prompt
stringlengths 174
59.5k
| completion
stringlengths 7
228
| api
stringlengths 12
64
|
---|---|---|
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu),
},),
'load' : 'empty',
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < 0.1)', 'facet'),
'Top' : ('vertices in (z > 2.9)', 'facet'),
}
ebcs = {
'fixb' : ('Bottom', {'u.all' : 0.0}),
'fixt' : ('Top', {'u.[0,1]' : 0.0}),
}
integrals = {
'i' : 1,
'isurf' : 2,
}
equations = {
'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
+ dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 5,
'eps_a' : 1e-10,
'eps_r' : 1.0,
}),
'ts' : ('ts.simple', {
't0' : 0,
't1' : 1,
'dt' : None,
'n_step' : 26, # has precedence over dt!
'verbose' : 1,
}),
}
return locals()
##
# Pressure tractions.
def linear_pressure(ts, coor, mode=None, coef=1, **kwargs):
if mode == 'qp':
val = np.tile(coef * ts.step, (coor.shape[0], 1, 1))
return {'val' : val}
def store_top_u(displacements):
"""Function _store() will be called at the end of each loading step. Top
displacements will be stored into `displacements`."""
def _store(problem, ts, state):
top = problem.domain.regions['Top']
top_u = problem.get_variables()['u'].get_state_in_region(top)
displacements.append(np.mean(top_u[:,-1]))
return _store
def solve_branch(problem, branch_function, material_type):
eq = problem.conf.equations[material_type]
problem.set_equations({material_type : eq})
load = problem.get_materials()['load']
load.set_function(branch_function)
out = []
problem.solve(save_results=False, step_hook=store_top_u(out))
displacements = np.array(out, dtype=np.float64)
return displacements
helps = {
'no_plot' : 'do not show plot window',
}
def plot_mesh(pb):
# plot mesh for macro problem
coors = pb.domain.mesh.coors
graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0])
fig2 = plt.figure(figsize=(5,6))
ax = fig2.add_subplot(111, projection='3d')
for e in range(graph.shape[0]):
tupleList = coors[graph[e,:],:]
vertices = [[0, 1, 2, 3], [4, 5, 6, 7],
[0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7]]
verts = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))]
for ix in range(len(vertices))]
pc3d = Poly3DCollection(verts=verts, facecolors='white',
edgecolors='black', linewidths=1, alpha=0.5)
ax.add_collection3d(pc3d)
ax.set_xlim3d(-1.2, 1.2)
ax.set_ylim3d(-1.2, 1.2)
ax.set_zlim3d(-0.01, 3.2)
ax.set_title('3D plot of macro system')
| plt.show(fig2) | sfepy.base.plotutils.plt.show |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu),
},),
'load' : 'empty',
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < 0.1)', 'facet'),
'Top' : ('vertices in (z > 2.9)', 'facet'),
}
ebcs = {
'fixb' : ('Bottom', {'u.all' : 0.0}),
'fixt' : ('Top', {'u.[0,1]' : 0.0}),
}
integrals = {
'i' : 1,
'isurf' : 2,
}
equations = {
'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
+ dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 5,
'eps_a' : 1e-10,
'eps_r' : 1.0,
}),
'ts' : ('ts.simple', {
't0' : 0,
't1' : 1,
'dt' : None,
'n_step' : 26, # has precedence over dt!
'verbose' : 1,
}),
}
return locals()
##
# Pressure tractions.
def linear_pressure(ts, coor, mode=None, coef=1, **kwargs):
if mode == 'qp':
val = np.tile(coef * ts.step, (coor.shape[0], 1, 1))
return {'val' : val}
def store_top_u(displacements):
"""Function _store() will be called at the end of each loading step. Top
displacements will be stored into `displacements`."""
def _store(problem, ts, state):
top = problem.domain.regions['Top']
top_u = problem.get_variables()['u'].get_state_in_region(top)
displacements.append(np.mean(top_u[:,-1]))
return _store
def solve_branch(problem, branch_function, material_type):
eq = problem.conf.equations[material_type]
problem.set_equations({material_type : eq})
load = problem.get_materials()['load']
load.set_function(branch_function)
out = []
problem.solve(save_results=False, step_hook=store_top_u(out))
displacements = np.array(out, dtype=np.float64)
return displacements
helps = {
'no_plot' : 'do not show plot window',
}
def plot_mesh(pb):
# plot mesh for macro problem
coors = pb.domain.mesh.coors
graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0])
fig2 = plt.figure(figsize=(5,6))
ax = fig2.add_subplot(111, projection='3d')
for e in range(graph.shape[0]):
tupleList = coors[graph[e,:],:]
vertices = [[0, 1, 2, 3], [4, 5, 6, 7],
[0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7]]
verts = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))]
for ix in range(len(vertices))]
pc3d = Poly3DCollection(verts=verts, facecolors='white',
edgecolors='black', linewidths=1, alpha=0.5)
ax.add_collection3d(pc3d)
ax.set_xlim3d(-1.2, 1.2)
ax.set_ylim3d(-1.2, 1.2)
ax.set_zlim3d(-0.01, 3.2)
ax.set_title('3D plot of macro system')
plt.show(fig2)
return None
def one_simulation(material_type, define_args, coef_tension=0.25, coef_compression=-0.25,
plot_mesh_bool=False, return_load=False):
#parser = ArgumentParser(description=__doc__,
# formatter_class=RawDescriptionHelpFormatter)
#parser.add_argument('--version', action='version', version='%(prog)s')
#options = parser.parse_args()
| output.set_output(filename='sfepy_log.txt', quiet=True) | sfepy.base.base.output.set_output |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu),
},),
'load' : 'empty',
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < 0.1)', 'facet'),
'Top' : ('vertices in (z > 2.9)', 'facet'),
}
ebcs = {
'fixb' : ('Bottom', {'u.all' : 0.0}),
'fixt' : ('Top', {'u.[0,1]' : 0.0}),
}
integrals = {
'i' : 1,
'isurf' : 2,
}
equations = {
'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
+ dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 5,
'eps_a' : 1e-10,
'eps_r' : 1.0,
}),
'ts' : ('ts.simple', {
't0' : 0,
't1' : 1,
'dt' : None,
'n_step' : 26, # has precedence over dt!
'verbose' : 1,
}),
}
return locals()
##
# Pressure tractions.
def linear_pressure(ts, coor, mode=None, coef=1, **kwargs):
if mode == 'qp':
val = np.tile(coef * ts.step, (coor.shape[0], 1, 1))
return {'val' : val}
def store_top_u(displacements):
"""Function _store() will be called at the end of each loading step. Top
displacements will be stored into `displacements`."""
def _store(problem, ts, state):
top = problem.domain.regions['Top']
top_u = problem.get_variables()['u'].get_state_in_region(top)
displacements.append(np.mean(top_u[:,-1]))
return _store
def solve_branch(problem, branch_function, material_type):
eq = problem.conf.equations[material_type]
problem.set_equations({material_type : eq})
load = problem.get_materials()['load']
load.set_function(branch_function)
out = []
problem.solve(save_results=False, step_hook=store_top_u(out))
displacements = np.array(out, dtype=np.float64)
return displacements
helps = {
'no_plot' : 'do not show plot window',
}
def plot_mesh(pb):
# plot mesh for macro problem
coors = pb.domain.mesh.coors
graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0])
fig2 = plt.figure(figsize=(5,6))
ax = fig2.add_subplot(111, projection='3d')
for e in range(graph.shape[0]):
tupleList = coors[graph[e,:],:]
vertices = [[0, 1, 2, 3], [4, 5, 6, 7],
[0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7]]
verts = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))]
for ix in range(len(vertices))]
pc3d = Poly3DCollection(verts=verts, facecolors='white',
edgecolors='black', linewidths=1, alpha=0.5)
ax.add_collection3d(pc3d)
ax.set_xlim3d(-1.2, 1.2)
ax.set_ylim3d(-1.2, 1.2)
ax.set_zlim3d(-0.01, 3.2)
ax.set_title('3D plot of macro system')
plt.show(fig2)
return None
def one_simulation(material_type, define_args, coef_tension=0.25, coef_compression=-0.25,
plot_mesh_bool=False, return_load=False):
#parser = ArgumentParser(description=__doc__,
# formatter_class=RawDescriptionHelpFormatter)
#parser.add_argument('--version', action='version', version='%(prog)s')
#options = parser.parse_args()
output.set_output(filename='sfepy_log.txt', quiet=True)
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu),
},),
'load' : 'empty',
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < 0.1)', 'facet'),
'Top' : ('vertices in (z > 2.9)', 'facet'),
}
ebcs = {
'fixb' : ('Bottom', {'u.all' : 0.0}),
'fixt' : ('Top', {'u.[0,1]' : 0.0}),
}
integrals = {
'i' : 1,
'isurf' : 2,
}
equations = {
'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
+ dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 5,
'eps_a' : 1e-10,
'eps_r' : 1.0,
}),
'ts' : ('ts.simple', {
't0' : 0,
't1' : 1,
'dt' : None,
'n_step' : 26, # has precedence over dt!
'verbose' : 1,
}),
}
return locals()
##
# Pressure tractions.
def linear_pressure(ts, coor, mode=None, coef=1, **kwargs):
if mode == 'qp':
val = np.tile(coef * ts.step, (coor.shape[0], 1, 1))
return {'val' : val}
def store_top_u(displacements):
"""Function _store() will be called at the end of each loading step. Top
displacements will be stored into `displacements`."""
def _store(problem, ts, state):
top = problem.domain.regions['Top']
top_u = problem.get_variables()['u'].get_state_in_region(top)
displacements.append(np.mean(top_u[:,-1]))
return _store
def solve_branch(problem, branch_function, material_type):
eq = problem.conf.equations[material_type]
problem.set_equations({material_type : eq})
load = problem.get_materials()['load']
load.set_function(branch_function)
out = []
problem.solve(save_results=False, step_hook=store_top_u(out))
displacements = np.array(out, dtype=np.float64)
return displacements
helps = {
'no_plot' : 'do not show plot window',
}
def plot_mesh(pb):
# plot mesh for macro problem
coors = pb.domain.mesh.coors
graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0])
fig2 = plt.figure(figsize=(5,6))
ax = fig2.add_subplot(111, projection='3d')
for e in range(graph.shape[0]):
tupleList = coors[graph[e,:],:]
vertices = [[0, 1, 2, 3], [4, 5, 6, 7],
[0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7]]
verts = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))]
for ix in range(len(vertices))]
pc3d = Poly3DCollection(verts=verts, facecolors='white',
edgecolors='black', linewidths=1, alpha=0.5)
ax.add_collection3d(pc3d)
ax.set_xlim3d(-1.2, 1.2)
ax.set_ylim3d(-1.2, 1.2)
ax.set_zlim3d(-0.01, 3.2)
ax.set_title('3D plot of macro system')
plt.show(fig2)
return None
def one_simulation(material_type, define_args, coef_tension=0.25, coef_compression=-0.25,
plot_mesh_bool=False, return_load=False):
#parser = ArgumentParser(description=__doc__,
# formatter_class=RawDescriptionHelpFormatter)
#parser.add_argument('--version', action='version', version='%(prog)s')
#options = parser.parse_args()
output.set_output(filename='sfepy_log.txt', quiet=True)
required, other = get_standard_keywords()
# Use this file as the input file.
conf = ProblemConf.from_file(__file__, required, other,
define_args=define_args)
# Create problem instance, but do not set equations.
problem = | Problem.from_conf(conf, init_equations=False) | sfepy.discrete.Problem.from_conf |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : | stiffness_from_lame(dim=3, lam=lam, mu=mu) | sfepy.mechanics.matcoefs.stiffness_from_lame |
import numpy as nm
from sfepy.base.base import output, get_default, assert_, Struct
def get_print_info(n_step):
if n_step > 1:
n_digit = int(nm.log10(n_step - 1) + 1)
else:
n_digit = 1
format = '%%%dd of %%%dd' % (n_digit, n_digit)
suffix = '%%0%dd' % n_digit
return n_digit, format, suffix
class TimeStepper(Struct):
"""
Time stepper class.
