prompt
stringlengths 174
59.5k
| completion
stringlengths 7
228
| api
stringlengths 12
64
|
---|---|---|
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50,
show_colorbar=False):
"""
Plot points with given coordinates as circles/spheres with radii given by
weights.
"""
dim = coors.shape[1]
ax = | _get_axes(ax, dim) | sfepy.postprocess.plot_dofs._get_axes |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50,
show_colorbar=False):
"""
Plot points with given coordinates as circles/spheres with radii given by
weights.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
wmin, wmax = weights.min(), weights.max()
if (wmax - wmin) < 1e-12:
nweights = weights * max_radius / wmax
else:
nweights = ((weights - wmin) * (max_radius - min_radius)
/ (wmax - wmin) + min_radius)
coors = | _to2d(coors) | sfepy.postprocess.plot_dofs._to2d |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50,
show_colorbar=False):
"""
Plot points with given coordinates as circles/spheres with radii given by
weights.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
wmin, wmax = weights.min(), weights.max()
if (wmax - wmin) < 1e-12:
nweights = weights * max_radius / wmax
else:
nweights = ((weights - wmin) * (max_radius - min_radius)
/ (wmax - wmin) + min_radius)
coors = _to2d(coors)
sc = ax.scatter(*coors.T, s=nweights, c=weights, alpha=1)
if show_colorbar:
plt.colorbar(sc)
return ax
def label_points(ax, coors):
"""
Label points with their indices.
"""
dim = coors.shape[1]
ax = | _get_axes(ax, dim) | sfepy.postprocess.plot_dofs._get_axes |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50,
show_colorbar=False):
"""
Plot points with given coordinates as circles/spheres with radii given by
weights.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
wmin, wmax = weights.min(), weights.max()
if (wmax - wmin) < 1e-12:
nweights = weights * max_radius / wmax
else:
nweights = ((weights - wmin) * (max_radius - min_radius)
/ (wmax - wmin) + min_radius)
coors = _to2d(coors)
sc = ax.scatter(*coors.T, s=nweights, c=weights, alpha=1)
if show_colorbar:
plt.colorbar(sc)
return ax
def label_points(ax, coors):
"""
Label points with their indices.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
shift = 0.02 * (coors.max(0) - coors.min(0))
ccs = coors + shift
for ic, cc in enumerate(ccs):
ax.text(*cc, s='%d' % ic, color='b')
def plot_quadrature(ax, geometry, order, boundary=False,
min_radius=10, max_radius=50,
show_colorbar=False, show_labels=False):
"""
Plot quadrature points for the given geometry and integration order.
The points are plotted as circles/spheres with radii given by quadrature
weights - the weights are mapped to [`min_radius`, `max_radius`] interval.
"""
if not boundary:
gel, coors, weights = _get_qp(geometry, order)
else:
gel, coors, weights = _get_bqp(geometry, order)
dim = coors.shape[1]
ax = | _get_axes(ax, dim) | sfepy.postprocess.plot_dofs._get_axes |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50,
show_colorbar=False):
"""
Plot points with given coordinates as circles/spheres with radii given by
weights.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
wmin, wmax = weights.min(), weights.max()
if (wmax - wmin) < 1e-12:
nweights = weights * max_radius / wmax
else:
nweights = ((weights - wmin) * (max_radius - min_radius)
/ (wmax - wmin) + min_radius)
coors = _to2d(coors)
sc = ax.scatter(*coors.T, s=nweights, c=weights, alpha=1)
if show_colorbar:
plt.colorbar(sc)
return ax
def label_points(ax, coors):
"""
Label points with their indices.
"""
dim = coors.shape[1]
ax = _get_axes(ax, dim)
shift = 0.02 * (coors.max(0) - coors.min(0))
ccs = coors + shift
for ic, cc in enumerate(ccs):
ax.text(*cc, s='%d' % ic, color='b')
def plot_quadrature(ax, geometry, order, boundary=False,
min_radius=10, max_radius=50,
show_colorbar=False, show_labels=False):
"""
Plot quadrature points for the given geometry and integration order.
The points are plotted as circles/spheres with radii given by quadrature
weights - the weights are mapped to [`min_radius`, `max_radius`] interval.
"""
if not boundary:
gel, coors, weights = _get_qp(geometry, order)
else:
gel, coors, weights = _get_bqp(geometry, order)
dim = coors.shape[1]
ax = _get_axes(ax, dim)
| plot_geometry(ax, gel) | sfepy.postprocess.plot_facets.plot_geometry |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return | GeometryElement(geometry) | sfepy.discrete.fem.geometry_element.GeometryElement |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
| output.set_output(quiet=True) | sfepy.base.base.output.set_output |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = | Function('material_func', _material_func_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return | Material('m', function=material_func) | sfepy.discrete.Material |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = | Function('fix_x_points', fix_x_points_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return | EssentialBC('fix_points_BC', region_fix_points, fix_points_dict) | sfepy.discrete.conditions.EssentialBC |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = | Function('shift_x_points', shift_x_points_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return | Conditions([fix_points_BC, shift_points_BC]) | sfepy.discrete.conditions.Conditions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = | Function('xplus', xplus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = | Function('xminus', xminus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = | Function('match_x_plane', per.match_x_plane) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = | Function('shift', shift_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return | Conditions([lcbc]) | sfepy.discrete.conditions.Conditions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = | Function(plus_string, plus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = | Function(minus_string, minus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = | Function(plus_string, plus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = | Function(minus_string, minus_) | sfepy.discrete.Function |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = | Domain('domain', mesh) | sfepy.discrete.fem.Domain |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = | FieldVariable('u', 'unknown', field) | sfepy.discrete.FieldVariable |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = | FieldVariable('v', 'test', field, primary_var_name='u') | sfepy.discrete.FieldVariable |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = | Integral('i', order=4) | sfepy.discrete.Integral |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = Integral('i', order=4)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, region_all, m=m, v=v, u=u)
eq = | Equation('balance_of_forces', t1) | sfepy.discrete.Equation |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = Integral('i', order=4)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, region_all, m=m, v=v, u=u)
eq = Equation('balance_of_forces', t1)
eqs = | Equations([eq]) | sfepy.discrete.Equations |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = Integral('i', order=4)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, region_all, m=m, v=v, u=u)
eq = Equation('balance_of_forces', t1)
eqs = Equations([eq])
epbcs, functions = self._get_periodicBCs(domain)
ebcs = self._get_displacementBCs(domain)
lcbcs = self._get_linear_combinationBCs(domain)
ls = | ScipyDirect({}) | sfepy.solvers.ls.ScipyDirect |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = Integral('i', order=4)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, region_all, m=m, v=v, u=u)
eq = Equation('balance_of_forces', t1)
eqs = Equations([eq])
epbcs, functions = self._get_periodicBCs(domain)
ebcs = self._get_displacementBCs(domain)
lcbcs = self._get_linear_combinationBCs(domain)
ls = ScipyDirect({})
pb = | Problem('elasticity', equations=eqs, auto_solvers=None) | sfepy.discrete.Problem |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = | ElasticConstants(young=E, poisson=nu) | sfepy.mechanics.matcoefs.ElasticConstants |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.1': 'u.1'}
if dims == 3:
bc_dict['u.2'] = 'u.2'
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _solve(self, property_array):
"""
Solve the Sfepy problem for one sample.
Args:
property_array: array of shape (n_x, n_y, 2) where the last
index is for Lame's parameter and shear modulus,
respectively.
Returns:
the strain field of shape (n_x, n_y, 2) where the last
index represents the x and y displacements
"""
shape = property_array.shape[:-1]
mesh = self._get_mesh(shape)
domain = Domain('domain', mesh)
region_all = domain.create_region('region_all', 'all')
field = Field.from_args('fu', np.float64, 'vector', region_all,
approx_order=2)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = self._get_material(property_array, domain)
integral = Integral('i', order=4)
t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
integral, region_all, m=m, v=v, u=u)
eq = Equation('balance_of_forces', t1)
eqs = Equations([eq])
epbcs, functions = self._get_periodicBCs(domain)
ebcs = self._get_displacementBCs(domain)
lcbcs = self._get_linear_combinationBCs(domain)
ls = ScipyDirect({})
pb = Problem('elasticity', equations=eqs, auto_solvers=None)
pb.time_update(
ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions)
ev = pb.get_evaluator()
nls = Newton({}, lin_solver=ls,
fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)
try:
pb.set_solvers_instances(ls, nls)
except AttributeError:
pb.set_solver(nls)
vec = pb.solve()
u = vec.create_output_dict()['u'].data
u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))
dims = domain.get_mesh_bounding_box().shape[1]
strain = np.squeeze(
pb.evaluate(
'ev_cauchy_strain.{dim}.region_all(u)'.format(
dim=dims),
mode='el_avg',
copy_materials=False))
strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))
stress = np.squeeze(
pb.evaluate(
'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(
dim=dims),
mode='el_avg',
copy_materials=False))
stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))
return strain_reshape, u_reshape, stress_reshape
def _get_periodicBCs(self, domain):
dims = domain.get_mesh_bounding_box().shape[1]
bc_list_YZ, func_list_YZ = list(
zip(*[self._get_periodicBC_YZ(domain, i) for i in range(0, dims)]))
bc_list_X, func_list_X = list(
zip(*[self._get_periodicBC_X(domain, i) for i in range(1, dims)]))
return Conditions(
bc_list_YZ + bc_list_X), | Functions(func_list_YZ + func_list_X) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = | stiffness_from_lame(dims, lam=lam, mu=mu) | sfepy.mechanics.matcoefs.stiffness_from_lame |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions= | Functions([fix_x_points]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions= | Functions([shift_x_points]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions= | Functions([xplus]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions= | Functions([xminus]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions= | Functions([plus]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions= | Functions([minus]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions= | Functions([plus]) | sfepy.discrete.Functions |
import numpy as np
from sfepy.base.goptions import goptions
from sfepy.discrete.fem import Field
try:
from sfepy.discrete.fem import FEDomain as Domain
except ImportError:
from sfepy.discrete.fem import Domain
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
goptions['verbose'] = False
output.set_output(quiet=True)
class ElasticFESimulation(object):
"""
Use SfePy to solve a linear strain problem in 2D with a varying
microstructure on a rectangular grid. The rectangle (cube) is held
at the negative edge (plane) and displaced by 1 on the positive x
edge (plane). Periodic boundary conditions are applied to the
other boundaries.
The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x,
n_y, n_z).
>>> X = np.zeros((1, 3, 3), dtype=int)
>>> X[0, :, 1] = 1
>>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0),
... poissons_ratio=(0., 0.))
>>> sim.run(X)
>>> y = sim.strain
y is the strain with components as follows
>>> exx = y[..., 0]
>>> eyy = y[..., 1]
>>> exy = y[..., 2]
In this example, the strain is only in the x-direction and has a
uniform value of 1 since the displacement is always 1 and the size
of the domain is 1.
>>> assert np.allclose(exx, 1)
>>> assert np.allclose(eyy, 0)
>>> assert np.allclose(exy, 0)
The following example is for a system with contrast. It tests the
left/right periodic offset and the top/bottom periodicity.
>>> X = np.array([[[1, 0, 0, 1],
... [0, 1, 1, 1],
... [0, 0, 1, 1],
... [1, 0, 0, 1]]])
>>> n_samples, N, N = X.shape
>>> macro_strain = 0.1
>>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1)
>>> sim.run(X)
>>> u = sim.displacement[0]
Check that the offset for the left/right planes is `N *
macro_strain`.
>>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain)
Check that the left/right side planes are periodic in y.
>>> assert np.allclose(u[0,:,1], u[-1,:,1])
Check that the top/bottom planes are periodic in both x and y.
>>> assert np.allclose(u[:,0], u[:,-1])
"""
def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,):
"""Instantiate a ElasticFESimulation.
Args:
elastic_modulus (1D array): array of elastic moduli for phases
poissons_ratio (1D array): array of Possion's ratios for phases
macro_strain (float, optional): Scalar for macroscopic strain
"""
self.macro_strain = macro_strain
self.dx = 1.0
self.elastic_modulus = elastic_modulus
self.poissons_ratio = poissons_ratio
if len(elastic_modulus) != len(poissons_ratio):
raise RuntimeError(
'elastic_modulus and poissons_ratio must be the same length')
def _convert_properties(self, dim):
"""
Convert from elastic modulus and Poisson's ratio to the Lame
parameter and shear modulus
>>> model = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> result = model._convert_properties(2)
>>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]])
>>> assert(np.allclose(result, answer))
Args:
dim (int): Scalar value for the dimension of the microstructure.
Returns:
array with the Lame parameter and the shear modulus for each phase.
"""
def _convert(E, nu):
ec = ElasticConstants(young=E, poisson=nu)
mu = dim / 3. * ec.mu
lame = ec.lam
return lame, mu
return np.array([_convert(E, nu) for E,
nu in zip(self.elastic_modulus, self.poissons_ratio)])
def _get_property_array(self, X):
"""
Generate property array with elastic_modulus and poissons_ratio for
each phase.
Test case for 2D with 3 phases.
>>> X2D = np.array([[[0, 1, 2, 1],
... [2, 1, 0, 0],
... [1, 0, 2, 2]]])
>>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.),
... poissons_ratio=(1., 1., 1.))
>>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5
>>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2
>>> lm = zip(lame, mu)
>>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]],
... [lm[2], lm[1], lm[0], lm[0]],
... [lm[1], lm[0], lm[2], lm[2]]])
>>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property))
Test case for 3D with 2 phases.
>>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.),
... poissons_ratio=(1., 1.))
>>> X3D = np.array([[[0, 1],
... [0, 0]],
... [[1, 1],
... [0, 1]]])
>>> X3D_property = np.array([[[lm[0], lm[1]],
... [lm[0], lm[0]]],
... [[lm[1], lm[1]],
... [lm[0], lm[1]]]])
>>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property))
"""
dim = len(X.shape) - 1
n_phases = len(self.elastic_modulus)
if not issubclass(X.dtype.type, np.integer):
raise TypeError("X must be an integer array")
if np.max(X) >= n_phases or np.min(X) < 0:
raise RuntimeError(
"X must be between 0 and {N}.".format(N=n_phases - 1))
if not (2 <= dim <= 3):
raise RuntimeError("the shape of X is incorrect")
return self._convert_properties(dim)[X]
def run(self, X):
"""
Run the simulation.
Args:
X (ND array): microstructure with shape (n_samples, n_x, ...)
"""
X_property = self._get_property_array(X)
strain = []
displacement = []
stress = []
for x in X_property:
strain_, displacement_, stress_ = self._solve(x)
strain.append(strain_)
displacement.append(displacement_)
stress.append(stress_)
self.strain = np.array(strain)
self.displacement = np.array(displacement)
self.stress = np.array(stress)
@property
def response(self):
return self.strain[..., 0]
def _get_material(self, property_array, domain):
"""
Creates an SfePy material from the material property fields for the
quadrature points.
