5333 60 0.2074
0.1802 0.6222 70 0.1532
0.21 0.7111 80 0.1348
0.158 0.8 90 0.1372
0.1629 0.8889 100 0.1276
0.0966 0.9778 110 0.1003
0.0643 1.0667 120 0.0879
0.0726 1.1556 130 0.0872
0.0493 1.2444 140 0.0906
0.0746 1.3333 150 0.0587
0.0473 1.4222 160 0.0561
0.0644 1.5111 170 0.0503
0.0366 1.6 180 0.0307
0.0247 1.6889 190 0.0233
0.01 1.7778 200 0.0215
0.0393 1.8667 210 0.0122
0.0299 1.9556 220 0.0180
0.0166 2.0444 230 0.0082
0.0319 2.1333 240 0.0083
0.0077 2.2222 250 0.0072
0.0141 2.3111 260 0.0031
0.0017 2.4 270 0.0120
0.0015 2.4889 280 0.0153
0.0126 2.5778 290 0.0141
0.0043 2.6667 300 0.0022
0.0068 2.7556 310 0.0019
0.0018 2.8444 320 0.0022
0.0026 2.9333 330 0.0034
0.0017 3.0222 340 0.0076
0.0002 3.1111 350 0.0102
0.0004 3.2 360 0.0112
0.006 3.2889 370 0.0094
0.0003 3.3778 380 0.0075
0.0003 3.4667 390 0.0069
0.0002 3.5556 400 0.0067
0.0005 3.6444 410 0.0066
0.0003 3.7333 420 0.0072
0.0037 3.8222 430 0.0063
0.004 3.9111 440 0.0053
0.0003 4.0 450 0.0052
0.0002 4.0889 460 0.0051
0.0002 4.1778 470 0.0050
0.0006 4.2667 480 0.0049
0.0005 4.3556 490 0.0048
0.0002 4.4444 500 0.0051

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3