"""
@staticmethod
def from_conf(conf):
return TimeStepper(conf.t0, conf.t1, dt=conf.dt, n_step=conf.n_step,
is_quasistatic=conf.quasistatic)
def __init__(self, t0, t1, dt=None, n_step=None, step=None,
is_quasistatic=False):
self.set_from_data(t0, t1, dt=dt, n_step=n_step, step=step)
self.is_quasistatic = is_quasistatic
self.step_start_time = None
def _get_n_step(self, t0, t1, dt):
n_step = int(round(nm.floor(((t1 - t0) / dt) + 0.5) + 1.0))
return n_step
def set_from_data(self, t0, t1, dt=None, n_step=None, step=None):
self.t0, self.t1 = t0, t1
dt = | get_default(dt, t1 - t0) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.base.base import output, get_default, assert_, Struct
def get_print_info(n_step):
if n_step > 1:
n_digit = int(nm.log10(n_step - 1) + 1)
else:
n_digit = 1
format = '%%%dd of %%%dd' % (n_digit, n_digit)
suffix = '%%0%dd' % n_digit
return n_digit, format, suffix
class TimeStepper(Struct):
"""
Time stepper class.
"""
@staticmethod
def from_conf(conf):
return TimeStepper(conf.t0, conf.t1, dt=conf.dt, n_step=conf.n_step,
is_quasistatic=conf.quasistatic)
def __init__(self, t0, t1, dt=None, n_step=None, step=None,
is_quasistatic=False):
self.set_from_data(t0, t1, dt=dt, n_step=n_step, step=step)
self.is_quasistatic = is_quasistatic
self.step_start_time = None
def _get_n_step(self, t0, t1, dt):
n_step = int(round(nm.floor(((t1 - t0) / dt) + 0.5) + 1.0))
return n_step
def set_from_data(self, t0, t1, dt=None, n_step=None, step=None):
self.t0, self.t1 = t0, t1
dt = get_default(dt, t1 - t0)
self.n_step = get_default(n_step,
self._get_n_step(self.t0, self.t1, dt))
if self.n_step > 1:
self.times, self.dt = nm.linspace(self.t0, self.t1, self.n_step,
endpoint=True, retstep=True)
else:
self.times = nm.array((self.t0,), dtype=nm.float64)
self.dt = self.t1 - self.t0
self.n_digit, self.format, self.suffix = get_print_info(self.n_step)
self.set_step(step)
def set_from_ts(self, ts, step=None):
step = | get_default(step, ts.step) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.base.base import output, get_default, assert_, Struct
def get_print_info(n_step):
if n_step > 1:
n_digit = int(nm.log10(n_step - 1) + 1)
else:
n_digit = 1
format = '%%%dd of %%%dd' % (n_digit, n_digit)
suffix = '%%0%dd' % n_digit
return n_digit, format, suffix
class TimeStepper(Struct):
"""
Time stepper class.
"""
@staticmethod
def from_conf(conf):
return TimeStepper(conf.t0, conf.t1, dt=conf.dt, n_step=conf.n_step,
is_quasistatic=conf.quasistatic)
def __init__(self, t0, t1, dt=None, n_step=None, step=None,
is_quasistatic=False):
self.set_from_data(t0, t1, dt=dt, n_step=n_step, step=step)
self.is_quasistatic = is_quasistatic
self.step_start_time = None
def _get_n_step(self, t0, t1, dt):
n_step = int(round(nm.floor(((t1 - t0) / dt) + 0.5) + 1.0))
return n_step
def set_from_data(self, t0, t1, dt=None, n_step=None, step=None):
self.t0, self.t1 = t0, t1
dt = get_default(dt, t1 - t0)
self.n_step = get_default(n_step,
self._get_n_step(self.t0, self.t1, dt))
if self.n_step > 1:
self.times, self.dt = nm.linspace(self.t0, self.t1, self.n_step,
endpoint=True, retstep=True)
else:
self.times = nm.array((self.t0,), dtype=nm.float64)
self.dt = self.t1 - self.t0
self.n_digit, self.format, self.suffix = get_print_info(self.n_step)
self.set_step(step)
def set_from_ts(self, ts, step=None):
step = get_default(step, ts.step)
self.set_from_data(ts.t0, ts.t1, ts.dt, ts.n_step, step=step)
def get_state(self):
return {'step' : self.step}
def set_state(self, step=0, **kwargs):
self.set_step(step=step)
def set_substep_time(self, sub_dt):
self.step_start_time = self.time
self.time += sub_dt
def restore_step_time(self):
if self.step_start_time is not None:
self.time = self.step_start_time
self.step_start_time = None
def advance(self):
if self.step < (self.n_step - 1):
self.step += 1
self.time = self.times[self.step]
self.normalize_time()
def __iter__(self):
"""ts.step, ts.time is consistent with step, time returned here
ts.nt is normalized time in [0, 1]"""
return self.iter_from(0)
def iter_from(self, step):
self.set_step(step=step)
for time in self.times[step:]:
yield self.step, self.time
self.advance()
def normalize_time(self):
self.nt = (self.time - self.t0) / (self.t1 - self.t0)
def set_step(self, step=0, nt=0.0):
nm1 = self.n_step - 1
if step is None:
step = int(round(nt * nm1))
if step < 0:
step = self.n_step + step
if (step >= self.n_step) or (step < 0):
output('time step must be in [%d, %d]' % (-nm1, nm1) )
raise ValueError
self.step = step
self.time = self.times[step]
self.normalize_time()
def __eq__(self, other):
if type(other) == type(self):
return (abs(self.t0 == other.t0) < 1e-15) and \
(abs(self.t1 == other.t1) < 1e-15) and \
(self.n_step == other.n_step)
else:
raise ValueError
class VariableTimeStepper(TimeStepper):
"""
Time stepper class with a variable time step.
"""
@staticmethod
def from_conf(conf):
return VariableTimeStepper(conf.t0, conf.t1, dt=conf.dt,
n_step=conf.n_step,
is_quasistatic=conf.quasistatic)
def set_from_data(self, t0, t1, dt=None, n_step=None, step=None):
self.t0, self.t1 = t0, t1
self.dtime = self.t1 - self.t0
dt = | get_default(dt, self.dtime) | sfepy.base.base.get_default |
r"""
Elastic contact sphere simulating an indentation test.
Find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
= 0 \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.
Notes
-----
Even though the material is linear elastic and small deformations are used, the
problem is highly nonlinear due to contacts with the sphere. See also
elastic_contact_planes.py example.
"""
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
k = 1e5 # Elastic sphere stiffness for positive penetration.
f0 = 1e-2 # Force at zero penetration.
options = {
'nls' : 'newton',
'ls' : 'ls',
'output_format': 'vtk',
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
}
materials = {
'solid' : ({
'lam' : 5.769,
'mu' : 3.846,
},),
'cs' : ({
'f' : [k, f0],
'.c' : [0.0, 0.0, 1.2],
'.r' : 0.8,
},),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < -0.499)', 'facet'),
'Top' : ('vertices in (z > 0.499)', 'facet'),
}
ebcs = {
'fixed' : ('Bottom', {'u.all' : 0.0}),
}
equations = {
'elasticity' :
"""dw_lin_elastic_iso.2.Omega(solid.lam, solid.mu, v, u)
+ dw_contact_sphere.2.Top(cs.f, cs.c, cs.r, v, u)
= 0""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 20,
'eps_a' : 1e-1,
'ls_on' : 2.0,
'problem' : 'nonlinear',
'check' : 0,
'delta' : 1e-6,
}),
}
def main():
import os
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.discrete.fem import MeshIO
import sfepy.linalg as la
from sfepy.mechanics.contact_bodies import ContactSphere, plot_points
conf_dir = os.path.dirname(__file__)
io = | MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir) | sfepy.discrete.fem.MeshIO.any_from_filename |
r"""
Elastic contact sphere simulating an indentation test.
Find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
= 0 \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.
Notes
-----
Even though the material is linear elastic and small deformations are used, the
problem is highly nonlinear due to contacts with the sphere. See also
elastic_contact_planes.py example.
"""
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
k = 1e5 # Elastic sphere stiffness for positive penetration.
f0 = 1e-2 # Force at zero penetration.
options = {
'nls' : 'newton',
'ls' : 'ls',
'output_format': 'vtk',
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
}
materials = {
'solid' : ({
'lam' : 5.769,
'mu' : 3.846,
},),
'cs' : ({
'f' : [k, f0],
'.c' : [0.0, 0.0, 1.2],
'.r' : 0.8,
},),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < -0.499)', 'facet'),
'Top' : ('vertices in (z > 0.499)', 'facet'),
}
ebcs = {
'fixed' : ('Bottom', {'u.all' : 0.0}),
}
equations = {
'elasticity' :
"""dw_lin_elastic_iso.2.Omega(solid.lam, solid.mu, v, u)
+ dw_contact_sphere.2.Top(cs.f, cs.c, cs.r, v, u)
= 0""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 20,
'eps_a' : 1e-1,
'ls_on' : 2.0,
'problem' : 'nonlinear',
'check' : 0,
'delta' : 1e-6,
}),
}
def main():
import os
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.discrete.fem import MeshIO
import sfepy.linalg as la
from sfepy.mechanics.contact_bodies import ContactSphere, plot_points
conf_dir = os.path.dirname(__file__)
io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir)
bb = io.read_bounding_box()
outline = [vv for vv in la.combine(zip(*bb))]
ax = plot_points(None, nm.array(outline), 'r*')
csc = materials['cs'][0]
cs = | ContactSphere(csc['.c'], csc['.r']) | sfepy.mechanics.contact_bodies.ContactSphere |
r"""
Elastic contact sphere simulating an indentation test.
Find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
= 0 \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.
Notes
-----
Even though the material is linear elastic and small deformations are used, the
problem is highly nonlinear due to contacts with the sphere. See also
elastic_contact_planes.py example.
"""
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
k = 1e5 # Elastic sphere stiffness for positive penetration.
f0 = 1e-2 # Force at zero penetration.
options = {
'nls' : 'newton',
'ls' : 'ls',
'output_format': 'vtk',
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
}
materials = {
'solid' : ({
'lam' : 5.769,
'mu' : 3.846,
},),
'cs' : ({
'f' : [k, f0],
'.c' : [0.0, 0.0, 1.2],
'.r' : 0.8,
},),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < -0.499)', 'facet'),
'Top' : ('vertices in (z > 0.499)', 'facet'),
}
ebcs = {
'fixed' : ('Bottom', {'u.all' : 0.0}),
}
equations = {
'elasticity' :
"""dw_lin_elastic_iso.2.Omega(solid.lam, solid.mu, v, u)
+ dw_contact_sphere.2.Top(cs.f, cs.c, cs.r, v, u)
= 0""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 20,
'eps_a' : 1e-1,
'ls_on' : 2.0,
'problem' : 'nonlinear',
'check' : 0,
'delta' : 1e-6,
}),
}
def main():
import os
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.discrete.fem import MeshIO
import sfepy.linalg as la
from sfepy.mechanics.contact_bodies import ContactSphere, plot_points
conf_dir = os.path.dirname(__file__)
io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir)
bb = io.read_bounding_box()
outline = [vv for vv in la.combine(zip(*bb))]
ax = plot_points(None, nm.array(outline), 'r*')
csc = materials['cs'][0]
cs = ContactSphere(csc['.c'], csc['.r'])
pps = (bb[1] - bb[0]) * nm.random.rand(5000, 3) + bb[0]
mask = cs.mask_points(pps, 0.0)
ax = | plot_points(ax, cs.centre[None, :], 'b*', ms=30) | sfepy.mechanics.contact_bodies.plot_points |
r"""
Elastic contact sphere simulating an indentation test.