Args:
property_array: array of the properties with shape (n_x, n_y, n_z, 2)
Returns:
an SfePy material
"""
min_xyz = domain.get_mesh_bounding_box()[0]
dims = domain.get_mesh_bounding_box().shape[1]
def _material_func_(ts, coors, mode=None, **kwargs):
if mode == 'qp':
ijk_out = np.empty_like(coors, dtype=int)
ijk = np.floor((coors - min_xyz[None]) / self.dx,
ijk_out, casting="unsafe")
ijk_tuple = tuple(ijk.swapaxes(0, 1))
property_array_qp = property_array[ijk_tuple]
lam = property_array_qp[..., 0]
mu = property_array_qp[..., 1]
lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))
from sfepy.mechanics.matcoefs import stiffness_from_lame
stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
return {'lam': lam, 'mu': mu, 'D': stiffness}
else:
return
material_func = Function('material_func', _material_func_)
return Material('m', function=material_func)
def _subdomain_func(self, x=(), y=(), z=(), max_x=None):
"""
Creates a function to mask subdomains in Sfepy.
Args:
x: tuple of lines or points to be masked in the x-plane
y: tuple of lines or points to be masked in the y-plane
z: tuple of lines or points to be masked in the z-plane
Returns:
array of masked location indices
"""
eps = 1e-3 * self.dx
def _func(coords, domain=None):
flag_x = len(x) == 0
flag_y = len(y) == 0
flag_z = len(z) == 0
for x_ in x:
flag = (coords[:, 0] < (x_ + eps)) & \
(coords[:, 0] > (x_ - eps))
flag_x = flag_x | flag
for y_ in y:
flag = (coords[:, 1] < (y_ + eps)) & \
(coords[:, 1] > (y_ - eps))
flag_y = flag_y | flag
for z_ in z:
flag = (coords[:, 2] < (z_ + eps)) & \
(coords[:, 2] > (z_ - eps))
flag_z = flag_z | flag
flag = flag_x & flag_y & flag_z
if max_x is not None:
flag = flag & (coords[:, 0] < (max_x - eps))
return np.where(flag)[0]
return _func
def _get_mesh(self, shape):
"""
Generate an Sfepy rectangular mesh
Args:
shape: proposed shape of domain (vertex shape) (n_x, n_y)
Returns:
Sfepy mesh
"""
center = np.zeros_like(shape)
return gen_block_mesh(shape, np.array(shape) + 1, center,
verbose=False)
def _get_fixed_displacementsBCs(self, domain):
"""
Fix the left top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
fix_points_dict = {'u.0': 0.0, 'u.1': 0.0}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
fix_points_dict['u.2'] = 0.0
fix_x_points_ = self._subdomain_func(x=(min_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
fix_x_points = Function('fix_x_points', fix_x_points_)
region_fix_points = domain.create_region(
'region_fix_points',
'vertices by fix_x_points',
'vertex',
functions=Functions([fix_x_points]))
return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict)
def _get_shift_displacementsBCs(self, domain):
"""
Fix the right top and bottom points in x, y and z
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
kwargs = {}
if len(min_xyz) == 3:
kwargs = {'z': (max_xyz[2], min_xyz[2])}
displacement = self.macro_strain * (max_xyz[0] - min_xyz[0])
shift_points_dict = {'u.0': displacement}
shift_x_points_ = self._subdomain_func(x=(max_xyz[0],),
y=(max_xyz[1], min_xyz[1]),
**kwargs)
shift_x_points = Function('shift_x_points', shift_x_points_)
region_shift_points = domain.create_region(
'region_shift_points',
'vertices by shift_x_points',
'vertex',
functions=Functions([shift_x_points]))
return EssentialBC('shift_points_BC',
region_shift_points, shift_points_dict)
def _get_displacementBCs(self, domain):
shift_points_BC = self._get_shift_displacementsBCs(domain)
fix_points_BC = self._get_fixed_displacementsBCs(domain)
return Conditions([fix_points_BC, shift_points_BC])
def _get_linear_combinationBCs(self, domain):
"""
The right nodes are periodic with the left nodes but also displaced.
Args:
domain: an Sfepy domain
Returns:
the Sfepy boundary conditions
"""
min_xyz = domain.get_mesh_bounding_box()[0]
max_xyz = domain.get_mesh_bounding_box()[1]
xplus_ = self._subdomain_func(x=(max_xyz[0],))
xminus_ = self._subdomain_func(x=(min_xyz[0],))
xplus = Function('xplus', xplus_)
xminus = Function('xminus', xminus_)
region_x_plus = domain.create_region('region_x_plus',
'vertices by xplus',
'facet',
functions=Functions([xplus]))
region_x_minus = domain.create_region('region_x_minus',
'vertices by xminus',
'facet',
functions=Functions([xminus]))
match_x_plane = Function('match_x_plane', per.match_x_plane)
def shift_(ts, coors, region):
return np.ones_like(coors[:, 0]) * \
self.macro_strain * (max_xyz[0] - min_xyz[0])
shift = Function('shift', shift_)
lcbc = LinearCombinationBC(
'lcbc', [region_x_plus, region_x_minus], {
'u.0': 'u.0'}, match_x_plane, 'shifted_periodic',
arguments=(shift,))
return Conditions([lcbc])
def _get_periodicBC_X(self, domain, dim):
dim_dict = {1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)})
minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions=Functions([minus]))
match_plane = Function(
'match_{0}_plane'.format(dim_string), match_plane)
bc_dict = {'u.0': 'u.0'}
bc = PeriodicBC('periodic_{0}'.format(dim_string),
[region_plus, region_minus],
bc_dict,
match='match_{0}_plane'.format(dim_string))
return bc, match_plane
def _get_periodicBC_YZ(self, domain, dim):
dims = domain.get_mesh_bounding_box().shape[1]
dim_dict = {0: ('x', per.match_x_plane),
1: ('y', per.match_y_plane),
2: ('z', per.match_z_plane)}
dim_string = dim_dict[dim][0]
match_plane = dim_dict[dim][1]
min_, max_ = domain.get_mesh_bounding_box()[:, dim]
plus_ = self._subdomain_func(**{dim_string: (max_,)})
minus_ = self._subdomain_func(**{dim_string: (min_,)})
plus_string = dim_string + 'plus'
minus_string = dim_string + 'minus'
plus = Function(plus_string, plus_)
minus = Function(minus_string, minus_)
region_plus = domain.create_region(
'region_{0}_plus'.format(dim_string),
'vertices by {0}'.format(
plus_string),
'facet',
functions=Functions([plus]))
region_minus = domain.create_region(
'region_{0}_minus'.format(dim_string),
'vertices by {0}'.format(
minus_string),
'facet',
functions= | Functions([minus]) | sfepy.discrete.Functions |
"""
Utility functions based on igakit.
"""
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.fem import Mesh
from sfepy.mesh.mesh_generators import get_tensor_product_conn
def create_linear_fe_mesh(nurbs, pars=None):
"""
Convert a NURBS object into a nD-linear tensor product FE mesh.
Parameters
----------
nurbs : igakit.nurbs.NURBS instance
The NURBS object.
pars : sequence of array, optional
The values of parameters in each parametric dimension. If not given,
the values are set so that the resulting mesh has the same number of
vertices as the number of control points/basis functions of the NURBS
object.
Returns
-------
coors : array
The coordinates of mesh vertices.
conn : array
The vertex connectivity array.
desc : str
The cell kind.
"""
knots = nurbs.knots
shape = nurbs.weights.shape
if pars is None:
pars = []
for ii, kv in enumerate(knots):
par = nm.linspace(kv[0], kv[-1], shape[ii])
pars.append(par)
coors = nurbs(*pars)
coors.shape = (-1, coors.shape[-1])
conn, desc = get_tensor_product_conn([len(ii) for ii in pars])
if (coors[:, -1] == 0.0).all():
coors = coors[:, :-1]
return coors, conn, desc
def create_mesh_and_output(nurbs, pars=None, **kwargs):
"""
Create a nD-linear tensor product FE mesh using
:func:`create_linear_fe_mesh()`, evaluate field variables given as keyword
arguments in the mesh vertices and create a dictionary of output data
usable by Mesh.write().
Parameters
----------
nurbs : igakit.nurbs.NURBS instance
The NURBS object.
pars : sequence of array, optional
The values of parameters in each parametric dimension. If not given,
the values are set so that the resulting mesh has the same number of
vertices as the number of control points/basis functions of the NURBS
object.
**kwargs : kwargs
The field variables as keyword arguments. Their names serve as keys in
the output dictionary.
Returns
-------
mesh : Mesh instance
The finite element mesh.
out : dict
The output dictionary.
"""
coors, conn, desc = create_linear_fe_mesh(nurbs, pars)
mat_id = nm.zeros(conn.shape[0], dtype=nm.int32)
mesh = | Mesh.from_data('nurbs', coors, None, [conn], [mat_id], [desc]) | sfepy.discrete.fem.Mesh.from_data |
"""
Utility functions based on igakit.
"""
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.fem import Mesh
from sfepy.mesh.mesh_generators import get_tensor_product_conn
def create_linear_fe_mesh(nurbs, pars=None):
"""
Convert a NURBS object into a nD-linear tensor product FE mesh.
Parameters
----------
nurbs : igakit.nurbs.NURBS instance
The NURBS object.
pars : sequence of array, optional
The values of parameters in each parametric dimension. If not given,
the values are set so that the resulting mesh has the same number of
vertices as the number of control points/basis functions of the NURBS
object.
Returns
-------
coors : array
The coordinates of mesh vertices.
conn : array
The vertex connectivity array.
desc : str
The cell kind.
"""
knots = nurbs.knots
shape = nurbs.weights.shape
if pars is None:
pars = []
for ii, kv in enumerate(knots):
par = nm.linspace(kv[0], kv[-1], shape[ii])
pars.append(par)
coors = nurbs(*pars)
coors.shape = (-1, coors.shape[-1])
conn, desc = get_tensor_product_conn([len(ii) for ii in pars])
if (coors[:, -1] == 0.0).all():
coors = coors[:, :-1]
return coors, conn, desc
def create_mesh_and_output(nurbs, pars=None, **kwargs):
"""
Create a nD-linear tensor product FE mesh using
:func:`create_linear_fe_mesh()`, evaluate field variables given as keyword
arguments in the mesh vertices and create a dictionary of output data
usable by Mesh.write().
Parameters
----------
nurbs : igakit.nurbs.NURBS instance
The NURBS object.
pars : sequence of array, optional
The values of parameters in each parametric dimension. If not given,
the values are set so that the resulting mesh has the same number of
vertices as the number of control points/basis functions of the NURBS
object.
**kwargs : kwargs
The field variables as keyword arguments. Their names serve as keys in
the output dictionary.
Returns
-------
mesh : Mesh instance
The finite element mesh.
out : dict
The output dictionary.
"""
coors, conn, desc = create_linear_fe_mesh(nurbs, pars)
mat_id = nm.zeros(conn.shape[0], dtype=nm.int32)
mesh = Mesh.from_data('nurbs', coors, None, [conn], [mat_id], [desc])
out = {}
for key, variable in kwargs.iteritems():
if variable.ndim == 2:
nc = variable.shape[1]
field = variable.reshape(nurbs.weights.shape + (nc,))
else:
field = variable.reshape(nurbs.weights.shape)
nc = 1
vals = nurbs.evaluate(field, *pars)
out[key] = Struct(name='output_data', mode='vertex',
data=vals.reshape((-1, nc)))
return mesh, out
def save_basis(nurbs, pars):
"""
Save a NURBS object basis on a FE mesh corresponding to the given
parametrization in VTK files.
Parameters
----------
nurbs : igakit.nurbs.NURBS instance
The NURBS object.
pars : sequence of array, optional
The values of parameters in each parametric dimension.
"""
coors, conn, desc = create_linear_fe_mesh(nurbs, pars)
mat_id = nm.zeros(conn.shape[0], dtype=nm.int32)
mesh = | Mesh.from_data('nurbs', coors, None, [conn], [mat_id], [desc]) | sfepy.discrete.fem.Mesh.from_data |
#!/usr/bin/env python
# 12.01.2007, c
from __future__ import absolute_import
from argparse import ArgumentParser
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.band_gaps_app import AcousticBandGapsApp
from sfepy.base.plotutils import plt
helps = {
'debug':
'automatically start debugger when an exception is raised',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = ArgumentParser()
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument("-o", metavar='filename',
action="store", dest="output_filename_trunk",
default=None, help=helps['filename'])
parser.add_argument("-b", "--band-gaps",
action="store_true", dest="detect_band_gaps",
default=False, help=helps['detect_band_gaps'])
parser.add_argument("-d", "--dispersion",
action="store_true", dest="analyze_dispersion",
default=False, help=helps['analyze_dispersion'])
parser.add_argument("-p", "--plot",
action="store_true", dest="plot",
default=False, help=helps['plot'])
parser.add_argument("--phase-velocity",
action="store_true", dest="phase_velocity",
default=False, help=helps['phase_velocity'])
parser.add_argument("filename_in")
options = parser.parse_args()
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
if options.plot:
if plt is None:
output('matplotlib.pyplot cannot be imported, ignoring option -p!')
options.plot = False
elif options.analyze_dispersion == False:
options.detect_band_gaps = True
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
#!/usr/bin/env python
# 12.01.2007, c
from __future__ import absolute_import
from argparse import ArgumentParser
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.band_gaps_app import AcousticBandGapsApp
from sfepy.base.plotutils import plt
helps = {
'debug':
'automatically start debugger when an exception is raised',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = ArgumentParser()
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument("-o", metavar='filename',
action="store", dest="output_filename_trunk",
default=None, help=helps['filename'])
parser.add_argument("-b", "--band-gaps",
action="store_true", dest="detect_band_gaps",
default=False, help=helps['detect_band_gaps'])
parser.add_argument("-d", "--dispersion",
action="store_true", dest="analyze_dispersion",
default=False, help=helps['analyze_dispersion'])
parser.add_argument("-p", "--plot",
action="store_true", dest="plot",
default=False, help=helps['plot'])
parser.add_argument("--phase-velocity",
action="store_true", dest="phase_velocity",
default=False, help=helps['phase_velocity'])
parser.add_argument("filename_in")
options = parser.parse_args()
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
if options.plot:
if plt is None:
output('matplotlib.pyplot cannot be imported, ignoring option -p!')
options.plot = False
elif options.analyze_dispersion == False:
options.detect_band_gaps = True
required, other = get_standard_keywords()
required.remove('equations')
if not options.analyze_dispersion:
required.remove('solver_[0-9]+|solvers')
if options.phase_velocity:
required = [ii for ii in required if 'ebc' not in ii]
conf = | ProblemConf.from_file(options.filename_in, required, other) | sfepy.base.conf.ProblemConf.from_file |
#!/usr/bin/env python
# 12.01.2007, c
from __future__ import absolute_import
from argparse import ArgumentParser
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.band_gaps_app import AcousticBandGapsApp
from sfepy.base.plotutils import plt
helps = {
'debug':
'automatically start debugger when an exception is raised',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = ArgumentParser()
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument("-o", metavar='filename',
action="store", dest="output_filename_trunk",
default=None, help=helps['filename'])
parser.add_argument("-b", "--band-gaps",
action="store_true", dest="detect_band_gaps",
default=False, help=helps['detect_band_gaps'])
parser.add_argument("-d", "--dispersion",
action="store_true", dest="analyze_dispersion",
default=False, help=helps['analyze_dispersion'])
parser.add_argument("-p", "--plot",
action="store_true", dest="plot",
default=False, help=helps['plot'])
parser.add_argument("--phase-velocity",
action="store_true", dest="phase_velocity",
default=False, help=helps['phase_velocity'])
parser.add_argument("filename_in")
options = parser.parse_args()
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
if options.plot:
if plt is None:
output('matplotlib.pyplot cannot be imported, ignoring option -p!')