Find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
= 0 \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.
Notes
-----
Even though the material is linear elastic and small deformations are used, the
problem is highly nonlinear due to contacts with the sphere. See also
elastic_contact_planes.py example.
"""
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
k = 1e5 # Elastic sphere stiffness for positive penetration.
f0 = 1e-2 # Force at zero penetration.
options = {
'nls' : 'newton',
'ls' : 'ls',
'output_format': 'vtk',
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
}
materials = {
'solid' : ({
'lam' : 5.769,
'mu' : 3.846,
},),
'cs' : ({
'f' : [k, f0],
'.c' : [0.0, 0.0, 1.2],
'.r' : 0.8,
},),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < -0.499)', 'facet'),
'Top' : ('vertices in (z > 0.499)', 'facet'),
}
ebcs = {
'fixed' : ('Bottom', {'u.all' : 0.0}),
}
equations = {
'elasticity' :
"""dw_lin_elastic_iso.2.Omega(solid.lam, solid.mu, v, u)
+ dw_contact_sphere.2.Top(cs.f, cs.c, cs.r, v, u)
= 0""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 20,
'eps_a' : 1e-1,
'ls_on' : 2.0,
'problem' : 'nonlinear',
'check' : 0,
'delta' : 1e-6,
}),
}
def main():
import os
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.discrete.fem import MeshIO
import sfepy.linalg as la
from sfepy.mechanics.contact_bodies import ContactSphere, plot_points
conf_dir = os.path.dirname(__file__)
io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir)
bb = io.read_bounding_box()
outline = [vv for vv in la.combine(zip(*bb))]
ax = plot_points(None, nm.array(outline), 'r*')
csc = materials['cs'][0]
cs = ContactSphere(csc['.c'], csc['.r'])
pps = (bb[1] - bb[0]) * nm.random.rand(5000, 3) + bb[0]
mask = cs.mask_points(pps, 0.0)
ax = plot_points(ax, cs.centre[None, :], 'b*', ms=30)
ax = | plot_points(ax, pps[mask], 'kv') | sfepy.mechanics.contact_bodies.plot_points |
r"""
Elastic contact sphere simulating an indentation test.
Find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u})
= 0 \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.
Notes
-----
Even though the material is linear elastic and small deformations are used, the
problem is highly nonlinear due to contacts with the sphere. See also
elastic_contact_planes.py example.
"""
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
k = 1e5 # Elastic sphere stiffness for positive penetration.
f0 = 1e-2 # Force at zero penetration.
options = {
'nls' : 'newton',
'ls' : 'ls',
'output_format': 'vtk',
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
}
materials = {
'solid' : ({
'lam' : 5.769,
'mu' : 3.846,
},),
'cs' : ({
'f' : [k, f0],
'.c' : [0.0, 0.0, 1.2],
'.r' : 0.8,
},),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < -0.499)', 'facet'),
'Top' : ('vertices in (z > 0.499)', 'facet'),
}
ebcs = {
'fixed' : ('Bottom', {'u.all' : 0.0}),
}
equations = {
'elasticity' :
"""dw_lin_elastic_iso.2.Omega(solid.lam, solid.mu, v, u)
+ dw_contact_sphere.2.Top(cs.f, cs.c, cs.r, v, u)
= 0""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 20,
'eps_a' : 1e-1,
'ls_on' : 2.0,
'problem' : 'nonlinear',
'check' : 0,
'delta' : 1e-6,
}),
}
def main():
import os
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.discrete.fem import MeshIO
import sfepy.linalg as la
from sfepy.mechanics.contact_bodies import ContactSphere, plot_points
conf_dir = os.path.dirname(__file__)
io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir)
bb = io.read_bounding_box()
outline = [vv for vv in la.combine(zip(*bb))]
ax = plot_points(None, nm.array(outline), 'r*')
csc = materials['cs'][0]
cs = ContactSphere(csc['.c'], csc['.r'])
pps = (bb[1] - bb[0]) * nm.random.rand(5000, 3) + bb[0]
mask = cs.mask_points(pps, 0.0)
ax = plot_points(ax, cs.centre[None, :], 'b*', ms=30)
ax = plot_points(ax, pps[mask], 'kv')
ax = | plot_points(ax, pps[~mask], 'r.') | sfepy.mechanics.contact_bodies.plot_points |
"""
Global interpolation functions.
"""
import time
import numpy as nm
from sfepy.base.base import output, get_default_attr
from sfepy.discrete.fem.mesh import make_inverse_connectivity
from sfepy.discrete.fem.extmods.bases import find_ref_coors
def get_ref_coors(field, coors, strategy='kdtree', close_limit=0.1, cache=None,
verbose=True):
"""
Get reference element coordinates and elements corresponding to given
physical coordinates.
Parameters
----------
field : Field instance
The field defining the approximation.
coors : array
The physical coordinates.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can be cached as
`cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the reference
element coordinates as `cache.ref_coors`, `cache.cells` and
`cache.status`, if the evaluation occurs in the same coordinates
repeatedly. In that case the KDTree related data are ignored.
verbose : bool
If False, reduce verbosity.
Returns
-------
ref_coors : array
The reference coordinates.
cells : array
The cell indices corresponding to the reference coordinates.
status : array
The status: 0 is success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
"""
ref_coors = | get_default_attr(cache, 'ref_coors', None) | sfepy.base.base.get_default_attr |
"""
Global interpolation functions.
"""
import time
import numpy as nm
from sfepy.base.base import output, get_default_attr
from sfepy.discrete.fem.mesh import make_inverse_connectivity
from sfepy.discrete.fem.extmods.bases import find_ref_coors
def get_ref_coors(field, coors, strategy='kdtree', close_limit=0.1, cache=None,
verbose=True):
"""
Get reference element coordinates and elements corresponding to given
physical coordinates.
Parameters
----------
field : Field instance
The field defining the approximation.
coors : array
The physical coordinates.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can be cached as
`cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the reference
element coordinates as `cache.ref_coors`, `cache.cells` and
`cache.status`, if the evaluation occurs in the same coordinates
repeatedly. In that case the KDTree related data are ignored.
verbose : bool
If False, reduce verbosity.
Returns
-------
ref_coors : array
The reference coordinates.
cells : array
The cell indices corresponding to the reference coordinates.
status : array
The status: 0 is success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
"""
ref_coors = get_default_attr(cache, 'ref_coors', None)
if ref_coors is None:
mesh = | get_default_attr(cache, 'mesh', None) | sfepy.base.base.get_default_attr |
"""
Global interpolation functions.
"""
import time
import numpy as nm
from sfepy.base.base import output, get_default_attr
from sfepy.discrete.fem.mesh import make_inverse_connectivity
from sfepy.discrete.fem.extmods.bases import find_ref_coors
def get_ref_coors(field, coors, strategy='kdtree', close_limit=0.1, cache=None,
verbose=True):
"""
Get reference element coordinates and elements corresponding to given
physical coordinates.
Parameters
----------
field : Field instance
The field defining the approximation.
coors : array
The physical coordinates.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can be cached as
`cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the reference
element coordinates as `cache.ref_coors`, `cache.cells` and
`cache.status`, if the evaluation occurs in the same coordinates
repeatedly. In that case the KDTree related data are ignored.
verbose : bool
If False, reduce verbosity.
Returns
-------
ref_coors : array
The reference coordinates.
cells : array
The cell indices corresponding to the reference coordinates.
status : array
The status: 0 is success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
"""
ref_coors = get_default_attr(cache, 'ref_coors', None)
if ref_coors is None:
mesh = get_default_attr(cache, 'mesh', None)
if mesh is None:
mesh = field.create_mesh(extra_nodes=False)
scoors = mesh.coors
output('reference field: %d vertices' % scoors.shape[0],
verbose=verbose)
iconn = | get_default_attr(cache, 'iconn', None) | sfepy.base.base.get_default_attr |
"""
Global interpolation functions.
"""
import time
import numpy as nm
from sfepy.base.base import output, get_default_attr
from sfepy.discrete.fem.mesh import make_inverse_connectivity
from sfepy.discrete.fem.extmods.bases import find_ref_coors
def get_ref_coors(field, coors, strategy='kdtree', close_limit=0.1, cache=None,
verbose=True):
"""
Get reference element coordinates and elements corresponding to given
physical coordinates.
Parameters
----------
field : Field instance
The field defining the approximation.
coors : array
The physical coordinates.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can be cached as
`cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the reference
element coordinates as `cache.ref_coors`, `cache.cells` and
`cache.status`, if the evaluation occurs in the same coordinates
repeatedly. In that case the KDTree related data are ignored.
verbose : bool
If False, reduce verbosity.
Returns
-------
ref_coors : array
The reference coordinates.
cells : array
The cell indices corresponding to the reference coordinates.
status : array
The status: 0 is success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
"""
ref_coors = get_default_attr(cache, 'ref_coors', None)
if ref_coors is None:
mesh = get_default_attr(cache, 'mesh', None)
if mesh is None:
mesh = field.create_mesh(extra_nodes=False)
scoors = mesh.coors
output('reference field: %d vertices' % scoors.shape[0],
verbose=verbose)
iconn = get_default_attr(cache, 'iconn', None)
if iconn is None:
offsets, iconn = make_inverse_connectivity(mesh.conns,
mesh.n_nod,
ret_offsets=True)
ii = nm.where(offsets[1:] == offsets[:-1])[0]
if len(ii):
raise ValueError('some vertices not in any element! (%s)'
% ii)
else:
offsets = cache.offsets
if strategy == 'kdtree':
kdtree = | get_default_attr(cache, 'kdtree', None) | sfepy.base.base.get_default_attr |
r"""
Thermo-elasticity with a given temperature distribution.
Uses `dw_biot` term with an isotropic coefficient for thermo-elastic coupling.
For given body temperature :math:`T` and background temperature
:math:`T_0` find :math:`\ul{u}` such that:
.. math::
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
- \int_{\Omega} (T - T_0)\ \alpha_{ij} e_{ij}(\ul{v})
= 0
\;, \quad \forall \ul{v} \;,
where
.. math::
D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;, \\
\alpha_{ij} = (3 \lambda + 2 \mu) \alpha \delta_{ij}
and :math:`\alpha` is the thermal expansion coefficient.
"""
from __future__ import absolute_import
import numpy as np
from sfepy.base.base import Struct
from sfepy.mechanics.matcoefs import stiffness_from_lame
from sfepy.mechanics.tensors import get_von_mises_stress
from sfepy import data_dir
# Material parameters.
lam = 10.0
mu = 5.0
thermal_expandability = 1.25e-5
T0 = 20.0 # Background temperature.
filename_mesh = data_dir + '/meshes/3d/block.mesh'
def get_temperature_load(ts, coors, region=None):
"""
Temperature load depends on the `x` coordinate.
"""
x = coors[:, 0]
return (x - x.min())**2 - T0
def post_process(out, pb, state, extend=False):
"""
Compute derived quantities: strain, stresses. Store also the loading
temperature.
"""
ev = pb.evaluate
strain = ev('ev_cauchy_strain.2.Omega( u )', mode='el_avg')
out['cauchy_strain'] = Struct(name='output_data',
mode='cell', data=strain,
dofs=None)
e_stress = ev('ev_cauchy_stress.2.Omega( solid.D, u )', mode='el_avg')
out['elastic_stress'] = Struct(name='output_data',
mode='cell', data=e_stress,
dofs=None)
t_stress = ev('ev_biot_stress.2.Omega( solid.alpha, T )', mode='el_avg')
out['thermal_stress'] = Struct(name='output_data',
mode='cell', data=t_stress,
dofs=None)
out['total_stress'] = Struct(name='output_data',
mode='cell', data=e_stress + t_stress,
dofs=None)
out['von_mises_stress'] = aux = out['total_stress'].copy()
vms = get_von_mises_stress(aux.data.squeeze())
vms.shape = (vms.shape[0], 1, 1, 1)
out['von_mises_stress'].data = vms
val = pb.get_variables()['T']()
val.shape = (val.shape[0], 1)
out['T'] = Struct(name='output_data',
mode='vertex', data=val + T0,
dofs=None)
return out
options = {
'post_process_hook' : 'post_process',
'nls' : 'newton',
'ls' : 'ls',
}
functions = {
'get_temperature_load' : (get_temperature_load,),
}
regions = {
'Omega' : 'all',
'Left' : ('vertices in (x < -4.99)', 'facet'),
}
fields = {
'displacement': ('real', 3, 'Omega', 1),
'temperature': ('real', 1, 'Omega', 1),
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
'T' : ('parameter field', 'temperature',
{'setter' : 'get_temperature_load'}),
}
ebcs = {
'fix_u' : ('Left', {'u.all' : 0.0}),
}
eye_sym = np.array([[1], [1], [1], [0], [0], [0]], dtype=np.float64)
materials = {
'solid' : ({
'D' : | stiffness_from_lame(3, lam=lam, mu=mu) | sfepy.mechanics.matcoefs.stiffness_from_lame |
import numpy as nm
from sfepy.linalg import dot_sequences
from sfepy.terms.terms import Term, terms
class PiezoCouplingTerm(Term):
r"""
Piezoelectric coupling term. Can be evaluated.
:Definition:
.. math::
\int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , }
\int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q
:Arguments 1:
- material : :math:`g_{kij}`
- virtual : :math:`\ul{v}`
- state : :math:`p`
:Arguments 2:
- material : :math:`g_{kij}`
- state : :math:`\ul{u}`
- virtual : :math:`q`
:Arguments 3:
- material : :math:`g_{kij}`
- parameter_v : :math:`\ul{u}`
- parameter_s : :math:`p`
"""
name = 'dw_piezo_coupling'
arg_types = (('material', 'virtual', 'state'),
('material', 'state', 'virtual'),
('material', 'parameter_v', 'parameter_s'))
arg_shapes = {'material' : 'D, S',
'virtual/grad' : ('D', None), 'state/grad' : 1,
'virtual/div' : (1, None), 'state/div' : 'D',
'parameter_v' : 'D', 'parameter_s' : 1}
modes = ('grad', 'div', 'eval')
def get_fargs(self, mat, vvar, svar,
mode=None, term_mode=None, diff_var=None, **kwargs):
if self.mode == 'grad':
qp_var, qp_name = svar, 'grad'
else:
qp_var, qp_name = vvar, 'cauchy_strain'
vvg, _ = self.get_mapping(vvar)
if mode == 'weak':
aux = nm.array([0], ndmin=4, dtype=nm.float64)
if diff_var is None:
# grad or strain according to mode.
val_qp = self.get(qp_var, qp_name)
fmode = 0
else:
val_qp = aux
fmode = 1
if self.mode == 'grad':
strain, grad = aux, val_qp
else:
strain, grad = val_qp, aux
fmode += 2
return strain, grad, mat, vvg, fmode
elif mode == 'eval':
strain = self.get(vvar, 'cauchy_strain')
grad = self.get(svar, 'grad')
return strain, grad, mat, vvg
else:
raise ValueError('unsupported evaluation mode in %s! (%s)'
% (self.name, mode))
def get_eval_shape(self, mat, vvar, svar,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(vvar)
return (n_el, 1, 1, 1), vvar.dtype
def set_arg_types( self ):
self.function = {
'grad' : terms.dw_piezo_coupling,
'div' : terms.dw_piezo_coupling,
'eval' : terms.d_piezo_coupling,
}[self.mode]
class PiezoStressTerm(Term):
r"""
Evaluate piezoelectric stress tensor.
It is given in the usual vector form exploiting symmetry: in 3D it has 6
components with the indices ordered as :math:`[11, 22, 33, 12, 13, 23]`, in
2D it has 3 components with the indices ordered as :math:`[11, 22, 12]`.
Supports 'eval', 'el_avg' and 'qp' evaluation modes.
:Definition:
.. math::
\int_{\Omega} g_{kij} \nabla_k p
:Arguments:
- material : :math:`g_{kij}`
- parameter : :math:`p`
"""
name = 'ev_piezo_stress'
arg_types = ('material', 'parameter')
arg_shapes = {'material' : 'D, S', 'parameter' : '1'}
@staticmethod
def function(out, val_qp, vg, fmode):
if fmode == 2:
out[:] = val_qp
status = 0
else:
status = vg.integrate(out, val_qp, fmode)
return status
def get_fargs(self, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
grad = self.get(parameter, 'grad')
val_qp = | dot_sequences(mat, grad, mode='ATB') | sfepy.linalg.dot_sequences |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
from __future__ import print_function
from __future__ import absolute_import
import sys
sys.path.append('.')
import matplotlib as mlp
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from sfepy.base.base import Struct, output
from sfepy.base.log import Log
from sfepy import data_dir
class MaterialSimulator(object):
@staticmethod
def create_app(filename, is_homog=False, **kwargs):
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.applications import PDESolverApp
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
from __future__ import print_function
from __future__ import absolute_import
import sys
sys.path.append('.')
import matplotlib as mlp
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from sfepy.base.base import Struct, output
from sfepy.base.log import Log
from sfepy import data_dir
class MaterialSimulator(object):
@staticmethod
def create_app(filename, is_homog=False, **kwargs):
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.applications import PDESolverApp
required, other = get_standard_keywords()
if is_homog:
required.remove('equations')
conf = ProblemConf.from_file(filename, required, other,
define_args=kwargs)
options = Struct(output_filename_trunk=None,
save_ebc=False,
save_ebc_nodes=False,
save_regions=False,
save_regions_as_groups=False,
save_field_meshes=False,
solve_not=False,
)
| output.set_output(filename='sfepy_log.txt', quiet=True) | sfepy.base.base.output.set_output |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
from __future__ import print_function
from __future__ import absolute_import
import sys
sys.path.append('.')
import matplotlib as mlp
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from sfepy.base.base import Struct, output
from sfepy.base.log import Log
from sfepy import data_dir
class MaterialSimulator(object):
@staticmethod
def create_app(filename, is_homog=False, **kwargs):
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.applications import PDESolverApp
required, other = get_standard_keywords()
if is_homog:
required.remove('equations')
conf = ProblemConf.from_file(filename, required, other,
define_args=kwargs)
options = Struct(output_filename_trunk=None,
save_ebc=False,
save_ebc_nodes=False,
save_regions=False,
save_regions_as_groups=False,
save_field_meshes=False,
solve_not=False,
)
output.set_output(filename='sfepy_log.txt', quiet=True)
if is_homog:
app = | HomogenizationApp(conf, options, 'material_opt_micro:') | sfepy.homogenization.homogen_app.HomogenizationApp |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
from __future__ import print_function
from __future__ import absolute_import
import sys
sys.path.append('.')
import matplotlib as mlp
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from sfepy.base.base import Struct, output
from sfepy.base.log import Log
from sfepy import data_dir
class MaterialSimulator(object):
@staticmethod
def create_app(filename, is_homog=False, **kwargs):
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.homogenization.homogen_app import HomogenizationApp
from sfepy.applications import PDESolverApp
required, other = get_standard_keywords()
if is_homog:
required.remove('equations')
conf = ProblemConf.from_file(filename, required, other,
define_args=kwargs)
options = Struct(output_filename_trunk=None,
save_ebc=False,
save_ebc_nodes=False,
save_regions=False,
save_regions_as_groups=False,
save_field_meshes=False,
solve_not=False,
)
output.set_output(filename='sfepy_log.txt', quiet=True)
if is_homog:
app = HomogenizationApp(conf, options, 'material_opt_micro:')
else:
app = | PDESolverApp(conf, options, 'material_opt_macro:') | sfepy.applications.PDESolverApp |
"""
Linearization of higher order solutions for the purposes of visualization.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.linalg import dot_sequences
from sfepy.discrete.fem.refine import refine_reference
from six.moves import range
def get_eval_dofs(dofs, dof_conn, ps, ori=None):
"""
Get default function for evaluating field DOFs given a list of elements and
reference element coordinates.
"""
def _eval(iels, rx):
edofs = dofs[dof_conn[iels]]
if ori is not None:
eori = ori[iels]
else:
eori = None
bf = ps.eval_base(rx, ori=eori, force_axis=True)[...,0,:]
rvals = dot_sequences(bf, edofs)
return rvals
return _eval
def get_eval_coors(coors, conn, ps):
"""
Get default function for evaluating physical coordinates given a list of
elements and reference element coordinates.
"""
def _eval(iels, rx):
ecoors = coors[conn[iels]]
aux = ecoors.transpose((0, 2, 1))
bf = ps.eval_base(rx).squeeze()
phys_coors = nm.dot(aux, bf.T).transpose((0, 2, 1))
return phys_coors
return _eval
def create_output(eval_dofs, eval_coors, n_el, ps, min_level=0, max_level=2,
eps=1e-4):
"""
Create mesh with linear elements that approximates DOFs returned by
`eval_dofs()` corresponding to a higher order approximation with a relative
precision given by `eps`. The DOFs are evaluated in physical coordinates
returned by `eval_coors()`.
"""
def _get_msd(iels, rx, ree):
rvals = eval_dofs(iels, rx)
rng = rvals.max() - rvals.min()
n_components = rvals.shape[-1]
msd = 0.0
for ic in range(n_components):
rval = rvals[..., ic]
sd = rval[:, ree]
# ~ max. second derivative.
msd += nm.abs(sd[..., 0] + sd[..., 2]
- 2.0 * sd[..., 1]).max(axis=-1)
msd /= n_components
return msd, rng
rx0 = ps.geometry.coors
rc0 = ps.geometry.conn[None, :]
rx, rc, ree = | refine_reference(ps.geometry, 1) | sfepy.discrete.fem.refine.refine_reference |
"""
Linearization of higher order solutions for the purposes of visualization.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.linalg import dot_sequences
from sfepy.discrete.fem.refine import refine_reference
from six.moves import range
def get_eval_dofs(dofs, dof_conn, ps, ori=None):
"""
Get default function for evaluating field DOFs given a list of elements and
reference element coordinates.
"""
def _eval(iels, rx):
edofs = dofs[dof_conn[iels]]
if ori is not None:
eori = ori[iels]
else:
eori = None
bf = ps.eval_base(rx, ori=eori, force_axis=True)[...,0,:]
rvals = | dot_sequences(bf, edofs) | sfepy.linalg.dot_sequences |
"""
Linearization of higher order solutions for the purposes of visualization.
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.linalg import dot_sequences
from sfepy.discrete.fem.refine import refine_reference
from six.moves import range
def get_eval_dofs(dofs, dof_conn, ps, ori=None):
"""
Get default function for evaluating field DOFs given a list of elements and
reference element coordinates.
"""
def _eval(iels, rx):
edofs = dofs[dof_conn[iels]]
if ori is not None:
eori = ori[iels]
else:
eori = None
bf = ps.eval_base(rx, ori=eori, force_axis=True)[...,0,:]
rvals = dot_sequences(bf, edofs)
return rvals
return _eval
def get_eval_coors(coors, conn, ps):
"""
Get default function for evaluating physical coordinates given a list of
elements and reference element coordinates.
"""
def _eval(iels, rx):
ecoors = coors[conn[iels]]
aux = ecoors.transpose((0, 2, 1))
bf = ps.eval_base(rx).squeeze()
phys_coors = nm.dot(aux, bf.T).transpose((0, 2, 1))
return phys_coors
return _eval
def create_output(eval_dofs, eval_coors, n_el, ps, min_level=0, max_level=2,
eps=1e-4):
"""
Create mesh with linear elements that approximates DOFs returned by
`eval_dofs()` corresponding to a higher order approximation with a relative
precision given by `eps`. The DOFs are evaluated in physical coordinates
returned by `eval_coors()`.