options.plot = False
elif options.analyze_dispersion == False:
options.detect_band_gaps = True
required, other = get_standard_keywords()
required.remove('equations')
if not options.analyze_dispersion:
required.remove('solver_[0-9]+|solvers')
if options.phase_velocity:
required = [ii for ii in required if 'ebc' not in ii]
conf = ProblemConf.from_file(options.filename_in, required, other)
app = | AcousticBandGapsApp(conf, options, 'phonon:') | sfepy.homogenization.band_gaps_app.AcousticBandGapsApp |
#!/usr/bin/env python
# 12.01.2007, c
from __future__ import absolute_import
from argparse import ArgumentParser
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.band_gaps_app import AcousticBandGapsApp
from sfepy.base.plotutils import plt
helps = {
'debug':
'automatically start debugger when an exception is raised',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = ArgumentParser()
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument("-o", metavar='filename',
action="store", dest="output_filename_trunk",
default=None, help=helps['filename'])
parser.add_argument("-b", "--band-gaps",
action="store_true", dest="detect_band_gaps",
default=False, help=helps['detect_band_gaps'])
parser.add_argument("-d", "--dispersion",
action="store_true", dest="analyze_dispersion",
default=False, help=helps['analyze_dispersion'])
parser.add_argument("-p", "--plot",
action="store_true", dest="plot",
default=False, help=helps['plot'])
parser.add_argument("--phase-velocity",
action="store_true", dest="phase_velocity",
default=False, help=helps['phase_velocity'])
parser.add_argument("filename_in")
options = parser.parse_args()
if options.debug:
from sfepy.base.base import debug_on_error; | debug_on_error() | sfepy.base.base.debug_on_error |
#!/usr/bin/env python
# 12.01.2007, c
from __future__ import absolute_import
from argparse import ArgumentParser
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.band_gaps_app import AcousticBandGapsApp
from sfepy.base.plotutils import plt
helps = {
'debug':
'automatically start debugger when an exception is raised',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = ArgumentParser()
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument("-o", metavar='filename',
action="store", dest="output_filename_trunk",
default=None, help=helps['filename'])
parser.add_argument("-b", "--band-gaps",
action="store_true", dest="detect_band_gaps",
default=False, help=helps['detect_band_gaps'])
parser.add_argument("-d", "--dispersion",
action="store_true", dest="analyze_dispersion",
default=False, help=helps['analyze_dispersion'])
parser.add_argument("-p", "--plot",
action="store_true", dest="plot",
default=False, help=helps['plot'])
parser.add_argument("--phase-velocity",
action="store_true", dest="phase_velocity",
default=False, help=helps['phase_velocity'])
parser.add_argument("filename_in")
options = parser.parse_args()
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
if options.plot:
if plt is None:
| output('matplotlib.pyplot cannot be imported, ignoring option -p!') | sfepy.base.base.output |
"""
This module is not a test file. It contains classes grouping some common
functionality, that is used in several test files.
"""
from __future__ import absolute_import
from sfepy.base.base import IndexedStruct
from sfepy.base.testing import TestCommon
import os.path as op
class NLSStatus(IndexedStruct):
"""
Custom nonlinear solver status storing stopping condition of all
time steps.
"""
def __setitem__(self, key, val):
| IndexedStruct.__setitem__(self, key, val) | sfepy.base.base.IndexedStruct.__setitem__ |
"""
This module is not a test file. It contains classes grouping some common
functionality, that is used in several test files.
"""
from __future__ import absolute_import
from sfepy.base.base import IndexedStruct
from sfepy.base.testing import TestCommon
import os.path as op
class NLSStatus(IndexedStruct):
"""
Custom nonlinear solver status storing stopping condition of all
time steps.
"""
def __setitem__(self, key, val):
IndexedStruct.__setitem__(self, key, val)
if key == 'condition':
self.conditions.append(val)
class TestDummy(TestCommon):
"""Simulate test OK result for missing optional modules."""
@staticmethod
def from_conf(conf, options):
return TestDummy()
def test_dummy(self):
return True
class TestInput(TestCommon):
"""Test that an input file works. See test_input_*.py files."""
@staticmethod
def from_conf(conf, options, cls=None):
from sfepy.base.base import Struct
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import assign_standard_hooks
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
"""
This module is not a test file. It contains classes grouping some common
functionality, that is used in several test files.
"""
from __future__ import absolute_import
from sfepy.base.base import IndexedStruct
from sfepy.base.testing import TestCommon
import os.path as op
class NLSStatus(IndexedStruct):
"""
Custom nonlinear solver status storing stopping condition of all
time steps.
"""
def __setitem__(self, key, val):
IndexedStruct.__setitem__(self, key, val)
if key == 'condition':
self.conditions.append(val)
class TestDummy(TestCommon):
"""Simulate test OK result for missing optional modules."""
@staticmethod
def from_conf(conf, options):
return TestDummy()
def test_dummy(self):
return True
class TestInput(TestCommon):
"""Test that an input file works. See test_input_*.py files."""
@staticmethod
def from_conf(conf, options, cls=None):
from sfepy.base.base import Struct
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import assign_standard_hooks
required, other = get_standard_keywords()
input_name = op.join(op.dirname(__file__), conf.input_name)
test_conf = | ProblemConf.from_file(input_name, required, other) | sfepy.base.conf.ProblemConf.from_file |
"""
This module is not a test file. It contains classes grouping some common
functionality, that is used in several test files.
"""
from __future__ import absolute_import
from sfepy.base.base import IndexedStruct
from sfepy.base.testing import TestCommon
import os.path as op
class NLSStatus(IndexedStruct):
"""
Custom nonlinear solver status storing stopping condition of all
time steps.
"""
def __setitem__(self, key, val):
IndexedStruct.__setitem__(self, key, val)
if key == 'condition':
self.conditions.append(val)
class TestDummy(TestCommon):
"""Simulate test OK result for missing optional modules."""
@staticmethod
def from_conf(conf, options):
return TestDummy()
def test_dummy(self):
return True
class TestInput(TestCommon):
"""Test that an input file works. See test_input_*.py files."""
@staticmethod
def from_conf(conf, options, cls=None):
from sfepy.base.base import Struct
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import assign_standard_hooks
required, other = get_standard_keywords()
input_name = op.join(op.dirname(__file__), conf.input_name)
test_conf = ProblemConf.from_file(input_name, required, other)
if cls is None:
cls = TestInput
test = cls(test_conf=test_conf, conf=conf, options=options)
| assign_standard_hooks(test, test_conf.options.get, test_conf) | sfepy.applications.assign_standard_hooks |
"""
This module is not a test file. It contains classes grouping some common
functionality, that is used in several test files.
"""
from __future__ import absolute_import
from sfepy.base.base import IndexedStruct
from sfepy.base.testing import TestCommon
import os.path as op
class NLSStatus(IndexedStruct):
"""
Custom nonlinear solver status storing stopping condition of all
time steps.
"""
def __setitem__(self, key, val):
IndexedStruct.__setitem__(self, key, val)
if key == 'condition':
self.conditions.append(val)
class TestDummy(TestCommon):
"""Simulate test OK result for missing optional modules."""
@staticmethod
def from_conf(conf, options):
return TestDummy()
def test_dummy(self):
return True
class TestInput(TestCommon):
"""Test that an input file works. See test_input_*.py files."""
@staticmethod
def from_conf(conf, options, cls=None):
from sfepy.base.base import Struct
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import assign_standard_hooks
required, other = get_standard_keywords()
input_name = op.join(op.dirname(__file__), conf.input_name)
test_conf = ProblemConf.from_file(input_name, required, other)
if cls is None:
cls = TestInput
test = cls(test_conf=test_conf, conf=conf, options=options)
assign_standard_hooks(test, test_conf.options.get, test_conf)
name = test.get_output_name_trunk()
ext = test.get_output_name_ext()
test.solver_options = Struct(output_filename_trunk=name,
output_format=ext if ext != '' else "vtk",
save_ebc=False, save_ebc_nodes=False,
save_regions=False,
save_regions_as_groups=False,
save_field_meshes=False,
solve_not=False)
return test
def get_output_name_trunk(self):
return op.splitext(op.split(self.conf.output_name)[1])[0]
def get_output_name_ext(self):
return op.splitext(op.split(self.conf.output_name)[1])[1].replace(".", "")
def check_conditions(self, conditions):
ok = (conditions == 0).all()
if not ok:
self.report('nls stopping conditions:')
self.report(conditions)
return ok
def test_input(self):
import numpy as nm
from sfepy.applications import solve_pde
self.report('solving %s...' % self.conf.input_name)
status = IndexedStruct(nls_status=NLSStatus(conditions=[]))
solve_pde(self.test_conf,
self.solver_options,
status=status,
output_dir=self.options.out_dir,
step_hook=self.step_hook,
post_process_hook=self.post_process_hook,
post_process_hook_final=self.post_process_hook_final)
self.report('%s solved' % self.conf.input_name)
ok = self.check_conditions(nm.array(status.nls_status.conditions))
return ok
class TestInputEvolutionary(TestInput):
@staticmethod
def from_conf(conf, options, cls=None):
if cls is None:
cls = TestInputEvolutionary
return TestInput.from_conf(conf, options, cls=cls)
def get_output_name_trunk(self):
return self.conf.output_name_trunk
def get_output_name_ext(self):
return ""
class TestLCBC(TestCommon):
"""Test linear combination BC. See test_lcbc_*.py files."""
@staticmethod
def from_conf(conf, options):
return TestLCBC(conf=conf, options=options)
def test_linear_rigid_body_bc(self):
import scipy
if scipy.version.version == "0.6.0":
# This test uses a functionality implemented in scipy svn, which is
# missing in scipy 0.6.0
return True
from sfepy.base.base import Struct
from sfepy.applications import solve_pde
from sfepy.base.base import IndexedStruct
status = | IndexedStruct() | sfepy.base.base.IndexedStruct |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
| output('generating NURBS...', verbose=verbose) | sfepy.base.base.output |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
| output('...done', verbose=verbose) | sfepy.base.base.output |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
| output('computing Bezier mesh...', verbose=verbose) | sfepy.base.base.output |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = | iga.compute_bezier_extraction(block.knots, block.degree) | sfepy.discrete.iga.compute_bezier_extraction |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = | iga.create_connectivity(n_els, block.knots, block.degree) | sfepy.discrete.iga.create_connectivity |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = | iga.combine_bezier_extraction(cs) | sfepy.discrete.iga.combine_bezier_extraction |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = iga.combine_bezier_extraction(cs)
cps = block.points[..., :dim].copy()
cps = cps.reshape((-1, dim))
bcps, bweights = iga.compute_bezier_control(cps, block.weights.ravel(), ccs,
conn, bconn)
nurbs = NurbsPatch(block.knots, degrees, cps, block.weights.ravel(), cs,
conn)
nurbs.nurbs = block
bmesh = | Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn) | sfepy.base.base.Struct |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = iga.combine_bezier_extraction(cs)
cps = block.points[..., :dim].copy()
cps = cps.reshape((-1, dim))
bcps, bweights = iga.compute_bezier_control(cps, block.weights.ravel(), ccs,
conn, bconn)
nurbs = NurbsPatch(block.knots, degrees, cps, block.weights.ravel(), cs,
conn)
nurbs.nurbs = block
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
| output('...done', verbose=verbose) | sfepy.base.base.output |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = iga.combine_bezier_extraction(cs)
cps = block.points[..., :dim].copy()
cps = cps.reshape((-1, dim))
bcps, bweights = iga.compute_bezier_control(cps, block.weights.ravel(), ccs,
conn, bconn)
nurbs = NurbsPatch(block.knots, degrees, cps, block.weights.ravel(), cs,
conn)
nurbs.nurbs = block
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
output('...done', verbose=verbose)
| output('defining regions...', verbose=verbose) | sfepy.base.base.output |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = iga.combine_bezier_extraction(cs)
cps = block.points[..., :dim].copy()
cps = cps.reshape((-1, dim))
bcps, bweights = iga.compute_bezier_control(cps, block.weights.ravel(), ccs,
conn, bconn)
nurbs = NurbsPatch(block.knots, degrees, cps, block.weights.ravel(), cs,
conn)
nurbs.nurbs = block
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
output('...done', verbose=verbose)
output('defining regions...', verbose=verbose)
regions = | iga.get_patch_box_regions(n_els, block.degree) | sfepy.discrete.iga.get_patch_box_regions |
"""
IGA domain generators.
"""
import numpy as nm
from sfepy.base.base import output, Struct
import sfepy.discrete.iga as iga
from sfepy.discrete.iga.domain import NurbsPatch
def gen_patch_block_domain(dims, shape, centre, degrees, continuity=None,
name='block', verbose=True):
"""
Generate a single IGA patch block in 2D or 3D of given degrees and
continuity using igakit.
Parameters
----------
dims : array of D floats
Dimensions of the block.
shape : array of D ints
Numbers of unique knot values along each axis.
centre : array of D floats
Centre of the block.
degrees : array of D floats
NURBS degrees along each axis.
continuity : array of D ints, optional
NURBS continuity along each axis. If None, `degrees-1` is used.
name : string
Domain name.
verbose : bool
If True, report progress of the domain generation.
Returns
-------
nurbs : NurbsPatch instance
The NURBS data. The igakit NURBS object is stored as `nurbs` attribute.
bmesh : Struct instance
The Bezier mesh data.
regions : dict
The patch surface regions.