"""
def _get_msd(iels, rx, ree):
rvals = eval_dofs(iels, rx)
rng = rvals.max() - rvals.min()
n_components = rvals.shape[-1]
msd = 0.0
for ic in range(n_components):
rval = rvals[..., ic]
sd = rval[:, ree]
# ~ max. second derivative.
msd += nm.abs(sd[..., 0] + sd[..., 2]
- 2.0 * sd[..., 1]).max(axis=-1)
msd /= n_components
return msd, rng
rx0 = ps.geometry.coors
rc0 = ps.geometry.conn[None, :]
rx, rc, ree = refine_reference(ps.geometry, 1)
factor = rc.shape[0] / rc0.shape[0]
iels = nm.arange(n_el)
msd, rng = _get_msd(iels, rx, ree)
eps_r = rng * eps
flag = msd > eps_r
iels0 = flag0 = None
coors = []
conns = []
vdofs = []
inod = 0
for level in range(max_level + 1):
if level < min_level:
flag.fill(True) # Force refinement everywhere.
elif level == max_level:
# Last level - take everything.
flag.fill(False)
# Deal with finished elements.
if flag0 is not None:
ii = nm.searchsorted(iels0, iels)
expand_flag0 = flag0[ii].repeat(factor, axis=1)
else:
expand_flag0 = nm.ones_like(flag)
ie, ir = nm.where((flag == False) & (expand_flag0 == True))
if len(ie):
uie, iies = nm.unique(ie, return_inverse=True)
# Each (sub-)element has own coordinates - no shared vertices.
xes = eval_coors(iels[uie], rx0)
des = eval_dofs(iels[uie], rx0)
# Vectorize (how??) or use cython?
cc = []
vd = []
for ii, iie in enumerate(iies):
ce = rc0[ir[ii]]
xe = xes[iie]
cc.append(xe[ce])
de = des[iie]
vd.append(de[ce])
cc = nm.vstack(cc)
vd = nm.vstack(vd)
nc = cc.shape[0]
np = rc0.shape[1]
conn = nm.arange(nc, dtype=nm.int32).reshape((nc // np, np))
coors.append(cc)
conns.append(conn + inod)
vdofs.append(vd)
inod += nc
if not flag.any():
break
iels0 = iels
flag0 = flag
# Deal with elements to refine.
if level < max_level:
eflag = flag.sum(axis=1, dtype=nm.bool)
iels = iels[eflag]
rc0 = rc
rx0 = rx
rx, rc, ree = | refine_reference(ps.geometry, level + 2) | sfepy.discrete.fem.refine.refine_reference |
#!/usr/bin/env python
# 12.01.2007, c
"""
Solve partial differential equations given in a SfePy problem definition file.
Example problem definition files can be found in ``examples/`` directory of the
SfePy top-level directory. This script works with all the examples except those
in ``examples/standalone/``.
Both normal and parametric study runs are supported. A parametric study allows
repeated runs for varying some of the simulation parameters - see
``examples/diffusion/poisson_parametric_study.py`` file.
"""
from __future__ import print_function
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import PDESolverApp
def print_terms():
import sfepy.terms as t
tt = t.term_table
print('Terms: %d available:' % len(tt))
print(sorted(tt.keys()))
def print_solvers():
from sfepy.solvers import solver_table
print('Solvers: %d available:' % len(solver_table))
print(sorted(solver_table.keys()))
helps = {
'debug':
'automatically start debugger when an exception is raised',
'conf' :
'override problem description file items, written as python'
' dictionary without surrounding braces',
'options' : 'override options item of problem description,'
' written as python dictionary without surrounding braces',
'define' : 'pass given arguments written as python dictionary'
' without surrounding braces to define() function of problem description'
' file',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'output_format' :
'output file format, one of: {vtk, h5} [default: vtk]',
'save_restart' :
'if given, save restart files according to the given mode.',
'load_restart' :
'if given, load the given restart file',
'log' :
'log all messages to specified file (existing file will be overwritten!)',
'quiet' :
'do not print any messages to screen',
'save_ebc' :
'save a zero solution with applied EBCs (Dirichlet boundary conditions)',
'save_ebc_nodes' :
'save a zero solution with added non-zeros in EBC (Dirichlet boundary'
' conditions) nodes - scalar variables are shown using colors,'
' vector variables using arrows with non-zero components corresponding'
' to constrained components',
'save_regions' :
'save problem regions as meshes',
'save_regions_as_groups' :
'save problem regions in a single mesh but mark them by using different'
' element/node group numbers',
'save_field_meshes' :
'save meshes of problem fields (with extra DOF nodes)',
'solve_not' :
'do not solve (use in connection with --save-*)',
'list' :
'list data, what can be one of: {terms, solvers}',
}
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version',
version='%(prog)s ' + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument('-c', '--conf', metavar='"key : value, ..."',
action='store', dest='conf', type=str,
default=None, help= helps['conf'])
parser.add_argument('-O', '--options', metavar='"key : value, ..."',
action='store', dest='app_options', type=str,
default=None, help=helps['options'])
parser.add_argument('-d', '--define', metavar='"key : value, ..."',
action='store', dest='define_args', type=str,
default=None, help=helps['define'])
parser.add_argument('-o', metavar='filename',
action='store', dest='output_filename_trunk',
default=None, help=helps['filename'])
parser.add_argument('--format', metavar='format',
action='store', dest='output_format',
default=None, help=helps['output_format'])
parser.add_argument('--save-restart', metavar='mode', type=int,
action='store', dest='save_restart',
default=None, help=helps['save_restart'])
parser.add_argument('--load-restart', metavar='filename',
action='store', dest='load_restart',
default=None, help=helps['load_restart'])
parser.add_argument('--log', metavar='file',
action='store', dest='log',
default=None, help=helps['log'])
parser.add_argument('-q', '--quiet',
action='store_true', dest='quiet',
default=False, help=helps['quiet'])
parser.add_argument('--save-ebc',
action='store_true', dest='save_ebc',
default=False, help=helps['save_ebc'])
parser.add_argument('--save-ebc-nodes',
action='store_true', dest='save_ebc_nodes',
default=False, help=helps['save_ebc_nodes'])
parser.add_argument('--save-regions',
action='store_true', dest='save_regions',
default=False, help=helps['save_regions'])
parser.add_argument('--save-regions-as-groups',
action='store_true', dest='save_regions_as_groups',
default=False, help=helps['save_regions_as_groups'])
parser.add_argument('--save-field-meshes',
action='store_true', dest='save_field_meshes',
default=False, help=helps['save_field_meshes'])
parser.add_argument('--solve-not',
action='store_true', dest='solve_not',
default=False, help=helps['solve_not'])
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--list', metavar='what',
action='store', dest='_list',
default=None, help=helps['list'])
group.add_argument('filename_in', nargs='?')
options, petsc_opts = parser.parse_known_args()
if options._list is not None:
if options._list == 'terms':
print_terms()
elif options._list == 'solvers':
print_solvers()
return
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
filename_in = options.filename_in
output.set_output(filename=options.log,
quiet=options.quiet,
combined=options.log is not None)
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
#!/usr/bin/env python
# 12.01.2007, c
"""
Solve partial differential equations given in a SfePy problem definition file.
Example problem definition files can be found in ``examples/`` directory of the
SfePy top-level directory. This script works with all the examples except those
in ``examples/standalone/``.
Both normal and parametric study runs are supported. A parametric study allows
repeated runs for varying some of the simulation parameters - see
``examples/diffusion/poisson_parametric_study.py`` file.
"""
from __future__ import print_function
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import PDESolverApp
def print_terms():
import sfepy.terms as t
tt = t.term_table
print('Terms: %d available:' % len(tt))
print(sorted(tt.keys()))
def print_solvers():
from sfepy.solvers import solver_table
print('Solvers: %d available:' % len(solver_table))
print(sorted(solver_table.keys()))
helps = {
'debug':
'automatically start debugger when an exception is raised',
'conf' :
'override problem description file items, written as python'
' dictionary without surrounding braces',
'options' : 'override options item of problem description,'
' written as python dictionary without surrounding braces',
'define' : 'pass given arguments written as python dictionary'
' without surrounding braces to define() function of problem description'
' file',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'output_format' :
'output file format, one of: {vtk, h5} [default: vtk]',
'save_restart' :
'if given, save restart files according to the given mode.',
'load_restart' :
'if given, load the given restart file',
'log' :
'log all messages to specified file (existing file will be overwritten!)',
'quiet' :
'do not print any messages to screen',
'save_ebc' :
'save a zero solution with applied EBCs (Dirichlet boundary conditions)',
'save_ebc_nodes' :
'save a zero solution with added non-zeros in EBC (Dirichlet boundary'
' conditions) nodes - scalar variables are shown using colors,'
' vector variables using arrows with non-zero components corresponding'
' to constrained components',
'save_regions' :
'save problem regions as meshes',
'save_regions_as_groups' :
'save problem regions in a single mesh but mark them by using different'
' element/node group numbers',
'save_field_meshes' :
'save meshes of problem fields (with extra DOF nodes)',
'solve_not' :
'do not solve (use in connection with --save-*)',
'list' :
'list data, what can be one of: {terms, solvers}',
}
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version',
version='%(prog)s ' + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument('-c', '--conf', metavar='"key : value, ..."',
action='store', dest='conf', type=str,
default=None, help= helps['conf'])
parser.add_argument('-O', '--options', metavar='"key : value, ..."',
action='store', dest='app_options', type=str,
default=None, help=helps['options'])
parser.add_argument('-d', '--define', metavar='"key : value, ..."',
action='store', dest='define_args', type=str,
default=None, help=helps['define'])
parser.add_argument('-o', metavar='filename',
action='store', dest='output_filename_trunk',
default=None, help=helps['filename'])
parser.add_argument('--format', metavar='format',
action='store', dest='output_format',
default=None, help=helps['output_format'])
parser.add_argument('--save-restart', metavar='mode', type=int,
action='store', dest='save_restart',
default=None, help=helps['save_restart'])
parser.add_argument('--load-restart', metavar='filename',
action='store', dest='load_restart',
default=None, help=helps['load_restart'])
parser.add_argument('--log', metavar='file',
action='store', dest='log',
default=None, help=helps['log'])
parser.add_argument('-q', '--quiet',
action='store_true', dest='quiet',
default=False, help=helps['quiet'])
parser.add_argument('--save-ebc',
action='store_true', dest='save_ebc',
default=False, help=helps['save_ebc'])
parser.add_argument('--save-ebc-nodes',
action='store_true', dest='save_ebc_nodes',
default=False, help=helps['save_ebc_nodes'])
parser.add_argument('--save-regions',
action='store_true', dest='save_regions',
default=False, help=helps['save_regions'])
parser.add_argument('--save-regions-as-groups',
action='store_true', dest='save_regions_as_groups',
default=False, help=helps['save_regions_as_groups'])
parser.add_argument('--save-field-meshes',
action='store_true', dest='save_field_meshes',
default=False, help=helps['save_field_meshes'])
parser.add_argument('--solve-not',
action='store_true', dest='solve_not',
default=False, help=helps['solve_not'])
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--list', metavar='what',
action='store', dest='_list',
default=None, help=helps['list'])
group.add_argument('filename_in', nargs='?')
options, petsc_opts = parser.parse_known_args()
if options._list is not None:
if options._list == 'terms':
print_terms()
elif options._list == 'solvers':
print_solvers()
return
if options.debug:
from sfepy.base.base import debug_on_error; debug_on_error()
filename_in = options.filename_in
output.set_output(filename=options.log,
quiet=options.quiet,
combined=options.log is not None)
required, other = get_standard_keywords()
if options.solve_not:
required.remove('equations')
required.remove('solver_[0-9]+|solvers')
other.extend(['equations'])
conf = ProblemConf.from_file_and_options(filename_in, options,
required, other,
define_args=options.define_args)
opts = conf.options
output_prefix = opts.get('output_prefix', 'sfepy:')
opts.save_restart = options.save_restart
opts.load_restart = options.load_restart
app = | PDESolverApp(conf, options, output_prefix) | sfepy.applications.PDESolverApp |
#!/usr/bin/env python
# 12.01.2007, c
"""
Solve partial differential equations given in a SfePy problem definition file.