"""
import igakit.cad as cad
dims = nm.asarray(dims, dtype=nm.float64)
shape = nm.asarray(shape, dtype=nm.int32)
centre = nm.asarray(centre, dtype=nm.float64)
degrees = nm.asarray(degrees, dtype=nm.int32)
if continuity is None:
continuity = degrees - 1
else:
continuity = nm.asarray(continuity, dtype=nm.int32)
dim = len(shape)
output('generating NURBS...', verbose=verbose)
dd = centre - 0.5 * dims
block = cad.grid(shape - 1, degree=degrees, continuity=continuity)
for ia in xrange(dim):
block.scale(dims[ia], ia)
for ia in xrange(dim):
block.translate(dd[ia], ia)
# Force uniform control points. This prevents coarser resolution inside the
# block.
shape = nm.asarray(block.points.shape[:-1])
n_nod = nm.prod(shape)
x0 = centre - 0.5 * dims
dd = dims / (shape - 1)
ngrid = nm.mgrid[[slice(ii) for ii in shape]]
ngrid.shape = (dim, n_nod)
coors = x0 + ngrid.T * dd
coors.shape = shape.tolist() + [dim]
block.array[..., :dim] = coors
output('...done', verbose=verbose)
# Compute Bezier extraction data.
output('computing Bezier mesh...', verbose=verbose)
cs = iga.compute_bezier_extraction(block.knots, block.degree)
n_els = [len(ii) for ii in cs]
conn, bconn = iga.create_connectivity(n_els, block.knots, block.degree)
ccs = iga.combine_bezier_extraction(cs)
cps = block.points[..., :dim].copy()
cps = cps.reshape((-1, dim))
bcps, bweights = iga.compute_bezier_control(cps, block.weights.ravel(), ccs,
conn, bconn)
nurbs = NurbsPatch(block.knots, degrees, cps, block.weights.ravel(), cs,
conn)
nurbs.nurbs = block
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
output('...done', verbose=verbose)
output('defining regions...', verbose=verbose)
regions = iga.get_patch_box_regions(n_els, block.degree)
| output('...done', verbose=verbose) | sfepy.base.base.output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = | get_eval_coors(vertex_coors, vertex_conn, gps) | sfepy.discrete.fem.linearizer.get_eval_coors |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = | convert_complex_output(out) | sfepy.discrete.fem.meshio.convert_complex_output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = | parse_shape(shape, region.domain.shape.dim) | sfepy.discrete.common.fields.parse_shape |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = | invert_remap(self.vertex_remap) | sfepy.discrete.fem.utils.invert_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
| assert_(dofs.ndim == 2) | sfepy.base.base.assert_ |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
| assert_(n_nod == self.n_nod) | sfepy.base.base.assert_ |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
| assert_(dpn == self.shape[0]) | sfepy.base.base.assert_ |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = | get_eval_dofs(dofs, self.econn, ps, ori=self.ori) | sfepy.discrete.fem.linearizer.get_eval_dofs |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = | get_eval_coors(vertex_coors, vertex_conn, gps) | sfepy.discrete.fem.linearizer.get_eval_coors |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = | convert_complex_output(out) | sfepy.discrete.fem.meshio.convert_complex_output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = | Integral('i', order=self.approx_order) | sfepy.discrete.integrals.Integral |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
if integration == 'surface_extra':
sg.alloc_extra_data(self.econn.shape[1])
bf_bg = geo_ps.eval_base(qp.vals, diff=True)
ebf_bg = self.get_base(esd.bkey, 1, integral)
sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn)
else:
# Do not use BQP for surface fields.
qp = self.get_qp(sd.face_type, integral)
bf = ps.eval_base(qp.vals, transform=self.basis_transform)
sg = mapping.get_mapping(qp.vals, qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
out = sg
elif integration == 'point':
out = mapping = None
elif integration == 'custom':
raise ValueError('cannot create custom mapping!')
else:
raise ValueError('unknown integration geometry type: %s'
% integration)
if out is not None:
# Store the integral used.
out.integral = integral
out.qp = qp
out.ps = ps
# Update base.
out.bf[:] = bf
if return_mapping:
out = (out, mapping)
return out
class VolumeField(FEField):
"""
Finite element field base class over volume elements (element dimension
equals space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok = True
domain = region.domain
if region.kind != 'cell':
output("bad region kind! (is: %r, should be: 'cell')"
% region.kind)
ok = False
elif (region.kind_tdim != domain.shape.tdim):
output('cells with a bad topological dimension! (%d == %d)'
% (region.kind_tdim, domain.shape.tdim))
ok = False
return ok
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
cmesh = self.domain.cmesh
for key, gel in six.iteritems(self.domain.geom_els):
ct = cmesh.cell_types
if (ct[self.region.cells] == cmesh.key_to_index[gel.name]).all():
self.gel = gel
break
else:
raise ValueError('region %s of field %s contains multiple'
' reference geometries!'
% (self.region.name, self.name))
self.is_surface = False
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells()
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
cmesh = self.domain.cmesh
conn, offsets = cmesh.get_incident(0, region.cells, region.tdim,
ret_offsets=True)
vertices = nm.unique(conn)
remap = | prepare_remap(vertices, region.n_v_max) | sfepy.discrete.fem.utils.prepare_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
if integration == 'surface_extra':
sg.alloc_extra_data(self.econn.shape[1])
bf_bg = geo_ps.eval_base(qp.vals, diff=True)
ebf_bg = self.get_base(esd.bkey, 1, integral)
sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn)
else:
# Do not use BQP for surface fields.
qp = self.get_qp(sd.face_type, integral)
bf = ps.eval_base(qp.vals, transform=self.basis_transform)
sg = mapping.get_mapping(qp.vals, qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
out = sg
elif integration == 'point':
out = mapping = None
elif integration == 'custom':
raise ValueError('cannot create custom mapping!')
else:
raise ValueError('unknown integration geometry type: %s'
% integration)
if out is not None:
# Store the integral used.
out.integral = integral
out.qp = qp
out.ps = ps
# Update base.
out.bf[:] = bf
if return_mapping:
out = (out, mapping)
return out
class VolumeField(FEField):
"""
Finite element field base class over volume elements (element dimension
equals space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok = True
domain = region.domain
if region.kind != 'cell':
output("bad region kind! (is: %r, should be: 'cell')"
% region.kind)
ok = False
elif (region.kind_tdim != domain.shape.tdim):
output('cells with a bad topological dimension! (%d == %d)'
% (region.kind_tdim, domain.shape.tdim))
ok = False
return ok
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
cmesh = self.domain.cmesh
for key, gel in six.iteritems(self.domain.geom_els):
ct = cmesh.cell_types
if (ct[self.region.cells] == cmesh.key_to_index[gel.name]).all():
self.gel = gel
break
else:
raise ValueError('region %s of field %s contains multiple'
' reference geometries!'
% (self.region.name, self.name))
self.is_surface = False
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells()
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
cmesh = self.domain.cmesh
conn, offsets = cmesh.get_incident(0, region.cells, region.tdim,
ret_offsets=True)
vertices = nm.unique(conn)
remap = prepare_remap(vertices, region.n_v_max)
n_dof = vertices.shape[0]
aux = nm.unique(nm.diff(offsets))
assert_(len(aux) == 1, 'region with multiple reference geometries!')
offset = aux[0]
# Remap vertex node connectivity to field-local numbering.
aux = conn.reshape((-1, offset)).astype(nm.int32)
self.econn[:, :offset] = nm.take(remap, aux)
return n_dof, remap
def setup_extra_data(self, geometry, info, is_trace):
dct = info.dc_type.type
if geometry != None:
geometry_flag = 'surface' in geometry
else:
geometry_flag = False
if (dct == 'surface') or (geometry_flag):
reg = info.get_region()
mreg_name = info.get_region_name(can_trace=False)
self.domain.create_surface_group(reg)
self.setup_surface_data(reg, is_trace, mreg_name)
elif dct == 'edge':
raise NotImplementedError('dof connectivity type %s' % dct)
elif dct == 'point':
self.setup_point_data(self, info.region)
elif dct not in ('volume', 'scalar', 'custom'):
raise ValueError('unknown dof connectivity type! (%s)' % dct)
def setup_point_data(self, field, region):
if region.name not in self.point_data:
conn = field.get_dofs_in_region(region, merge=True)
conn.shape += (1,)
self.point_data[region.name] = conn
def setup_surface_data(self, region, is_trace=False, trace_region=None):
"""nodes[leconn] == econn"""
"""nodes are sorted by node number -> same order as region.vertices"""
if region.name not in self.surface_data:
sd = FESurface('surface_data_%s' % region.name, region,
self.efaces, self.econn, self.region)
self.surface_data[region.name] = sd
if region.name in self.surface_data and is_trace:
sd = self.surface_data[region.name]
sd.setup_mirror_connectivity(region, trace_region)
return self.surface_data[region.name]
def get_econn(self, conn_type, region, is_trace=False, integration=None):
"""
Get extended connectivity of the given type in the given region.
"""
ct = conn_type.type if isinstance(conn_type, Struct) else conn_type
if ct in ('volume', 'custom'):
if region.name == self.region.name:
conn = self.econn
else:
tco = integration in ('volume', 'custom')
cells = region.get_cells(true_cells_only=tco)
ii = self.region.get_cell_indices(cells, true_cells_only=tco)
conn = nm.take(self.econn, ii, axis=0)
elif ct == 'surface':
sd = self.surface_data[region.name]
conn = sd.get_connectivity(is_trace=is_trace)
elif ct == 'edge':
raise NotImplementedError('connectivity type %s' % ct)
elif ct == 'point':
conn = self.point_data[region.name]
else:
raise ValueError('unknown connectivity type! (%s)' % ct)
return conn
def average_qp_to_vertices(self, data_qp, integral):
"""
Average data given in quadrature points in region elements into
region vertices.
.. math::
u_n = \sum_e (u_{e,avg} * volume_e) / \sum_e volume_e
= \sum_e \int_{volume_e} u / \sum volume_e
"""
region = self.region
n_cells = region.get_n_cells()
if n_cells != data_qp.shape[0]:
msg = 'incomatible shape! (%d == %d)' % (n_cells,
data_qp.shape[0])
raise ValueError(msg)
n_vertex = self.n_vertex_dof
nc = data_qp.shape[2]
nod_vol = nm.zeros((n_vertex,), dtype=nm.float64)
data_vertex = nm.zeros((n_vertex, nc), dtype=nm.float64)
vg = self.get_mapping(self.region, integral, 'volume')[0]
volume = nm.squeeze(vg.volume)
iels = self.region.get_cells()
data_e = nm.zeros((volume.shape[0], 1, nc, 1), dtype=nm.float64)
vg.integrate(data_e, data_qp[iels])
ir = nm.arange(nc, dtype=nm.int32)
conn = self.econn[:, :self.gel.n_vertex]
for ii, cc in enumerate(conn):
# Assumes unique nodes in cc!
ind2, ind1 = nm.meshgrid(ir, cc)
data_vertex[ind1,ind2] += data_e[iels[ii],0,:,0]
nod_vol[cc] += volume[ii]
data_vertex /= nod_vol[:,nm.newaxis]
return data_vertex
class SurfaceField(FEField):
"""
Finite element field base class over surface (element dimension is one
less than space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok1 = ((region.kind_tdim == (region.tdim - 1))
and (region.get_n_cells(True) > 0))
if not ok1:
output('bad region topological dimension and kind! (%d, %s)'
% (region.tdim, region.kind))
n_ns = region.get_facet_indices().shape[0] - region.get_n_cells(True)
ok2 = n_ns == 0
if not ok2:
output('%d region facets are not on the domain surface!' % n_ns)
return ok1 and ok2
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
for key, vgel in six.iteritems(self.domain.geom_els):
self.gel = vgel.surface_facet
break
if self.gel is None:
raise ValueError('cells with no surface!')
self.is_surface = True
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def setup_extra_data(self, geometry, info, is_trace):
dct = info.dc_type.type
if dct != 'surface':
msg = "dof connectivity type must be 'surface'! (%s)" % dct
raise ValueError(msg)
reg = info.get_region()
if reg.name not in self.surface_data:
# Defined in setup_vertex_dofs()
msg = 'no surface data of surface field! (%s)' % reg.name
raise ValueError(msg)
if reg.name in self.surface_data and is_trace:
sd = self.surface_data[reg.name]
mreg_name = info.get_region_name(can_trace=False)
sd.setup_mirror_connectivity(reg, mreg_name)
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells(is_surface=self.is_surface)
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
remap = | prepare_remap(region.vertices, region.n_v_max) | sfepy.discrete.fem.utils.prepare_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
if integration == 'surface_extra':
sg.alloc_extra_data(self.econn.shape[1])
bf_bg = geo_ps.eval_base(qp.vals, diff=True)
ebf_bg = self.get_base(esd.bkey, 1, integral)
sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn)
else:
# Do not use BQP for surface fields.
qp = self.get_qp(sd.face_type, integral)
bf = ps.eval_base(qp.vals, transform=self.basis_transform)
sg = mapping.get_mapping(qp.vals, qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
out = sg
elif integration == 'point':
out = mapping = None
elif integration == 'custom':
raise ValueError('cannot create custom mapping!')
else:
raise ValueError('unknown integration geometry type: %s'
% integration)
if out is not None:
# Store the integral used.
out.integral = integral
out.qp = qp
out.ps = ps
# Update base.
out.bf[:] = bf
if return_mapping:
out = (out, mapping)
return out
class VolumeField(FEField):
"""
Finite element field base class over volume elements (element dimension
equals space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok = True
domain = region.domain
if region.kind != 'cell':
output("bad region kind! (is: %r, should be: 'cell')"
% region.kind)
ok = False
elif (region.kind_tdim != domain.shape.tdim):
output('cells with a bad topological dimension! (%d == %d)'
% (region.kind_tdim, domain.shape.tdim))
ok = False
return ok
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
cmesh = self.domain.cmesh
for key, gel in six.iteritems(self.domain.geom_els):
ct = cmesh.cell_types
if (ct[self.region.cells] == cmesh.key_to_index[gel.name]).all():
self.gel = gel
break
else:
raise ValueError('region %s of field %s contains multiple'
' reference geometries!'
% (self.region.name, self.name))
self.is_surface = False
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells()
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
cmesh = self.domain.cmesh
conn, offsets = cmesh.get_incident(0, region.cells, region.tdim,
ret_offsets=True)
vertices = nm.unique(conn)
remap = prepare_remap(vertices, region.n_v_max)
n_dof = vertices.shape[0]
aux = nm.unique(nm.diff(offsets))
assert_(len(aux) == 1, 'region with multiple reference geometries!')
offset = aux[0]
# Remap vertex node connectivity to field-local numbering.
aux = conn.reshape((-1, offset)).astype(nm.int32)
self.econn[:, :offset] = nm.take(remap, aux)
return n_dof, remap
def setup_extra_data(self, geometry, info, is_trace):
dct = info.dc_type.type
if geometry != None:
geometry_flag = 'surface' in geometry
else:
geometry_flag = False
if (dct == 'surface') or (geometry_flag):
reg = info.get_region()
mreg_name = info.get_region_name(can_trace=False)
self.domain.create_surface_group(reg)
self.setup_surface_data(reg, is_trace, mreg_name)
elif dct == 'edge':
raise NotImplementedError('dof connectivity type %s' % dct)
elif dct == 'point':
self.setup_point_data(self, info.region)
elif dct not in ('volume', 'scalar', 'custom'):
raise ValueError('unknown dof connectivity type! (%s)' % dct)
def setup_point_data(self, field, region):
if region.name not in self.point_data:
conn = field.get_dofs_in_region(region, merge=True)
conn.shape += (1,)
self.point_data[region.name] = conn
def setup_surface_data(self, region, is_trace=False, trace_region=None):
"""nodes[leconn] == econn"""
"""nodes are sorted by node number -> same order as region.vertices"""
if region.name not in self.surface_data:
sd = FESurface('surface_data_%s' % region.name, region,
self.efaces, self.econn, self.region)
self.surface_data[region.name] = sd
if region.name in self.surface_data and is_trace:
sd = self.surface_data[region.name]
sd.setup_mirror_connectivity(region, trace_region)
return self.surface_data[region.name]
def get_econn(self, conn_type, region, is_trace=False, integration=None):
"""
Get extended connectivity of the given type in the given region.
"""
ct = conn_type.type if isinstance(conn_type, Struct) else conn_type
if ct in ('volume', 'custom'):
if region.name == self.region.name:
conn = self.econn
else:
tco = integration in ('volume', 'custom')
cells = region.get_cells(true_cells_only=tco)
ii = self.region.get_cell_indices(cells, true_cells_only=tco)
conn = nm.take(self.econn, ii, axis=0)
elif ct == 'surface':
sd = self.surface_data[region.name]
conn = sd.get_connectivity(is_trace=is_trace)
elif ct == 'edge':
raise NotImplementedError('connectivity type %s' % ct)
elif ct == 'point':
conn = self.point_data[region.name]
else:
raise ValueError('unknown connectivity type! (%s)' % ct)
return conn
def average_qp_to_vertices(self, data_qp, integral):
"""
Average data given in quadrature points in region elements into
region vertices.
.. math::
u_n = \sum_e (u_{e,avg} * volume_e) / \sum_e volume_e
= \sum_e \int_{volume_e} u / \sum volume_e
"""
region = self.region
n_cells = region.get_n_cells()
if n_cells != data_qp.shape[0]:
msg = 'incomatible shape! (%d == %d)' % (n_cells,
data_qp.shape[0])
raise ValueError(msg)
n_vertex = self.n_vertex_dof
nc = data_qp.shape[2]
nod_vol = nm.zeros((n_vertex,), dtype=nm.float64)
data_vertex = nm.zeros((n_vertex, nc), dtype=nm.float64)
vg = self.get_mapping(self.region, integral, 'volume')[0]
volume = nm.squeeze(vg.volume)
iels = self.region.get_cells()
data_e = nm.zeros((volume.shape[0], 1, nc, 1), dtype=nm.float64)
vg.integrate(data_e, data_qp[iels])
ir = nm.arange(nc, dtype=nm.int32)
conn = self.econn[:, :self.gel.n_vertex]
for ii, cc in enumerate(conn):
# Assumes unique nodes in cc!
ind2, ind1 = nm.meshgrid(ir, cc)
data_vertex[ind1,ind2] += data_e[iels[ii],0,:,0]
nod_vol[cc] += volume[ii]
data_vertex /= nod_vol[:,nm.newaxis]
return data_vertex
class SurfaceField(FEField):
"""
Finite element field base class over surface (element dimension is one
less than space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok1 = ((region.kind_tdim == (region.tdim - 1))
and (region.get_n_cells(True) > 0))
if not ok1:
output('bad region topological dimension and kind! (%d, %s)'
% (region.tdim, region.kind))
n_ns = region.get_facet_indices().shape[0] - region.get_n_cells(True)
ok2 = n_ns == 0
if not ok2:
output('%d region facets are not on the domain surface!' % n_ns)
return ok1 and ok2
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
for key, vgel in six.iteritems(self.domain.geom_els):
self.gel = vgel.surface_facet
break
if self.gel is None:
raise ValueError('cells with no surface!')
self.is_surface = True
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def setup_extra_data(self, geometry, info, is_trace):
dct = info.dc_type.type
if dct != 'surface':
msg = "dof connectivity type must be 'surface'! (%s)" % dct
raise ValueError(msg)
reg = info.get_region()
if reg.name not in self.surface_data:
# Defined in setup_vertex_dofs()
msg = 'no surface data of surface field! (%s)' % reg.name
raise ValueError(msg)
if reg.name in self.surface_data and is_trace:
sd = self.surface_data[reg.name]
mreg_name = info.get_region_name(can_trace=False)
sd.setup_mirror_connectivity(reg, mreg_name)
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells(is_surface=self.is_surface)
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
remap = prepare_remap(region.vertices, region.n_v_max)
n_dof = region.vertices.shape[0]
# Remap vertex node connectivity to field-local numbering.
conn, gel = self.domain.get_conn(ret_gel=True)
faces = gel.get_surface_entities()
aux = | FESurface('aux', region, faces, conn) | sfepy.discrete.fem.fe_surface.FESurface |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = | Struct(vals=vals, weights=weights) | sfepy.base.base.Struct |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, | Struct(kind='strip') | sfepy.base.base.Struct |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = | Struct(name='evaluate_cache') | sfepy.base.base.Struct |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = | create_geometry_elements() | sfepy.discrete.fem.geometry_element.create_geometry_elements |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = | VolumeMapping(coors, conn, poly_space=geo_ps) | sfepy.discrete.fem.mappings.VolumeMapping |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
if integration == 'surface_extra':
sg.alloc_extra_data(self.econn.shape[1])
bf_bg = geo_ps.eval_base(qp.vals, diff=True)
ebf_bg = self.get_base(esd.bkey, 1, integral)
sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn)
else:
# Do not use BQP for surface fields.
qp = self.get_qp(sd.face_type, integral)
bf = ps.eval_base(qp.vals, transform=self.basis_transform)
sg = mapping.get_mapping(qp.vals, qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
out = sg
elif integration == 'point':
out = mapping = None
elif integration == 'custom':
raise ValueError('cannot create custom mapping!')
else:
raise ValueError('unknown integration geometry type: %s'
% integration)
if out is not None:
# Store the integral used.
out.integral = integral
out.qp = qp
out.ps = ps
# Update base.
out.bf[:] = bf
if return_mapping:
out = (out, mapping)
return out
class VolumeField(FEField):
"""
Finite element field base class over volume elements (element dimension
equals space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok = True
domain = region.domain
if region.kind != 'cell':
output("bad region kind! (is: %r, should be: 'cell')"
% region.kind)
ok = False
elif (region.kind_tdim != domain.shape.tdim):
output('cells with a bad topological dimension! (%d == %d)'
% (region.kind_tdim, domain.shape.tdim))
ok = False
return ok
def _setup_geometry(self):
"""
Setup the field region geometry.
"""
cmesh = self.domain.cmesh
for key, gel in six.iteritems(self.domain.geom_els):
ct = cmesh.cell_types
if (ct[self.region.cells] == cmesh.key_to_index[gel.name]).all():
self.gel = gel
break
else:
raise ValueError('region %s of field %s contains multiple'
' reference geometries!'
% (self.region.name, self.name))
self.is_surface = False
def _create_interpolant(self):
name = '%s_%s_%s_%d%s' % (self.gel.name, self.space,
self.poly_space_base, self.approx_order,
'B' * self.force_bubble)
ps = PolySpace.any_from_args(name, self.gel, self.approx_order,
base=self.poly_space_base,
force_bubble=self.force_bubble)
self.poly_space = ps
def _init_econn(self):
"""
Initialize the extended DOF connectivity.
"""
n_ep = self.poly_space.n_nod
n_cell = self.region.get_n_cells()
self.econn = nm.zeros((n_cell, n_ep), nm.int32)
def _setup_vertex_dofs(self):
"""
Setup vertex DOF connectivity.
"""
if self.node_desc.vertex is None:
return 0, None
region = self.region
cmesh = self.domain.cmesh
conn, offsets = cmesh.get_incident(0, region.cells, region.tdim,
ret_offsets=True)
vertices = nm.unique(conn)
remap = prepare_remap(vertices, region.n_v_max)
n_dof = vertices.shape[0]
aux = nm.unique(nm.diff(offsets))
assert_(len(aux) == 1, 'region with multiple reference geometries!')
offset = aux[0]
# Remap vertex node connectivity to field-local numbering.
aux = conn.reshape((-1, offset)).astype(nm.int32)
self.econn[:, :offset] = nm.take(remap, aux)
return n_dof, remap
def setup_extra_data(self, geometry, info, is_trace):
dct = info.dc_type.type
if geometry != None:
geometry_flag = 'surface' in geometry
else:
geometry_flag = False
if (dct == 'surface') or (geometry_flag):
reg = info.get_region()
mreg_name = info.get_region_name(can_trace=False)
self.domain.create_surface_group(reg)
self.setup_surface_data(reg, is_trace, mreg_name)
elif dct == 'edge':
raise NotImplementedError('dof connectivity type %s' % dct)
elif dct == 'point':
self.setup_point_data(self, info.region)
elif dct not in ('volume', 'scalar', 'custom'):
raise ValueError('unknown dof connectivity type! (%s)' % dct)
def setup_point_data(self, field, region):
if region.name not in self.point_data:
conn = field.get_dofs_in_region(region, merge=True)
conn.shape += (1,)
self.point_data[region.name] = conn
def setup_surface_data(self, region, is_trace=False, trace_region=None):
"""nodes[leconn] == econn"""
"""nodes are sorted by node number -> same order as region.vertices"""
if region.name not in self.surface_data:
sd = FESurface('surface_data_%s' % region.name, region,
self.efaces, self.econn, self.region)
self.surface_data[region.name] = sd
if region.name in self.surface_data and is_trace:
sd = self.surface_data[region.name]
sd.setup_mirror_connectivity(region, trace_region)
return self.surface_data[region.name]
def get_econn(self, conn_type, region, is_trace=False, integration=None):
"""
Get extended connectivity of the given type in the given region.
"""
ct = conn_type.type if isinstance(conn_type, Struct) else conn_type
if ct in ('volume', 'custom'):
if region.name == self.region.name:
conn = self.econn
else:
tco = integration in ('volume', 'custom')
cells = region.get_cells(true_cells_only=tco)
ii = self.region.get_cell_indices(cells, true_cells_only=tco)
conn = nm.take(self.econn, ii, axis=0)
elif ct == 'surface':
sd = self.surface_data[region.name]
conn = sd.get_connectivity(is_trace=is_trace)
elif ct == 'edge':
raise NotImplementedError('connectivity type %s' % ct)
elif ct == 'point':
conn = self.point_data[region.name]
else:
raise ValueError('unknown connectivity type! (%s)' % ct)
return conn
def average_qp_to_vertices(self, data_qp, integral):
"""
Average data given in quadrature points in region elements into
region vertices.
.. math::
u_n = \sum_e (u_{e,avg} * volume_e) / \sum_e volume_e
= \sum_e \int_{volume_e} u / \sum volume_e
"""
region = self.region
n_cells = region.get_n_cells()
if n_cells != data_qp.shape[0]:
msg = 'incomatible shape! (%d == %d)' % (n_cells,
data_qp.shape[0])
raise ValueError(msg)
n_vertex = self.n_vertex_dof
nc = data_qp.shape[2]
nod_vol = nm.zeros((n_vertex,), dtype=nm.float64)
data_vertex = nm.zeros((n_vertex, nc), dtype=nm.float64)
vg = self.get_mapping(self.region, integral, 'volume')[0]
volume = nm.squeeze(vg.volume)
iels = self.region.get_cells()
data_e = nm.zeros((volume.shape[0], 1, nc, 1), dtype=nm.float64)
vg.integrate(data_e, data_qp[iels])
ir = nm.arange(nc, dtype=nm.int32)
conn = self.econn[:, :self.gel.n_vertex]
for ii, cc in enumerate(conn):
# Assumes unique nodes in cc!
ind2, ind1 = nm.meshgrid(ir, cc)
data_vertex[ind1,ind2] += data_e[iels[ii],0,:,0]
nod_vol[cc] += volume[ii]
data_vertex /= nod_vol[:,nm.newaxis]
return data_vertex
class SurfaceField(FEField):
"""
Finite element field base class over surface (element dimension is one
less than space dimension).
"""
def _check_region(self, region):
"""
Check whether the `region` can be used for the
field.
Returns
-------
ok : bool
True if the region is usable for the field.
"""
ok1 = ((region.kind_tdim == (region.tdim - 1))
and (region.get_n_cells(True) > 0))
if not ok1:
output('bad region topological dimension and kind! (%d, %s)'
% (region.tdim, region.kind))
n_ns = region.get_facet_indices().shape[0] - region.get_n_cells(True)
ok2 = n_ns == 0
if not ok2:
| output('%d region facets are not on the domain surface!' % n_ns) | sfepy.base.base.output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = | get_min_value(dofs) | sfepy.discrete.fem.utils.get_min_value |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = | get_min_value(dofs.real) | sfepy.discrete.fem.utils.get_min_value |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
| assert_(self.approx_order > 0) | sfepy.base.base.assert_ |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = | SurfaceMapping(coors, conn, poly_space=geo_ps) | sfepy.discrete.fem.mappings.SurfaceMapping |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * | get_min_value(dofs.imag) | sfepy.discrete.fem.utils.get_min_value |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space= | Struct(n_nod=bf.shape[-1]) | sfepy.base.base.Struct |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, get_default, assert_
from sfepy.base.base import Struct
from sfepy.discrete.common.fields import parse_shape, Field
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import convert_complex_output
from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap,
invert_remap, get_min_value)
from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping
from sfepy.discrete.fem.poly_spaces import PolySpace
from sfepy.discrete.fem.fe_surface import FESurface
from sfepy.discrete.integrals import Integral
from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors,
create_output)
import six
def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False,
clear_all=True, extra_dofs=False):
if actual:
if not hasattr(domain.mesh, 'coors_act'):
domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors)
domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod]
else:
domain.cmesh.coors[:] = coors[:domain.mesh.n_nod]
if update_fields:
for field in six.itervalues(fields):
field.set_coors(coors, extra_dofs=extra_dofs)
field.clear_mappings(clear_all=clear_all)
def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space,
econn, only_extra=True):
"""
Compute coordinates of nodes corresponding to `poly_space`, given
mesh coordinates and `geom_poly_space`.
"""
if only_extra:
iex = (poly_space.nts[:,0] > 0).nonzero()[0]
if iex.shape[0] == 0: return
qp_coors = poly_space.node_coors[iex, :]
econn = econn[:, iex].copy()
else:
qp_coors = poly_space.node_coors
##
# Evaluate geometry interpolation base functions in (extra) nodes.
bf = geom_poly_space.eval_base(qp_coors)
bf = bf[:,0,:].copy()
##
# Evaluate extra coordinates with 'bf'.
cmesh = region.domain.cmesh
conn = cmesh.get_incident(0, region.cells, region.tdim)
conn.shape = (econn.shape[0], -1)
ecoors = nm.dot(bf, mesh_coors[conn])
coors[econn] = nm.swapaxes(ecoors, 0, 1)
def _interp_to_faces(vertex_vals, bfs, faces):
dim = vertex_vals.shape[1]
n_face = faces.shape[0]
n_qp = bfs.shape[0]
faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64)
for ii, face in enumerate(faces):
vals = vertex_vals[face,:dim]
faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals)
return(faces_vals)
def get_eval_expression(expression,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None):
"""
Get the function for evaluating an expression given a list of elements,
and reference element coordinates.
"""
from sfepy.discrete.evaluate import eval_in_els_and_qp
def _eval(iels, coors):
val = eval_in_els_and_qp(expression, iels, coors,
fields, materials, variables,
functions=functions, mode=mode,
term_mode=term_mode,
extra_args=extra_args, verbose=verbose,
kwargs=kwargs)
return val[..., 0]
return _eval
def create_expression_output(expression, name, primary_field_name,
fields, materials, variables,
functions=None, mode='eval', term_mode=None,
extra_args=None, verbose=True, kwargs=None,
min_level=0, max_level=1, eps=1e-4):
"""
Create output mesh and data for the expression using the adaptive
linearizer.