Example problem definition files can be found in ``examples/`` directory of the
SfePy top-level directory. This script works with all the examples except those
in ``examples/standalone/``.
Both normal and parametric study runs are supported. A parametric study allows
repeated runs for varying some of the simulation parameters - see
``examples/diffusion/poisson_parametric_study.py`` file.
"""
from __future__ import print_function
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import PDESolverApp
def print_terms():
import sfepy.terms as t
tt = t.term_table
print('Terms: %d available:' % len(tt))
print(sorted(tt.keys()))
def print_solvers():
from sfepy.solvers import solver_table
print('Solvers: %d available:' % len(solver_table))
print(sorted(solver_table.keys()))
helps = {
'debug':
'automatically start debugger when an exception is raised',
'conf' :
'override problem description file items, written as python'
' dictionary without surrounding braces',
'options' : 'override options item of problem description,'
' written as python dictionary without surrounding braces',
'define' : 'pass given arguments written as python dictionary'
' without surrounding braces to define() function of problem description'
' file',
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'output_format' :
'output file format, one of: {vtk, h5} [default: vtk]',
'save_restart' :
'if given, save restart files according to the given mode.',
'load_restart' :
'if given, load the given restart file',
'log' :
'log all messages to specified file (existing file will be overwritten!)',
'quiet' :
'do not print any messages to screen',
'save_ebc' :
'save a zero solution with applied EBCs (Dirichlet boundary conditions)',
'save_ebc_nodes' :
'save a zero solution with added non-zeros in EBC (Dirichlet boundary'
' conditions) nodes - scalar variables are shown using colors,'
' vector variables using arrows with non-zero components corresponding'
' to constrained components',
'save_regions' :
'save problem regions as meshes',
'save_regions_as_groups' :
'save problem regions in a single mesh but mark them by using different'
' element/node group numbers',
'save_field_meshes' :
'save meshes of problem fields (with extra DOF nodes)',
'solve_not' :
'do not solve (use in connection with --save-*)',
'list' :
'list data, what can be one of: {terms, solvers}',
}
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version',
version='%(prog)s ' + sfepy.__version__)
parser.add_argument('--debug',
action='store_true', dest='debug',
default=False, help=helps['debug'])
parser.add_argument('-c', '--conf', metavar='"key : value, ..."',
action='store', dest='conf', type=str,
default=None, help= helps['conf'])
parser.add_argument('-O', '--options', metavar='"key : value, ..."',
action='store', dest='app_options', type=str,
default=None, help=helps['options'])
parser.add_argument('-d', '--define', metavar='"key : value, ..."',
action='store', dest='define_args', type=str,
default=None, help=helps['define'])
parser.add_argument('-o', metavar='filename',
action='store', dest='output_filename_trunk',
default=None, help=helps['filename'])
parser.add_argument('--format', metavar='format',
action='store', dest='output_format',
default=None, help=helps['output_format'])
parser.add_argument('--save-restart', metavar='mode', type=int,
action='store', dest='save_restart',
default=None, help=helps['save_restart'])
parser.add_argument('--load-restart', metavar='filename',
action='store', dest='load_restart',
default=None, help=helps['load_restart'])
parser.add_argument('--log', metavar='file',
action='store', dest='log',
default=None, help=helps['log'])
parser.add_argument('-q', '--quiet',
action='store_true', dest='quiet',
default=False, help=helps['quiet'])
parser.add_argument('--save-ebc',
action='store_true', dest='save_ebc',
default=False, help=helps['save_ebc'])
parser.add_argument('--save-ebc-nodes',
action='store_true', dest='save_ebc_nodes',
default=False, help=helps['save_ebc_nodes'])
parser.add_argument('--save-regions',
action='store_true', dest='save_regions',
default=False, help=helps['save_regions'])
parser.add_argument('--save-regions-as-groups',
action='store_true', dest='save_regions_as_groups',
default=False, help=helps['save_regions_as_groups'])
parser.add_argument('--save-field-meshes',
action='store_true', dest='save_field_meshes',
default=False, help=helps['save_field_meshes'])
parser.add_argument('--solve-not',
action='store_true', dest='solve_not',
default=False, help=helps['solve_not'])
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('--list', metavar='what',
action='store', dest='_list',
default=None, help=helps['list'])
group.add_argument('filename_in', nargs='?')
options, petsc_opts = parser.parse_known_args()
if options._list is not None:
if options._list == 'terms':
print_terms()
elif options._list == 'solvers':
print_solvers()
return
if options.debug:
from sfepy.base.base import debug_on_error; | debug_on_error() | sfepy.base.base.debug_on_error |
#!/usr/bin/env python
# 12.01.2007, c
"""
Solve partial differential equations given in a SfePy problem definition file.
Example problem definition files can be found in ``examples/`` directory of the
SfePy top-level directory. This script works with all the examples except those
in ``examples/standalone/``.
Both normal and parametric study runs are supported. A parametric study allows
repeated runs for varying some of the simulation parameters - see
``examples/diffusion/poisson_parametric_study.py`` file.
"""
from __future__ import print_function
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sfepy
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.applications import PDESolverApp
def print_terms():
import sfepy.terms as t
tt = t.term_table
print('Terms: %d available:' % len(tt))
print(sorted(tt.keys()))
def print_solvers():
from sfepy.solvers import solver_table
print('Solvers: %d available:' % len(solver_table))
print(sorted( | solver_table.keys() | sfepy.solvers.solver_table.keys |
r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.
This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.
The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.
The penalty term formulation is given by the following equations.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
(\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.
Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.
For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.
Several parameters can be set using the ``--define`` option of ``simple.py``,
see :func:`define()` and the examples below.
Examples
--------
Specify the inlet velocity and a finer mesh::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions
def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
backend='numpy', optimize='optimal', verbosity=0):
"""
Parameters
----------
dims : tuple
The block domain dimensions.
shape : tuple
The mesh resolution: increase to improve accuracy.
u_order : int
The velocity field approximation order.
refine : int
The refinement level.
ls : 'ls_d' or 'ls_i'
The pre-configured linear solver name.
u_inlet : float, optional
The x-component of the inlet velocity.
mode : 'lcbc' or 'penalty'
The alternative formulations.
term_mode : 'original' or 'einsum'
The switch to use either the original or new experimental einsum-based
terms.
backend : str
The einsum mode backend.
optimize : str
The einsum mode optimization (backend dependent).
verbosity : 0, 1, 2, 3
The verbosity level of einsum-based terms.
"""
output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
.format(dims, shape, u_order, refine, u_inlet))
output('linear solver: {}'.format(ls))
output('mode: {}, term_mode: {}'.format(mode, term_mode))
if term_mode == 'einsum':
output('backend: {}, optimize: {}, verbosity: {}'
.format(backend, optimize, verbosity))
| assert_(mode in {'lcbc', 'penalty'}) | sfepy.base.base.assert_ |
r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.
This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.
The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.
The penalty term formulation is given by the following equations.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
(\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.
Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.
For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.
Several parameters can be set using the ``--define`` option of ``simple.py``,
see :func:`define()` and the examples below.
Examples
--------
Specify the inlet velocity and a finer mesh::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions
def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
backend='numpy', optimize='optimal', verbosity=0):
"""
Parameters
----------
dims : tuple
The block domain dimensions.
shape : tuple
The mesh resolution: increase to improve accuracy.
u_order : int
The velocity field approximation order.
refine : int
The refinement level.
ls : 'ls_d' or 'ls_i'
The pre-configured linear solver name.
u_inlet : float, optional
The x-component of the inlet velocity.
mode : 'lcbc' or 'penalty'
The alternative formulations.
term_mode : 'original' or 'einsum'
The switch to use either the original or new experimental einsum-based
terms.
backend : str
The einsum mode backend.
optimize : str
The einsum mode optimization (backend dependent).
verbosity : 0, 1, 2, 3
The verbosity level of einsum-based terms.
"""
output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
.format(dims, shape, u_order, refine, u_inlet))
output('linear solver: {}'.format(ls))
output('mode: {}, term_mode: {}'.format(mode, term_mode))
if term_mode == 'einsum':
output('backend: {}, optimize: {}, verbosity: {}'
.format(backend, optimize, verbosity))
assert_(mode in {'lcbc', 'penalty'})
| assert_(term_mode in {'original', 'einsum'}) | sfepy.base.base.assert_ |
r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.
This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.
The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.
The penalty term formulation is given by the following equations.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
(\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.
Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.
For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.
Several parameters can be set using the ``--define`` option of ``simple.py``,
see :func:`define()` and the examples below.
Examples
--------
Specify the inlet velocity and a finer mesh::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions
def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
backend='numpy', optimize='optimal', verbosity=0):
"""
Parameters
----------
dims : tuple
The block domain dimensions.
shape : tuple
The mesh resolution: increase to improve accuracy.
u_order : int
The velocity field approximation order.
refine : int
The refinement level.
ls : 'ls_d' or 'ls_i'
The pre-configured linear solver name.
u_inlet : float, optional
The x-component of the inlet velocity.
mode : 'lcbc' or 'penalty'
The alternative formulations.
term_mode : 'original' or 'einsum'
The switch to use either the original or new experimental einsum-based
terms.
backend : str
The einsum mode backend.
optimize : str
The einsum mode optimization (backend dependent).
verbosity : 0, 1, 2, 3
The verbosity level of einsum-based terms.
"""
output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
.format(dims, shape, u_order, refine, u_inlet))
output('linear solver: {}'.format(ls))
output('mode: {}, term_mode: {}'.format(mode, term_mode))
if term_mode == 'einsum':
output('backend: {}, optimize: {}, verbosity: {}'
.format(backend, optimize, verbosity))
assert_(mode in {'lcbc', 'penalty'})
assert_(term_mode in {'original', 'einsum'})
if u_order > 1:
assert_(mode == 'penalty', msg='set mode=penalty to use u_order > 1!')
dims = nm.array(dims, dtype=nm.float64)
shape = nm.array(shape, dtype=nm.int32)
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = | UserMeshIO(mesh_hook) | sfepy.discrete.fem.meshio.UserMeshIO |
r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.
This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.
The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.
The penalty term formulation is given by the following equations.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
(\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.
Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.
For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.
Several parameters can be set using the ``--define`` option of ``simple.py``,
see :func:`define()` and the examples below.
Examples
--------
Specify the inlet velocity and a finer mesh::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions
def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
backend='numpy', optimize='optimal', verbosity=0):
"""
Parameters
----------
dims : tuple
The block domain dimensions.
shape : tuple
The mesh resolution: increase to improve accuracy.
u_order : int
The velocity field approximation order.
refine : int
The refinement level.
ls : 'ls_d' or 'ls_i'
The pre-configured linear solver name.
u_inlet : float, optional
The x-component of the inlet velocity.
mode : 'lcbc' or 'penalty'
The alternative formulations.
term_mode : 'original' or 'einsum'
The switch to use either the original or new experimental einsum-based
terms.
backend : str
The einsum mode backend.
optimize : str
The einsum mode optimization (backend dependent).
verbosity : 0, 1, 2, 3
The verbosity level of einsum-based terms.