Parameters
----------
expression : str
The expression to evaluate.
name : str
The name of the data.
primary_field_name : str
The name of field that defines the element groups and polynomial
spaces.
fields : dict
The dictionary of fields used in `variables`.
materials : Materials instance
The materials used in the expression.
variables : Variables instance
The variables used in the expression.
functions : Functions instance, optional
The user functions for materials etc.
mode : one of 'eval', 'el_avg', 'qp'
The evaluation mode - 'qp' requests the values in quadrature points,
'el_avg' element averages and 'eval' means integration over
each term region.
term_mode : str
The term call mode - some terms support different call modes
and depending on the call mode different values are
returned.
extra_args : dict, optional
Extra arguments to be passed to terms in the expression.
verbose : bool
If False, reduce verbosity.
kwargs : dict, optional
The variables (dictionary of (variable name) : (Variable
instance)) to be used in the expression.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
out : dict
The output dictionary.
"""
field = fields[primary_field_name]
vertex_coors = field.coors[:field.n_vertex_dof, :]
ps = field.poly_space
gps = field.gel.poly_space
vertex_conn = field.econn[:, :field.gel.n_vertex]
eval_dofs = get_eval_expression(expression,
fields, materials, variables,
functions=functions,
mode=mode, extra_args=extra_args,
verbose=verbose, kwargs=kwargs)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
field.domain.mesh.descs)
out = {}
out[name] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=name, dofs=None,
mesh=mesh, level=level)
out = convert_complex_output(out)
return out
class FEField(Field):
"""
Base class for finite element fields.
Notes
-----
- interps and hence node_descs are per region (must have single
geometry!)
Field shape information:
- ``shape`` - the shape of the base functions in a point
- ``n_components`` - the number of DOFs per FE node
- ``val_shape`` - the shape of field value (the product of DOFs and
base functions) in a point
"""
def __init__(self, name, dtype, shape, region, approx_order=1):
"""
Create a finite element field.
Parameters
----------
name : str
The field name.
dtype : numpy.dtype
The field data type: float64 or complex128.
shape : int/tuple/str
The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,)
or 3 or (3,)) or 'vector', or a tuple. The field shape determines
the shape of the FE base functions and is related to the number of
components of variables and to the DOF per node count, depending
on the field kind.
region : Region
The region where the field is defined.
approx_order : int or tuple
The FE approximation order. The tuple form is (order, has_bubble),
e.g. (1, True) means order 1 with a bubble function.
Notes
-----
Assumes one cell type for the whole region!
"""
shape = parse_shape(shape, region.domain.shape.dim)
if not self._check_region(region):
raise ValueError('unsuitable region for field %s! (%s)' %
(name, region.name))
Struct.__init__(self, name=name, dtype=dtype, shape=shape,
region=region)
self.domain = self.region.domain
self._set_approx_order(approx_order)
self._setup_geometry()
self._setup_kind()
self._setup_shape()
self.surface_data = {}
self.point_data = {}
self.ori = None
self._create_interpolant()
self._setup_global_base()
self.setup_coors()
self.clear_mappings(clear_all=True)
self.clear_qp_base()
self.basis_transform = None
self.econn0 = None
self.unused_dofs = None
self.stored_subs = None
def _set_approx_order(self, approx_order):
"""
Set a uniform approximation order.
"""
if isinstance(approx_order, tuple):
self.approx_order = approx_order[0]
self.force_bubble = approx_order[1]
else:
self.approx_order = approx_order
self.force_bubble = False
def get_true_order(self):
"""
Get the true approximation order depending on the reference
element geometry.
For example, for P1 (linear) approximation the true order is 1,
while for Q1 (bilinear) approximation in 2D the true order is 2.
"""
gel = self.gel
if (gel.dim + 1) == gel.n_vertex:
order = self.approx_order
else:
order = gel.dim * self.approx_order
if self.force_bubble:
bubble_order = gel.dim + 1
order = max(order, bubble_order)
return order
def is_higher_order(self):
"""
Return True, if the field's approximation order is greater than one.
"""
return self.force_bubble or (self.approx_order > 1)
def _setup_global_base(self):
"""
Setup global DOF/base functions, their indices and connectivity of the
field. Called methods implemented in subclasses.
"""
self._setup_facet_orientations()
self._init_econn()
self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs()
self.vertex_remap_i = invert_remap(self.vertex_remap)
aux = self._setup_edge_dofs()
self.n_edge_dof, self.edge_dofs, self.edge_remap = aux
aux = self._setup_face_dofs()
self.n_face_dof, self.face_dofs, self.face_remap = aux
aux = self._setup_bubble_dofs()
self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux
self.n_nod = self.n_vertex_dof + self.n_edge_dof \
+ self.n_face_dof + self.n_bubble_dof
self._setup_esurface()
def _setup_esurface(self):
"""
Setup extended surface entities (edges in 2D, faces in 3D),
i.e. indices of surface entities into the extended connectivity.
"""
node_desc = self.node_desc
gel = self.gel
self.efaces = gel.get_surface_entities().copy()
nd = node_desc.edge
if nd is not None:
efs = []
for eof in gel.get_edges_per_face():
efs.append(nm.concatenate([nd[ie] for ie in eof]))
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
efs = node_desc.face
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.efaces = nm.hstack((self.efaces, efs))
if gel.dim == 3:
self.eedges = gel.edges.copy()
efs = node_desc.edge
if efs is not None:
efs = nm.array(efs).squeeze()
if efs.ndim < 2:
efs = efs[:,nm.newaxis]
self.eedges = nm.hstack((self.eedges, efs))
def set_coors(self, coors, extra_dofs=False):
"""
Set coordinates of field nodes.
"""
# Mesh vertex nodes.
if self.n_vertex_dof:
indx = self.vertex_remap_i
self.coors[:self.n_vertex_dof] = nm.take(coors,
indx.astype(nm.int32),
axis=0)
n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof
# extra nodes
if n_ex_dof:
if extra_dofs:
if self.n_nod != coors.shape[0]:
raise NotImplementedError
self.coors[:] = coors
else:
gps = self.gel.poly_space
ps = self.poly_space
eval_nodal_coors(self.coors, coors, self.region,
ps, gps, self.econn)
def setup_coors(self):
"""
Setup coordinates of field nodes.
"""
mesh = self.domain.mesh
self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64)
self.set_coors(mesh.coors)
def get_vertices(self):
"""
Return indices of vertices belonging to the field region.
"""
return self.vertex_remap_i
def _get_facet_dofs(self, rfacets, remap, dofs):
facets = remap[rfacets]
return dofs[facets[facets >= 0]].ravel()
def get_data_shape(self, integral, integration='volume', region_name=None):
"""
Get element data dimensions.
Parameters
----------
integral : Integral instance
The integral describing used numerical quadrature.
integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom'
The term integration type.
region_name : str
The name of the region of the integral.
Returns
-------
data_shape : 4 ints
The `(n_el, n_qp, dim, n_en)` for volume shape kind,
`(n_fa, n_qp, dim, n_fn)` for surface shape kind and
`(n_nod, 0, 0, 1)` for point shape kind.
Notes
-----
- `n_el`, `n_fa` = number of elements/facets
- `n_qp` = number of quadrature points per element/facet
- `dim` = spatial dimension
- `n_en`, `n_fn` = number of element/facet nodes
- `n_nod` = number of element nodes
"""
region = self.domain.regions[region_name]
shape = region.shape
dim = region.dim
if integration in ('surface', 'surface_extra'):
sd = self.surface_data[region_name]
# This works also for surface fields.
key = sd.face_type
weights = self.get_qp(key, integral).weights
n_qp = weights.shape[0]
if integration == 'surface':
data_shape = (sd.n_fa, n_qp, dim, sd.n_fp)
else:
data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1])
elif integration in ('volume', 'custom'):
_, weights = integral.get_qp(self.gel.name)
n_qp = weights.shape[0]
data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1])
elif integration == 'point':
dofs = self.get_dofs_in_region(region, merge=True)
data_shape = (dofs.shape[0], 0, 0, 1)
else:
raise NotImplementedError('unsupported integration! (%s)'
% integration)
return data_shape
def get_dofs_in_region(self, region, merge=True):
"""
Return indices of DOFs that belong to the given region and group.
"""
node_desc = self.node_desc
dofs = []
vdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.vertex is not None:
vdofs = self.vertex_remap[region.vertices]
vdofs = vdofs[vdofs >= 0]
dofs.append(vdofs)
edofs = nm.empty((0,), dtype=nm.int32)
if node_desc.edge is not None:
edofs = self._get_facet_dofs(region.edges,
self.edge_remap,
self.edge_dofs)
dofs.append(edofs)
fdofs = nm.empty((0,), dtype=nm.int32)
if node_desc.face is not None:
fdofs = self._get_facet_dofs(region.faces,
self.face_remap,
self.face_dofs)
dofs.append(fdofs)
bdofs = nm.empty((0,), dtype=nm.int32)
if (node_desc.bubble is not None) and region.has_cells():
els = self.bubble_remap[region.cells]
bdofs = self.bubble_dofs[els[els >= 0]].ravel()
dofs.append(bdofs)
if merge:
dofs = nm.concatenate(dofs)
return dofs
def clear_qp_base(self):
"""
Remove cached quadrature points and base functions.
"""
self.qp_coors = {}
self.bf = {}
def get_qp(self, key, integral):
"""
Get quadrature points and weights corresponding to the given key
and integral. The key is 'v' or 's#', where # is the number of
face vertices.
"""
qpkey = (integral.order, key)
if qpkey not in self.qp_coors:
if (key[0] == 's') and not self.is_surface:
dim = self.gel.dim - 1
n_fp = self.gel.surface_facet.n_vertex
geometry = '%d_%d' % (dim, n_fp)
else:
geometry = self.gel.name
vals, weights = integral.get_qp(geometry)
self.qp_coors[qpkey] = Struct(vals=vals, weights=weights)
return self.qp_coors[qpkey]
def substitute_dofs(self, subs, restore=False):
"""
Perform facet DOF substitutions according to `subs`.
Modifies `self.econn` in-place and sets `self.econn0`,
`self.unused_dofs` and `self.basis_transform`.
"""
if restore and (self.stored_subs is not None):
self.econn0 = self.econn
self.econn, self.unused_dofs, basis_transform = self.stored_subs
else:
if subs is None:
self.econn0 = self.econn
return
else:
self.econn0 = self.econn.copy()
self._substitute_dofs(subs)
self.unused_dofs = nm.setdiff1d(self.econn0, self.econn)
basis_transform = self._eval_basis_transform(subs)
self.set_basis_transform(basis_transform)
def restore_dofs(self, store=False):
"""
Undoes the effect of :func:`FEField.substitute_dofs()`.
"""
if self.econn0 is None:
raise ValueError('no original DOFs to restore!')
if store:
self.stored_subs = (self.econn,
self.unused_dofs,
self.basis_transform)
else:
self.stored_subs = None
self.econn = self.econn0
self.econn0 = None
self.unused_dofs = None
self.basis_transform = None
def set_basis_transform(self, transform):
"""
Set local element basis transformation.
The basis transformation is applied in :func:`FEField.get_base()` and
:func:`FEField.create_mapping()`.
Parameters
----------
transform : array, shape `(n_cell, n_ep, n_ep)`
The array with `(n_ep, n_ep)` transformation matrices for each cell
in the field's region, where `n_ep` is the number of element DOFs.
"""
self.basis_transform = transform
def restore_substituted(self, vec):
"""
Restore values of the unused DOFs using the transpose of the applied
basis transformation.
"""
if (self.econn0 is None) or (self.basis_transform is None):
raise ValueError('no original DOF values to restore!!')
vec = vec.reshape((self.n_nod, self.n_components)).copy()
evec = vec[self.econn]
vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec)
return vec.ravel()
def get_base(self, key, derivative, integral, iels=None,
from_geometry=False, base_only=True):
qp = self.get_qp(key, integral)
if from_geometry:
ps = self.gel.poly_space
else:
ps = self.poly_space
_key = key if not from_geometry else 'g' + key
bf_key = (integral.order, _key, derivative)
if bf_key not in self.bf:
if (iels is not None) and (self.ori is not None):
ori = self.ori[iels]
else:
ori = self.ori
self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori,
transform=self.basis_transform)
if base_only:
return self.bf[bf_key]
else:
return self.bf[bf_key], qp.weights
def create_bqp(self, region_name, integral):
gel = self.gel
sd = self.surface_data[region_name]
bqpkey = (integral.order, sd.bkey)
if not bqpkey in self.qp_coors:
qp = self.get_qp(sd.face_type, integral)
ps_s = self.gel.surface_facet.poly_space
bf_s = ps_s.eval_base(qp.vals)
coors, faces = gel.coors, gel.get_surface_entities()
vals = _interp_to_faces(coors, bf_s, faces)
self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey,
vals=vals, weights=qp.weights)
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if fill_value is None:
if nm.isrealobj(dofs):
fill_value = get_min_value(dofs)
else:
# Complex values - treat real and imaginary parts separately.
fill_value = get_min_value(dofs.real)
fill_value += 1j * get_min_value(dofs.imag)
if self.approx_order != 0:
indx = self.get_vertices()
n_nod = self.domain.shape.n_nod
new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype)
new_dofs.fill(fill_value)
new_dofs[indx] = dofs[:indx.size]
else:
new_dofs = extend_cell_data(dofs, self.domain, self.region,
val=fill_value)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
new_dofs = dofs[:self.n_vertex_dof]
else:
new_dofs = dofs
return new_dofs
def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4):
"""
Linearize the solution for post-processing.
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
min_level : int
The minimum required level of mesh refinement.
max_level : int
The maximum level of mesh refinement.
eps : float
The relative tolerance parameter of mesh adaptivity.
Returns
-------
mesh : Mesh instance
The adapted, nonconforming, mesh.
vdofs : array
The DOFs defined in vertices of `mesh`.
levels : array of ints
The refinement level used for each element group.
"""
assert_(dofs.ndim == 2)
n_nod, dpn = dofs.shape
assert_(n_nod == self.n_nod)
assert_(dpn == self.shape[0])
vertex_coors = self.coors[:self.n_vertex_dof, :]
ps = self.poly_space
gps = self.gel.poly_space
vertex_conn = self.econn[:, :self.gel.n_vertex]
eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori)
eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps)
(level, coors, conn,
vdofs, mat_ids) = create_output(eval_dofs, eval_coors,
vertex_conn.shape[0], ps,
min_level=min_level,
max_level=max_level, eps=eps)
mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids],
self.domain.mesh.descs)
return mesh, vdofs, level
def get_output_approx_order(self):
"""
Get the approximation order used in the output file.
"""
return min(self.approx_order, 1)
def create_output(self, dofs, var_name, dof_names=None,
key=None, extend=True, fill_value=None,
linearization=None):
"""
Convert the DOFs corresponding to the field to a dictionary of
output data usable by Mesh.write().
Parameters
----------
dofs : array, shape (n_nod, n_component)
The array of DOFs reshaped so that each column corresponds
to one component.
var_name : str
The variable name corresponding to `dofs`.
dof_names : tuple of str
The names of DOF components.
key : str, optional
The key to be used in the output dictionary instead of the
variable name.
extend : bool
Extend the DOF values to cover the whole domain.
fill_value : float or complex
The value used to fill the missing DOF values if `extend` is True.
linearization : Struct or None
The linearization configuration for higher order approximations.
Returns
-------
out : dict
The output dictionary.
"""
linearization = get_default(linearization, Struct(kind='strip'))
out = {}
if linearization.kind is None:
out[key] = Struct(name='output_data', mode='full',
data=dofs, var_name=var_name,
dofs=dof_names, field_name=self.name)
elif linearization.kind == 'strip':
if extend:
ext = self.extend_dofs(dofs, fill_value)
else:
ext = self.remove_extra_dofs(dofs)
if ext is not None:
approx_order = self.get_output_approx_order()
if approx_order != 0:
# Has vertex data.
out[key] = Struct(name='output_data', mode='vertex',
data=ext, var_name=var_name,
dofs=dof_names)
else:
ext.shape = (ext.shape[0], 1, ext.shape[1], 1)
out[key] = Struct(name='output_data', mode='cell',
data=ext, var_name=var_name,
dofs=dof_names)
else:
mesh, vdofs, levels = self.linearize(dofs,
linearization.min_level,
linearization.max_level,
linearization.eps)
out[key] = Struct(name='output_data', mode='vertex',
data=vdofs, var_name=var_name, dofs=dof_names,
mesh=mesh, levels=levels)
out = convert_complex_output(out)
return out
def create_mesh(self, extra_nodes=True):
"""
Create a mesh from the field region, optionally including the field
extra nodes.
"""
mesh = self.domain.mesh
if self.approx_order != 0:
if extra_nodes:
conn = self.econn
else:
conn = self.econn[:, :self.gel.n_vertex]
conns = [conn]
mat_ids = [mesh.cmesh.cell_groups]
descs = mesh.descs[:1]
if extra_nodes:
coors = self.coors
else:
coors = self.coors[:self.n_vertex_dof]
mesh = Mesh.from_data(self.name, coors, None, conns,
mat_ids, descs)
return mesh
def get_evaluate_cache(self, cache=None, share_geometry=False,
verbose=False):
"""
Get the evaluate cache for :func:`Variable.evaluate_at()
<sfepy.discrete.variables.Variable.evaluate_at()>`.
Parameters
----------
cache : Struct instance, optional
Optionally, use the provided instance to store the cache data.
share_geometry : bool
Set to True to indicate that all the evaluations will work on the
same region. Certain data are then computed only for the first
probe and cached.
verbose : bool
If False, reduce verbosity.
Returns
-------
cache : Struct instance
The evaluate cache.
"""
import time
try:
from scipy.spatial import cKDTree as KDTree
except ImportError:
from scipy.spatial import KDTree
from sfepy.discrete.fem.geometry_element import create_geometry_elements
if cache is None:
cache = Struct(name='evaluate_cache')
tt = time.clock()
if (cache.get('cmesh', None) is None) or not share_geometry:
mesh = self.create_mesh(extra_nodes=False)
cache.cmesh = cmesh = mesh.cmesh
gels = create_geometry_elements()
cmesh.set_local_entities(gels)
cmesh.setup_entities()
cache.centroids = cmesh.get_centroids(cmesh.tdim)
if self.gel.name != '3_8':
cache.normals0 = cmesh.get_facet_normals()
cache.normals1 = None
else:
cache.normals0 = cmesh.get_facet_normals(0)
cache.normals1 = cmesh.get_facet_normals(1)
output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose)
tt = time.clock()
if (cache.get('kdtree', None) is None) or not share_geometry:
cache.kdtree = KDTree(cmesh.coors)
output('kdtree: %f s' % (time.clock()-tt), verbose=verbose)
return cache
def interp_to_qp(self, dofs):
"""
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters
----------
dofs : array
The array of DOF values of shape `(n_nod, n_component)`.
Returns
-------
data_qp : array
The values interpolated into the quadrature points.
integral : Integral
The corresponding integral defining the quadrature points.
"""
integral = Integral('i', order=self.approx_order)
bf = self.get_base('v', False, integral)
bf = bf[:,0,:].copy()
data_qp = nm.dot(bf, dofs[self.econn])
data_qp = nm.swapaxes(data_qp, 0, 1)
data_qp.shape = data_qp.shape + (1,)
return data_qp, integral
def get_coor(self, nods=None):
"""
Get coordinates of the field nodes.
Parameters
----------
nods : array, optional
The indices of the required nodes. If not given, the
coordinates of all the nodes are returned.
"""
if nods is None:
return self.coors
else:
return self.coors[nods]
def get_connectivity(self, region, integration, is_trace=False):
"""
Convenience alias to `Field.get_econn()`, that is used in some terms.
"""
return self.get_econn(integration, region, is_trace=is_trace)
def create_mapping(self, region, integral, integration,
return_mapping=True):
"""
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives
for Volume-type geometries (volume mappings), and jacobians,
normals and base function derivatives for Surface-type
geometries (surface mappings).
Notes
-----
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
"""
domain = self.domain
coors = domain.get_mesh_coors(actual=True)
dconn = domain.get_conn()
if integration == 'volume':
qp = self.get_qp('v', integral)
iels = region.get_cells()
geo_ps = self.gel.poly_space
ps = self.poly_space
bf = self.get_base('v', 0, integral, iels=iels)
conn = nm.take(dconn, iels.astype(nm.int32), axis=0)
mapping = VolumeMapping(coors, conn, poly_space=geo_ps)
vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps,
ori=self.ori,
transform=self.basis_transform)
out = vg
elif (integration == 'surface') or (integration == 'surface_extra'):
assert_(self.approx_order > 0)
if self.ori is not None:
msg = 'surface integrals do not work yet with the' \
' hierarchical basis!'
raise ValueError(msg)
sd = domain.surface_groups[region.name]
esd = self.surface_data[region.name]
geo_ps = self.gel.poly_space
ps = self.poly_space
conn = sd.get_connectivity()
mapping = SurfaceMapping(coors, conn, poly_space=geo_ps)
if not self.is_surface:
self.create_bqp(region.name, integral)
qp = self.qp_coors[(integral.order, esd.bkey)]
abf = ps.eval_base(qp.vals[0], transform=self.basis_transform)
bf = abf[..., self.efaces[0]]
indx = self.gel.get_surface_entities()[0]
# Fix geometry element's 1st facet orientation for gradients.
indx = nm.roll(indx, -1)[::-1]
mapping.set_basis_indices(indx)
sg = mapping.get_mapping(qp.vals[0], qp.weights,
poly_space=Struct(n_nod=bf.shape[-1]),
mode=integration)
if integration == 'surface_extra':
sg.alloc_extra_data(self.econn.shape[1])
bf_bg = geo_ps.eval_base(qp.vals, diff=True)
ebf_bg = self.get_base(esd.bkey, 1, integral)
sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn)
else:
# Do not use BQP for surface fields.
qp = self.get_qp(sd.face_type, integral)
bf = ps.eval_base(qp.vals, transform=self.basis_transform)
sg = mapping.get_mapping(qp.vals, qp.weights,
poly_space= | Struct(n_nod=bf.shape[-1]) | sfepy.base.base.Struct |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = | plt.figure(fig_num) | sfepy.base.plotutils.plt.figure |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = | plt.figure(fig_num) | sfepy.base.plotutils.plt.figure |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
plt.show()
return fig
def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc):
"""
Plot single band gap frequency ranges as rectangles.
"""
def draw_rect(ax, x, y, rsc):
ax.fill(nm.asarray(x)[[0,1,1,0]],
nm.asarray(y)[[0,0,1,1]],
**rsc)
# Colors.
strong = plot_rsc['strong_gap']
weak = plot_rsc['weak_gap']
propagation = plot_rsc['propagation']
if kind == 'p':
draw_rect(ax, ranges[0], plot_range, propagation)
elif kind == 'w':
draw_rect(ax, ranges[0], plot_range, weak)
elif kind == 'wp':
draw_rect(ax, ranges[0], plot_range, weak)
draw_rect(ax, ranges[1], plot_range, propagation)
elif kind == 's':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'sw':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
elif kind == 'swp':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
draw_rect(ax, ranges[2], plot_range, propagation)
elif kind == 'is':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'iw':
draw_rect(ax, ranges[0], plot_range, weak)
else:
raise ValueError('unknown band gap kind! (%s)' % kind)
def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range,
plot_range, show=False, clear=False, new_axes=False):
"""
Plot band gaps as rectangles.
"""
if plt is None: return
fig = | plt.figure(fig_num) | sfepy.base.plotutils.plt.figure |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
| plt.show() | sfepy.base.plotutils.plt.show |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
| plt.show() | sfepy.base.plotutils.plt.show |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
plt.show()
return fig
def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc):
"""
Plot single band gap frequency ranges as rectangles.
"""
def draw_rect(ax, x, y, rsc):
ax.fill(nm.asarray(x)[[0,1,1,0]],
nm.asarray(y)[[0,0,1,1]],
**rsc)
# Colors.
strong = plot_rsc['strong_gap']
weak = plot_rsc['weak_gap']
propagation = plot_rsc['propagation']
if kind == 'p':
draw_rect(ax, ranges[0], plot_range, propagation)
elif kind == 'w':
draw_rect(ax, ranges[0], plot_range, weak)
elif kind == 'wp':
draw_rect(ax, ranges[0], plot_range, weak)
draw_rect(ax, ranges[1], plot_range, propagation)
elif kind == 's':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'sw':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
elif kind == 'swp':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
draw_rect(ax, ranges[2], plot_range, propagation)
elif kind == 'is':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'iw':
draw_rect(ax, ranges[0], plot_range, weak)
else:
raise ValueError('unknown band gap kind! (%s)' % kind)
def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range,
plot_range, show=False, clear=False, new_axes=False):
"""
Plot band gaps as rectangles.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
for ii in range(len(freq_range) - 1):
f0, f1 = freq_range[[ii, ii+1]]
gap = gaps[ii]
ranges = gap_ranges[ii]
if isinstance(gap, list):
for ig, (gmin, gmax) in enumerate(gap):
kind, kind_desc = kinds[ii][ig]
plot_gap(ax, ranges[ig], kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges[ig]))
else:
gmin, gmax = gap
kind, kind_desc = kinds[ii]
plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges))
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
| plt.show() | sfepy.base.plotutils.plt.show |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
plt.show()
return fig
def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc):
"""
Plot single band gap frequency ranges as rectangles.
"""
def draw_rect(ax, x, y, rsc):
ax.fill(nm.asarray(x)[[0,1,1,0]],
nm.asarray(y)[[0,0,1,1]],
**rsc)
# Colors.
strong = plot_rsc['strong_gap']
weak = plot_rsc['weak_gap']
propagation = plot_rsc['propagation']
if kind == 'p':
draw_rect(ax, ranges[0], plot_range, propagation)
elif kind == 'w':
draw_rect(ax, ranges[0], plot_range, weak)
elif kind == 'wp':
draw_rect(ax, ranges[0], plot_range, weak)
draw_rect(ax, ranges[1], plot_range, propagation)
elif kind == 's':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'sw':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
elif kind == 'swp':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
draw_rect(ax, ranges[2], plot_range, propagation)
elif kind == 'is':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'iw':
draw_rect(ax, ranges[0], plot_range, weak)
else:
raise ValueError('unknown band gap kind! (%s)' % kind)
def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range,
plot_range, show=False, clear=False, new_axes=False):
"""
Plot band gaps as rectangles.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
for ii in range(len(freq_range) - 1):
f0, f1 = freq_range[[ii, ii+1]]
gap = gaps[ii]
ranges = gap_ranges[ii]
if isinstance(gap, list):
for ig, (gmin, gmax) in enumerate(gap):
kind, kind_desc = kinds[ii][ig]
plot_gap(ax, ranges[ig], kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges[ig]))
else:
gmin, gmax = gap
kind, kind_desc = kinds[ii]
plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges))
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def _get_fig_name(output_dir, fig_name, key, common, fig_suffix):
"""
Construct the complete name of figure file.
"""
name = key.replace(common, '')
if name and (not name.startswith('_')):
name = '_' + name
fig_name = fig_name + name + fig_suffix
return op.join(output_dir, fig_name)
class AcousticBandGapsApp(HomogenizationApp):
"""
Application for computing acoustic band gaps.
"""
@staticmethod
def process_options(options):
"""
Application options setup. Sets default values for missing
non-compulsory options.
"""
get = options.get
default_plot_options = {'show' : True,'legend' : False,}
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'min eig($M^*$)',
'eig_mid' : r'mid eig($M^*$)',
'eig_max' : r'max eig($M^*$)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : r'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults(options, 'plot_labels', aux, recur=True)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults(options, 'plot_labels_angle', aux)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults(options, 'plot_labels_wave', aux)
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-'},
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':'},
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--'},
'eig_min' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 1.0),
'linestyle' : ':' },
'eig_mid' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.8),
'linestyle' : '--' },
'eig_max' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.6),
'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (0.2, 0.4, 0.2)},
'weak_gap' : {'linewidth' : 0, 'facecolor' : (0.6, 0.8, 0.6)},
'propagation' : {'linewidth' : 0, 'facecolor' : (1, 1, 1)},
'params' : {'axes.labelsize': 'x-large',
'font.size': 14,
'legend.fontsize': 'large',
'legend.loc': 'best',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': True},
}
plot_rsc = try_set_defaults(options, 'plot_rsc', plot_rsc)
return Struct(incident_wave_dir=get('incident_wave_dir', None),
plot_transform=get('plot_transform', None),
plot_transform_wave=get('plot_transform_wave', None),
plot_transform_angle=get('plot_transform_angle', None),
plot_options=get('plot_options', default_plot_options),
fig_name=get('fig_name', None),
fig_name_wave=get('fig_name_wave', None),
fig_name_angle=get('fig_name_angle', None),
fig_suffix=get('fig_suffix', '.pdf'),
plot_labels=plot_labels,
plot_labels_angle=plot_labels_angle,
plot_labels_wave=plot_labels_wave,
plot_rsc=plot_rsc)
@staticmethod
def process_options_pv(options):
"""
Application options setup for phase velocity computation. Sets default
values for missing non-compulsory options.
"""
get = options.get
incident_wave_dir=get('incident_wave_dir', None,
'missing "incident_wave_dir" in options!')
return | Struct(incident_wave_dir=incident_wave_dir) | sfepy.base.base.Struct |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
plt.show()
return fig
def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc):
"""
Plot single band gap frequency ranges as rectangles.
"""
def draw_rect(ax, x, y, rsc):
ax.fill(nm.asarray(x)[[0,1,1,0]],
nm.asarray(y)[[0,0,1,1]],
**rsc)
# Colors.
strong = plot_rsc['strong_gap']
weak = plot_rsc['weak_gap']
propagation = plot_rsc['propagation']
if kind == 'p':
draw_rect(ax, ranges[0], plot_range, propagation)
elif kind == 'w':
draw_rect(ax, ranges[0], plot_range, weak)
elif kind == 'wp':
draw_rect(ax, ranges[0], plot_range, weak)
draw_rect(ax, ranges[1], plot_range, propagation)
elif kind == 's':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'sw':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
elif kind == 'swp':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
draw_rect(ax, ranges[2], plot_range, propagation)
elif kind == 'is':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'iw':
draw_rect(ax, ranges[0], plot_range, weak)
else:
raise ValueError('unknown band gap kind! (%s)' % kind)
def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range,
plot_range, show=False, clear=False, new_axes=False):
"""
Plot band gaps as rectangles.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
for ii in range(len(freq_range) - 1):
f0, f1 = freq_range[[ii, ii+1]]
gap = gaps[ii]
ranges = gap_ranges[ii]
if isinstance(gap, list):
for ig, (gmin, gmax) in enumerate(gap):
kind, kind_desc = kinds[ii][ig]
plot_gap(ax, ranges[ig], kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges[ig]))
else:
gmin, gmax = gap
kind, kind_desc = kinds[ii]
plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges))
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def _get_fig_name(output_dir, fig_name, key, common, fig_suffix):
"""
Construct the complete name of figure file.