"""
output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
.format(dims, shape, u_order, refine, u_inlet))
output('linear solver: {}'.format(ls))
output('mode: {}, term_mode: {}'.format(mode, term_mode))
if term_mode == 'einsum':
output('backend: {}, optimize: {}, verbosity: {}'
.format(backend, optimize, verbosity))
assert_(mode in {'lcbc', 'penalty'})
assert_(term_mode in {'original', 'einsum'})
if u_order > 1:
assert_(mode == 'penalty', msg='set mode=penalty to use u_order > 1!')
dims = nm.array(dims, dtype=nm.float64)
shape = nm.array(shape, dtype=nm.int32)
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
regions = | define_box_regions(3, 0.5 * dims) | sfepy.homogenization.utils.define_box_regions |
r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.
This example demonstrates the use of `no-penetration` and `edge direction`
boundary conditions together with Navier or slip boundary conditions.
Alternatively the `no-penetration` boundary conditions can be applied in a weak
sense using the penalty term ``dw_non_penetration_p``.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.
The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`, except the vertices of the block edges, where the `edge
direction` boundary conditions are applied.
The penalty term formulation is given by the following equations.
Find :math:`\ul{u}`, :math:`p` such that:
.. math::
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
(\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,
\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,
where :math:`\epsilon` is the penalty coefficient (sufficiently large). The
`no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`.
Optionally, Dirichlet boundary conditions can be applied on
the inlet in the both cases, see below.
For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed
in that case.
Several parameters can be set using the ``--define`` option of ``simple.py``,
see :func:`define()` and the examples below.
Examples
--------
Specify the inlet velocity and a finer mesh::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Use the penalty term formulation and einsum-based terms with the default
(numpy) backend::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution::
python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto"
python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk
"""
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import assert_, output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions
def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0,
ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original',
backend='numpy', optimize='optimal', verbosity=0):
"""
Parameters
----------
dims : tuple
The block domain dimensions.
shape : tuple
The mesh resolution: increase to improve accuracy.
u_order : int
The velocity field approximation order.
refine : int
The refinement level.
ls : 'ls_d' or 'ls_i'
The pre-configured linear solver name.
u_inlet : float, optional
The x-component of the inlet velocity.
mode : 'lcbc' or 'penalty'
The alternative formulations.
term_mode : 'original' or 'einsum'
The switch to use either the original or new experimental einsum-based
terms.
backend : str
The einsum mode backend.
optimize : str
The einsum mode optimization (backend dependent).
verbosity : 0, 1, 2, 3
The verbosity level of einsum-based terms.
"""
output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}'
.format(dims, shape, u_order, refine, u_inlet))
output('linear solver: {}'.format(ls))
output('mode: {}, term_mode: {}'.format(mode, term_mode))
if term_mode == 'einsum':
output('backend: {}, optimize: {}, verbosity: {}'
.format(backend, optimize, verbosity))
assert_(mode in {'lcbc', 'penalty'})
assert_(term_mode in {'original', 'einsum'})
if u_order > 1:
| assert_(mode == 'penalty', msg='set mode=penalty to use u_order > 1!') | sfepy.base.base.assert_ |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
| output('using values:') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
| output(" Young's modulus:", options.young) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
| output(" Poisson's ratio:", options.poisson) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
| output(' vertical load:', options.load) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
| output('uniform mesh refinement level:', options.refine) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = | Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh') | sfepy.discrete.fem.Mesh.from_file |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = | FEDomain('domain', mesh) | sfepy.discrete.fem.FEDomain |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = | FieldVariable('u', 'unknown', field) | sfepy.discrete.FieldVariable |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = | FieldVariable('v', 'test', field, primary_var_name='u') | sfepy.discrete.FieldVariable |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = | stiffness_from_youngpoisson(2, options.young, options.poisson) | sfepy.mechanics.matcoefs.stiffness_from_youngpoisson |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = | Material('Asphalt', D=D) | sfepy.discrete.Material |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = | Integral('i', order=2*options.order) | sfepy.discrete.Integral |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = | Integral('i', order=0) | sfepy.discrete.Integral |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = | Equation('balance', t1 - t2) | sfepy.discrete.Equation |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = | Equations([eq]) | sfepy.discrete.Equations |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = | ScipyDirect({}) | sfepy.solvers.ls.ScipyDirect |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = | IndexedStruct() | sfepy.base.base.IndexedStruct |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = | Newton({}, lin_solver=ls, status=nls_status) | sfepy.solvers.nls.Newton |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = | Problem('elasticity', equations=eqs, nls=nls, ls=ls) | sfepy.discrete.Problem |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
| output(nls_status) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
| project_by_component(strain, strain_qp, component, order) | sfepy.discrete.projections.project_by_component |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
project_by_component(strain, strain_qp, component, order)
| project_by_component(stress, stress_qp, component, order) | sfepy.discrete.projections.project_by_component |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
project_by_component(strain, strain_qp, component, order)
project_by_component(stress, stress_qp, component, order)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(u, strain, stress, probe, labels[ii])
fig.savefig('its2D_interactive_probe_%d.png' % ii)
all_results.append(results)
for ii, results in enumerate(all_results):
output('probe %d:' % ii)
output.level += 2
for key, res in ordered_iteritems(results):
output(key + ':')
val = res[1]
output(' min: %+.2e, mean: %+.2e, max: %+.2e'
% (val.min(), val.mean(), val.max()))
output.level -= 2
if options.show:
# Show the solution. If the approximation order is greater than 1, the
# extra DOFs are simply thrown away.
from sfepy.postprocess.viewer import Viewer
view = | Viewer('its2D_interactive.vtk') | sfepy.postprocess.viewer.Viewer |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append( | LineProbe(p0, p1, n_point) | sfepy.discrete.probes.LineProbe |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
| output('refine %d...' % ii) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs= | Conditions([xsym, ysym]) | sfepy.discrete.conditions.Conditions |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals= | Integrals([integral_vn]) | sfepy.discrete.Integrals |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
project_by_component(strain, strain_qp, component, order)
project_by_component(stress, stress_qp, component, order)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(u, strain, stress, probe, labels[ii])
fig.savefig('its2D_interactive_probe_%d.png' % ii)
all_results.append(results)
for ii, results in enumerate(all_results):
| output('probe %d:' % ii) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
project_by_component(strain, strain_qp, component, order)
project_by_component(stress, stress_qp, component, order)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(u, strain, stress, probe, labels[ii])
fig.savefig('its2D_interactive_probe_%d.png' % ii)
all_results.append(results)
for ii, results in enumerate(all_results):
output('probe %d:' % ii)
output.level += 2
for key, res in | ordered_iteritems(results) | sfepy.base.base.ordered_iteritems |
#!/usr/bin/env python
"""
Diametrically point loaded 2-D disk, using commands for interactive use. See
:ref:`sec-primer`.
The script combines the functionality of all the ``its2D_?.py`` examples and
allows setting various simulation parameters, namely:
- material parameters
- displacement field approximation order
- uniform mesh refinement level
The example shows also how to probe the results as in
:ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi.
Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the
approximation order greater than one.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/linear_elasticity/its2D_interactive.py -h
Notes
-----
The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and
Matplotlib use the same backend type (for example wx).
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.discrete.fem.geometry_element import geometry_data
from sfepy.discrete.probes import LineProbe
from sfepy.discrete.projections import project_by_component
from examples.linear_elasticity.its2D_2 import stress_strain
from examples.linear_elasticity.its2D_3 import nodal_stress
def gen_lines(problem):
"""
Define two line probes.
Additional probes can be added by appending to `ps0` (start points) and
`ps1` (end points) lists.
"""
ps0 = [[0.0, 0.0], [0.0, 0.0]]
ps1 = [[75.0, 0.0], [0.0, 75.0]]
# Use enough points for higher order approximations.
n_point = 1000
labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)]
probes = []
for ip in range(len(ps0)):
p0, p1 = ps0[ip], ps1[ip]
probes.append(LineProbe(p0, p1, n_point))
return probes, labels
def probe_results(u, strain, stress, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(u)
results['u'] = (pars, vals)
pars, vals = probe(strain)
results['cauchy_strain'] = (pars, vals)
pars, vals = probe(stress)
results['cauchy_stress'] = (pars, vals)
fig = plt.figure()
plt.clf()
fig.subplots_adjust(hspace=0.4)
plt.subplot(311)
pars, vals = results['u']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('displacements')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
sym_indices = ['11', '22', '12']
plt.subplot(312)
pars, vals = results['cauchy_strain']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy strain')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
plt.subplot(313)
pars, vals = results['cauchy_stress']
for ic in range(vals.shape[1]):
plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic],
lw=1, ls='-', marker='+', ms=3)
plt.ylabel('Cauchy stress')
plt.xlabel('probe %s' % label, fontsize=8)
plt.legend(loc='best', fontsize=10)
return fig, results
helps = {
'young' : "the Young's modulus [default: %(default)s]",
'poisson' : "the Poisson's ratio [default: %(default)s]",
'load' : "the vertical load value (negative means compression)"
" [default: %(default)s]",
'order' : 'displacement field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the results figure',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--young', metavar='float', type=float,
action='store', dest='young',
default=2000.0, help=helps['young'])
parser.add_argument('--poisson', metavar='float', type=float,
action='store', dest='poisson',
default=0.4, help=helps['poisson'])
parser.add_argument('--load', metavar='float', type=float,
action='store', dest='load',
default=-1000.0, help=helps['load'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=1, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
options = parser.parse_args()
assert_((0.0 < options.poisson < 0.5),
"Poisson's ratio must be in ]0, 0.5[!")
assert_((0 < options.order),
'displacement approximation order must be at least 1!')
output('using values:')
output(" Young's modulus:", options.young)
output(" Poisson's ratio:", options.poisson)
output(' vertical load:', options.load)
output('uniform mesh refinement level:', options.refine)
# Build the problem definition.
mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.001', 'facet')
bottom = domain.create_region('Bottom',
'vertices in y < 0.001', 'facet')
top = domain.create_region('Top', 'vertex 2', 'vertex')
field = Field.from_args('fu', nm.float64, 'vector', omega,
approx_order=options.order)
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
D = stiffness_from_youngpoisson(2, options.young, options.poisson)
asphalt = Material('Asphalt', D=D)
load = Material('Load', values={'.val' : [0.0, options.load]})
integral = Integral('i', order=2*options.order)
integral0 = Integral('i', order=0)
t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
integral, omega, Asphalt=asphalt, v=v, u=u)
t2 = Term.new('dw_point_load(Load.val, v)',
integral0, top, Load=load, v=v)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
ysym = EssentialBC('YSym', left, {'u.0' : 0.0})
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({}, lin_solver=ls, status=nls_status)
pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([xsym, ysym]))
# Solve the problem.
state = pb.solve()
output(nls_status)
# Postprocess the solution.
out = state.create_output_dict()
out = stress_strain(out, pb, state, extend=True)
pb.save_state('its2D_interactive.vtk', out=out)
gdata = geometry_data['2_3']
nc = len(gdata.coors)
integral_vn = Integral('ivn', coors=gdata.coors,
weights=[gdata.volume / nc] * nc)
nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))
if options.probe:
# Probe the solution.
probes, labels = gen_lines(pb)
sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
approx_order=options.order - 1)
stress = FieldVariable('stress', 'parameter', sfield,
primary_var_name='(set-to-None)')
strain = FieldVariable('strain', 'parameter', sfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('component', nm.float64, 1, omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
ev = pb.evaluate
order = 2 * (options.order - 1)
strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
mode='qp', copy_materials=False)
project_by_component(strain, strain_qp, component, order)
project_by_component(stress, stress_qp, component, order)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(u, strain, stress, probe, labels[ii])
fig.savefig('its2D_interactive_probe_%d.png' % ii)
all_results.append(results)
for ii, results in enumerate(all_results):
output('probe %d:' % ii)
output.level += 2
for key, res in ordered_iteritems(results):
| output(key + ':') | sfepy.base.base.output |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = | io.read_iga_data(filename) | sfepy.discrete.iga.io.read_iga_data |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = | Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn) | sfepy.base.base.Struct |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
name = op.splitext(filename)[0]
domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions)
return domain
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.extmods.cmesh import CMesh
from sfepy.discrete.fem.utils import prepare_remap
ac = nm.ascontiguousarray
self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...])