"""
name = key.replace(common, '')
if name and (not name.startswith('_')):
name = '_' + name
fig_name = fig_name + name + fig_suffix
return op.join(output_dir, fig_name)
class AcousticBandGapsApp(HomogenizationApp):
"""
Application for computing acoustic band gaps.
"""
@staticmethod
def process_options(options):
"""
Application options setup. Sets default values for missing
non-compulsory options.
"""
get = options.get
default_plot_options = {'show' : True,'legend' : False,}
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'min eig($M^*$)',
'eig_mid' : r'mid eig($M^*$)',
'eig_max' : r'max eig($M^*$)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : r'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults(options, 'plot_labels', aux, recur=True)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults(options, 'plot_labels_angle', aux)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults(options, 'plot_labels_wave', aux)
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-'},
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':'},
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--'},
'eig_min' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 1.0),
'linestyle' : ':' },
'eig_mid' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.8),
'linestyle' : '--' },
'eig_max' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.6),
'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (0.2, 0.4, 0.2)},
'weak_gap' : {'linewidth' : 0, 'facecolor' : (0.6, 0.8, 0.6)},
'propagation' : {'linewidth' : 0, 'facecolor' : (1, 1, 1)},
'params' : {'axes.labelsize': 'x-large',
'font.size': 14,
'legend.fontsize': 'large',
'legend.loc': 'best',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': True},
}
plot_rsc = try_set_defaults(options, 'plot_rsc', plot_rsc)
return Struct(incident_wave_dir=get('incident_wave_dir', None),
plot_transform=get('plot_transform', None),
plot_transform_wave=get('plot_transform_wave', None),
plot_transform_angle=get('plot_transform_angle', None),
plot_options=get('plot_options', default_plot_options),
fig_name=get('fig_name', None),
fig_name_wave=get('fig_name_wave', None),
fig_name_angle=get('fig_name_angle', None),
fig_suffix=get('fig_suffix', '.pdf'),
plot_labels=plot_labels,
plot_labels_angle=plot_labels_angle,
plot_labels_wave=plot_labels_wave,
plot_rsc=plot_rsc)
@staticmethod
def process_options_pv(options):
"""
Application options setup for phase velocity computation. Sets default
values for missing non-compulsory options.
"""
get = options.get
incident_wave_dir=get('incident_wave_dir', None,
'missing "incident_wave_dir" in options!')
return Struct(incident_wave_dir=incident_wave_dir)
def __init__(self, conf, options, output_prefix, **kwargs):
PDESolverApp.__init__(self, conf, options, output_prefix,
init_equations=False)
self.setup_options()
if conf._filename:
output_dir = self.problem.output_dir
shutil.copyfile(conf._filename,
op.join(output_dir, op.basename(conf._filename)))
def setup_options(self):
| HomogenizationApp.setup_options(self) | sfepy.homogenization.homogen_app.HomogenizationApp.setup_options |
from __future__ import absolute_import
import os.path as op
import shutil
import numpy as nm
from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_
from sfepy.base.base import Struct
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.homogenization.coefficients import Coefficients
from sfepy.homogenization.coefs_base import CoefDummy
from sfepy.applications import PDESolverApp
from sfepy.base.plotutils import plt
import six
from six.moves import range
def try_set_defaults(obj, attr, defaults, recur=False):
try:
values = getattr(obj, attr)
except:
values = defaults
else:
if recur and isinstance(values, dict):
for key, val in six.iteritems(values):
set_defaults(val, defaults)
else:
set_defaults(values, defaults)
return values
def save_raw_bg_logs(filename, logs):
"""
Save raw band gaps `logs` into the `filename` file.
"""
out = {}
iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs])
out['iranges'] = iranges
for key, log in ordered_iteritems(logs.to_dict()):
out[key] = nm.concatenate(log, axis=0)
with open(filename, 'w') as fd:
nm.savez(fd, **out)
def transform_plot_data(datas, plot_transform, conf):
if plot_transform is not None:
fun = conf.get_function(plot_transform[0])
dmin, dmax = 1e+10, -1e+10
tdatas = []
for data in datas:
tdata = data.copy()
if plot_transform is not None:
tdata = fun(tdata, *plot_transform[1:])
dmin = min(dmin, nm.nanmin(tdata))
dmax = max(dmax, nm.nanmax(tdata))
tdatas.append(tdata)
dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax)
return (dmin, dmax), tdatas
def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range,
show=False, clear=False, new_axes=False):
"""
Plot resonance/eigen-frequencies.
`valid` must correspond to `freq_range`
resonances : red
masked resonances: dotted red
"""
if plt is None: return
assert_(len(valid) == len(freq_range))
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
l0 = l1 = None
for ii, f in enumerate(freq_range):
if valid[ii]:
l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0]
else:
l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0]
if l0:
l0.set_label(plot_labels['resonance'])
if l1:
l1.set_label(plot_labels['masked'])
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def plot_logs(fig_num, plot_rsc, plot_labels,
freqs, logs, valid, freq_range, plot_range,
draw_eigs=True, show_legend=True, show=False,
clear=False, new_axes=False):
"""
Plot logs of min/middle/max eigs of a mass matrix.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
if draw_eigs:
plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range,
plot_range)
for ii, log in enumerate(logs):
l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max'])
if log.shape[1] >= 2:
l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min'])
else:
l2 = None
if log.shape[1] == 3:
l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid'])
else:
l3 = None
l1[0].set_label(plot_labels['eig_max'])
if l2:
l2[0].set_label(plot_labels['eig_min'])
if l3:
l3[0].set_label(plot_labels['eig_mid'])
fmin, fmax = freqs[0][0], freqs[-1][-1]
ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis'])
ax.set_xlabel(plot_labels['x_axis'])
ax.set_ylabel(plot_labels['y_axis'])
if new_axes:
ax.set_xlim([fmin, fmax])
ax.set_ylim(plot_range)
if show_legend:
ax.legend()
if show:
plt.show()
return fig
def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc):
"""
Plot single band gap frequency ranges as rectangles.
"""
def draw_rect(ax, x, y, rsc):
ax.fill(nm.asarray(x)[[0,1,1,0]],
nm.asarray(y)[[0,0,1,1]],
**rsc)
# Colors.
strong = plot_rsc['strong_gap']
weak = plot_rsc['weak_gap']
propagation = plot_rsc['propagation']
if kind == 'p':
draw_rect(ax, ranges[0], plot_range, propagation)
elif kind == 'w':
draw_rect(ax, ranges[0], plot_range, weak)
elif kind == 'wp':
draw_rect(ax, ranges[0], plot_range, weak)
draw_rect(ax, ranges[1], plot_range, propagation)
elif kind == 's':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'sw':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
elif kind == 'swp':
draw_rect(ax, ranges[0], plot_range, strong)
draw_rect(ax, ranges[1], plot_range, weak)
draw_rect(ax, ranges[2], plot_range, propagation)
elif kind == 'is':
draw_rect(ax, ranges[0], plot_range, strong)
elif kind == 'iw':
draw_rect(ax, ranges[0], plot_range, weak)
else:
raise ValueError('unknown band gap kind! (%s)' % kind)
def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range,
plot_range, show=False, clear=False, new_axes=False):
"""
Plot band gaps as rectangles.
"""
if plt is None: return
fig = plt.figure(fig_num)
if clear:
fig.clf()
if new_axes:
ax = fig.add_subplot(111)
else:
ax = fig.gca()
for ii in range(len(freq_range) - 1):
f0, f1 = freq_range[[ii, ii+1]]
gap = gaps[ii]
ranges = gap_ranges[ii]
if isinstance(gap, list):
for ig, (gmin, gmax) in enumerate(gap):
kind, kind_desc = kinds[ii][ig]
plot_gap(ax, ranges[ig], kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges[ig]))
else:
gmin, gmax = gap
kind, kind_desc = kinds[ii]
plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc)
output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)
output(' -> %s\n %s' %(kind_desc, ranges))
if new_axes:
ax.set_xlim([freq_range[0], freq_range[-1]])
ax.set_ylim(plot_range)
if show:
plt.show()
return fig
def _get_fig_name(output_dir, fig_name, key, common, fig_suffix):
"""
Construct the complete name of figure file.
"""
name = key.replace(common, '')
if name and (not name.startswith('_')):
name = '_' + name
fig_name = fig_name + name + fig_suffix
return op.join(output_dir, fig_name)
class AcousticBandGapsApp(HomogenizationApp):
"""
Application for computing acoustic band gaps.
"""
@staticmethod
def process_options(options):
"""
Application options setup. Sets default values for missing
non-compulsory options.
"""
get = options.get
default_plot_options = {'show' : True,'legend' : False,}
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'min eig($M^*$)',
'eig_mid' : r'mid eig($M^*$)',
'eig_max' : r'max eig($M^*$)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : r'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults(options, 'plot_labels', aux, recur=True)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults(options, 'plot_labels_angle', aux)
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'x_axis' : r'$\sqrt{\lambda}$, $\omega$',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults(options, 'plot_labels_wave', aux)
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-'},
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':'},
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--'},
'eig_min' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 1.0),
'linestyle' : ':' },
'eig_mid' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.8),
'linestyle' : '--' },
'eig_max' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.6),
'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (0.2, 0.4, 0.2)},
'weak_gap' : {'linewidth' : 0, 'facecolor' : (0.6, 0.8, 0.6)},
'propagation' : {'linewidth' : 0, 'facecolor' : (1, 1, 1)},
'params' : {'axes.labelsize': 'x-large',
'font.size': 14,
'legend.fontsize': 'large',
'legend.loc': 'best',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': True},
}
plot_rsc = try_set_defaults(options, 'plot_rsc', plot_rsc)
return Struct(incident_wave_dir=get('incident_wave_dir', None),
plot_transform=get('plot_transform', None),
plot_transform_wave=get('plot_transform_wave', None),
plot_transform_angle=get('plot_transform_angle', None),
plot_options=get('plot_options', default_plot_options),
fig_name=get('fig_name', None),
fig_name_wave=get('fig_name_wave', None),
fig_name_angle=get('fig_name_angle', None),
fig_suffix=get('fig_suffix', '.pdf'),
plot_labels=plot_labels,
plot_labels_angle=plot_labels_angle,
plot_labels_wave=plot_labels_wave,
plot_rsc=plot_rsc)
@staticmethod
def process_options_pv(options):
"""
Application options setup for phase velocity computation. Sets default
values for missing non-compulsory options.
"""
get = options.get
incident_wave_dir=get('incident_wave_dir', None,
'missing "incident_wave_dir" in options!')
return Struct(incident_wave_dir=incident_wave_dir)
def __init__(self, conf, options, output_prefix, **kwargs):
PDESolverApp.__init__(self, conf, options, output_prefix,
init_equations=False)
self.setup_options()
if conf._filename:
output_dir = self.problem.output_dir
shutil.copyfile(conf._filename,
op.join(output_dir, op.basename(conf._filename)))
def setup_options(self):
HomogenizationApp.setup_options(self)
if self.options.phase_velocity:
process_options = AcousticBandGapsApp.process_options_pv
else:
process_options = AcousticBandGapsApp.process_options
self.app_options += process_options(self.conf.options)
def call(self):
"""
Construct and call the homogenization engine accoring to options.
"""
options = self.options
opts = self.app_options
conf = self.problem.conf
coefs_name = opts.coefs
coef_info = conf.get(opts.coefs, None,
'missing "%s" in problem description!'
% opts.coefs)
if options.detect_band_gaps:
# Compute band gaps coefficients and data.
keys = [key for key in coef_info if key.startswith('band_gaps')]
elif options.analyze_dispersion or options.phase_velocity:
# Insert incident wave direction to coefficients that need it.
for key, val in six.iteritems(coef_info):
coef_opts = val.get('options', None)
if coef_opts is None: continue
if (('incident_wave_dir' in coef_opts)
and (coef_opts['incident_wave_dir'] is None)):
coef_opts['incident_wave_dir'] = opts.incident_wave_dir
if options.analyze_dispersion:
# Compute dispersion coefficients and data.
keys = [key for key in coef_info
if key.startswith('dispersion')
or key.startswith('polarization_angles')]
else:
# Compute phase velocity and its requirements.
keys = [key for key in coef_info
if key.startswith('phase_velocity')]
else:
# Compute only the eigenvalue problems.
names = [req for req in conf.get(opts.requirements, [''])
if req.startswith('evp')]
coefs = {'dummy' : {'requires' : names,
'class' : CoefDummy,}}
conf.coefs_dummy = coefs
coefs_name = 'coefs_dummy'
keys = ['dummy']
he_options = Struct(coefs=coefs_name, requirements=opts.requirements,
compute_only=keys,
post_process_hook=self.post_process_hook,
multiprocessing=False)
volumes = {}
if hasattr(opts, 'volumes') and (opts.volumes is not None):
volumes.update(opts.volumes)
elif hasattr(opts, 'volume') and (opts.volume is not None):
volumes['total'] = opts.volume
else:
volumes['total'] = 1.0
he = HomogenizationEngine(self.problem, options,
app_options=he_options,
volumes=volumes)
coefs = he()
coefs = Coefficients(**coefs.to_dict())
coefs_filename = op.join(opts.output_dir, opts.coefs_filename)
coefs.to_file_txt(coefs_filename + '.txt',
opts.tex_names,
opts.float_format)
bg_keys = [key for key in coefs.to_dict()
if key.startswith('band_gaps')
or key.startswith('dispersion')]
for ii, key in enumerate(bg_keys):
bg = coefs.get(key)
log_save_name = bg.get('log_save_name', None)
if log_save_name is not None:
filename = op.join(self.problem.output_dir, log_save_name)
bg.save_log(filename, opts.float_format, bg)
raw_log_save_name = bg.get('raw_log_save_name', None)
if raw_log_save_name is not None:
filename = op.join(self.problem.output_dir, raw_log_save_name)
save_raw_bg_logs(filename, bg.logs)
if options.plot:
if options.detect_band_gaps:
self.plot_band_gaps(coefs)
elif options.analyze_dispersion:
self.plot_dispersion(coefs)
elif options.phase_velocity:
keys = [key for key in coefs.to_dict()
if key.startswith('phase_velocity')]
for key in keys:
output('%s:' % key, coefs.get(key))
return coefs
def plot_band_gaps(self, coefs):
opts = self.app_options
bg_keys = [key for key in coefs.to_dict()
if key.startswith('band_gaps')]
plot_opts = opts.plot_options
plot_rsc = opts.plot_rsc
| plt.rcParams.update(plot_rsc['params']) | sfepy.base.plotutils.plt.rcParams.update |