for cc in self.nurbs.cs]
self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32)
self.facets = | iga.get_bezier_element_entities(nurbs.degrees) | sfepy.discrete.iga.get_bezier_element_entities |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
name = op.splitext(filename)[0]
domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions)
return domain
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.extmods.cmesh import CMesh
from sfepy.discrete.fem.utils import prepare_remap
ac = nm.ascontiguousarray
self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...])
for cc in self.nurbs.cs]
self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32)
self.facets = iga.get_bezier_element_entities(nurbs.degrees)
tconn = | iga.get_bezier_topology(bmesh.conn, nurbs.degrees) | sfepy.discrete.iga.get_bezier_topology |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
name = op.splitext(filename)[0]
domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions)
return domain
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.extmods.cmesh import CMesh
from sfepy.discrete.fem.utils import prepare_remap
ac = nm.ascontiguousarray
self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...])
for cc in self.nurbs.cs]
self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32)
self.facets = iga.get_bezier_element_entities(nurbs.degrees)
tconn = iga.get_bezier_topology(bmesh.conn, nurbs.degrees)
itc = nm.unique(tconn)
remap = prepare_remap(itc, bmesh.conn.max() + 1)
ltcoors = bmesh.cps[itc]
ltconn = remap[tconn]
n_nod, dim = ltcoors.shape
n_el = ltconn.shape[0]
self.shape = | Struct(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el, n_gr=1) | sfepy.base.base.Struct |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
name = op.splitext(filename)[0]
domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions)
return domain
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.extmods.cmesh import CMesh
from sfepy.discrete.fem.utils import prepare_remap
ac = nm.ascontiguousarray
self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...])
for cc in self.nurbs.cs]
self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32)
self.facets = iga.get_bezier_element_entities(nurbs.degrees)
tconn = iga.get_bezier_topology(bmesh.conn, nurbs.degrees)
itc = nm.unique(tconn)
remap = prepare_remap(itc, bmesh.conn.max() + 1)
ltcoors = bmesh.cps[itc]
ltconn = remap[tconn]
n_nod, dim = ltcoors.shape
n_el = ltconn.shape[0]
self.shape = Struct(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el, n_gr=1)
desc = '%d_%d' % (dim, 2**dim)
mat_id = nm.zeros(ltconn.shape[0], dtype=nm.int32)
self.mesh = Mesh.from_data(self.name + '_topo', ltcoors, None, [ltconn],
[mat_id], [desc])
self.cmesh = | CMesh.from_mesh(self.mesh) | sfepy.discrete.fem.extmods.cmesh.CMesh.from_mesh |
"""
Computational domain for isogeometric analysis.
"""
import os.path as op
import numpy as nm
from sfepy.base.base import Struct
from sfepy.discrete.common.domain import Domain
import sfepy.discrete.iga as iga
import sfepy.discrete.iga.io as io
from sfepy.discrete.iga.extmods.igac import eval_in_tp_coors
class NurbsPatch(Struct):
"""
Single NURBS patch data.
"""
def __init__(self, knots, degrees, cps,
weights, cs, conn):
Struct.__init__(self, name='nurbs', knots=knots, degrees=degrees,
cps=cps, weights=weights, cs=cs, conn=conn)
self.n_els = [len(ii) for ii in cs]
self.dim = len(self.n_els)
def _get_ref_coors_1d(self, pars, axis):
uk = nm.unique(self.knots[axis])
indices = nm.searchsorted(uk[1:], pars)
ref_coors = nm.empty_like(pars)
for ii in xrange(len(uk) - 1):
ispan = nm.where(indices == ii)[0]
pp = pars[ispan]
ref_coors[ispan] = (pp - uk[ii]) / (uk[ii+1] - uk[ii])
return uk, indices, ref_coors
def __call__(self, u=None, v=None, w=None, field=None):
"""
Igakit-like interface for NURBS evaluation.
"""
pars = [u]
if v is not None: pars += [v]
if w is not None: pars += [w]
indices = []
rcs = []
for ia, par in enumerate(pars):
uk, indx, rc = self._get_ref_coors_1d(par, ia)
indices.append(indx.astype(nm.uint32))
rcs.append(rc)
out = eval_in_tp_coors(field, indices,
rcs, self.cps, self.weights,
self.degrees,
self.cs, self.conn)
return out
def evaluate(self, field, u=None, v=None, w=None):
"""
Igakit-like interface for NURBS evaluation.
"""
return self(u, v, w, field)
class IGDomain(Domain):
"""
Bezier extraction based NURBS domain for isogeometric analysis.
"""
@staticmethod
def from_file(filename):
"""
filename : str
The name of the IGA domain file.
"""
(knots, degrees, cps, weights, cs, conn,
bcps, bweights, bconn, regions) = io.read_iga_data(filename)
nurbs = NurbsPatch(knots, degrees, cps, weights, cs, conn)
bmesh = Struct(name='bmesh', cps=bcps, weights=bweights, conn=bconn)
name = op.splitext(filename)[0]
domain = IGDomain(name, nurbs=nurbs, bmesh=bmesh, regions=regions)
return domain
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.extmods.cmesh import CMesh
from sfepy.discrete.fem.utils import prepare_remap
ac = nm.ascontiguousarray
self.nurbs.cs = [ac(nm.array(cc, dtype=nm.float64)[:, None, ...])
for cc in self.nurbs.cs]
self.nurbs.degrees = self.nurbs.degrees.astype(nm.int32)
self.facets = iga.get_bezier_element_entities(nurbs.degrees)
tconn = iga.get_bezier_topology(bmesh.conn, nurbs.degrees)
itc = nm.unique(tconn)
remap = prepare_remap(itc, bmesh.conn.max() + 1)
ltcoors = bmesh.cps[itc]
ltconn = remap[tconn]
n_nod, dim = ltcoors.shape
n_el = ltconn.shape[0]
self.shape = Struct(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el, n_gr=1)
desc = '%d_%d' % (dim, 2**dim)
mat_id = nm.zeros(ltconn.shape[0], dtype=nm.int32)
self.mesh = Mesh.from_data(self.name + '_topo', ltcoors, None, [ltconn],
[mat_id], [desc])
self.cmesh = CMesh.from_mesh(self.mesh)
gels = | create_geometry_elements() | sfepy.discrete.fem.geometry_element.create_geometry_elements |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = | split_range(total_size, chunk_size) | sfepy.linalg.split_range |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
| Container.__init__(self, objs=objs) | sfepy.base.base.Container.__init__ |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
| Container.insert(self, ii, obj) | sfepy.base.base.Container.insert |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
| Container.append(self, obj) | sfepy.base.base.Container.append |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = | Struct.get(self, 'function', None) | sfepy.base.base.Struct.get |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = | get_default(step, self.arg_steps[name]) | sfepy.base.base.get_default |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = | get_default(integration, self.geometry_types[name]) | sfepy.base.base.get_default |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = | create_adof_conns(conn_info, None) | sfepy.discrete.create_adof_conns |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
| terms.append(term) | sfepy.terms.extmods.terms.append |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = | Integrals() | sfepy.discrete.Integrals |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = | as_float_or_complex(other) | sfepy.base.base.as_float_or_complex |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = | Struct.get(self, 'mode', None) | sfepy.base.base.Struct.get |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = | PhysicalQPs(self.region.igs) | sfepy.discrete.common.mappings.PhysicalQPs |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
terms.errclear()
raise ValueError
if status:
| terms.errclear() | sfepy.terms.extmods.terms.errclear |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = | get_physical_qps(self.region, self.integral) | sfepy.discrete.common.mappings.get_physical_qps |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
| terms.errclear() | sfepy.terms.extmods.terms.errclear |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
| terms.errclear() | sfepy.terms.extmods.terms.errclear |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
terms.errclear()
raise ValueError
if status:
terms.errclear()
raise ValueError('term evaluation failed! (%s)' % self.name)
return status
def eval_real(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
out = nm.empty(shape, dtype=nm.float64)
if mode == 'eval':
status = self.call_function(out, fargs)
# Sum over elements but not over components.
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
status = self.call_function(out, fargs)
return out, status
def eval_complex(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
rout = nm.empty(shape, dtype=nm.float64)
fargsd = split_complex_args(fargs)
# Assuming linear forms. Then the matrix is the
# same both for real and imaginary part.
rstatus = self.call_function(rout, fargsd['r'])
if (diff_var is None) and len(fargsd) >= 2:
iout = nm.empty(shape, dtype=nm.float64)
istatus = self.call_function(iout, fargsd['i'])
if mode == 'eval' and len(fargsd) >= 4:
irout = nm.empty(shape, dtype=nm.float64)
irstatus = self.call_function(irout, fargsd['ir'])
riout = nm.empty(shape, dtype=nm.float64)
ristatus = self.call_function(riout, fargsd['ri'])
out = (rout - iout) + (riout + irout) * 1j
status = rstatus or istatus or ristatus or irstatus
else:
out = rout + 1j * iout
status = rstatus or istatus
else:
out, status = rout, rstatus
if mode == 'eval':
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
return out, status
def evaluate(self, mode='eval', diff_var=None,
standalone=True, ret_status=False, **kwargs):
"""
Evaluate the term.
Parameters
----------
mode : 'eval' (default), or 'weak'
The term evaluation mode.
Returns
-------
val : float or array
In 'eval' mode, the term returns a single value (the
integral, it does not need to be a scalar), while in 'weak'
mode it returns an array for each element.
status : int, optional
The flag indicating evaluation success (0) or failure
(nonzero). Only provided if `ret_status` is True.
iels : array of ints, optional
The local elements indices in 'weak' mode. Only provided in
non-'eval' modes.
"""
if standalone:
self.standalone_setup()
kwargs = kwargs.copy()
term_mode = kwargs.pop('term_mode', None)
if mode == 'eval':
val = 0.0
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
_v, stat = self.eval_real(shape, fargs, mode, term_mode,
**kwargs)
elif dtype == nm.complex128:
_v, stat = self.eval_complex(shape, fargs, mode, term_mode,
**kwargs)
else:
raise ValueError('unsupported term dtype! (%s)' % dtype)
val += _v
status += stat
val *= self.sign
elif mode in ('el_avg', 'el', 'qp'):
vals = None
iels = nm.empty((0, 2), dtype=nm.int32)
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode,
term_mode, **kwargs)
elif dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode,
term_mode, **kwargs)
if vals is None:
vals = val
else:
vals = nm.r_[vals, val]
_iels = self.get_assembling_cells(val.shape)
aux = nm.c_[nm.repeat(ig, _iels.shape[0])[:, None],
_iels[:, None]]
iels = nm.r_[iels, aux]
status += stat
vals *= self.sign
elif mode == 'weak':
vals = []
iels = []
status = 0
varr = self.get_virtual_variable()
if diff_var is not None:
varc = self.get_variables(as_list=False)[diff_var]
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr)
n_row = n_cr * n_enr
if diff_var is None:
shape = (n_elr, 1, n_row, 1)
else:
n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc)
n_col = n_cc * n_enc
shape = (n_elr, 1, n_row, n_col)
if varr.dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode, term_mode,
diff_var, **kwargs)
elif varr.dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode, term_mode,
diff_var, **kwargs)
else:
raise ValueError('unsupported term dtype! (%s)'
% varr.dtype)
vals.append(self.sign * val)
iels.append((ig, self.get_assembling_cells(val.shape)))
status += stat
# Setup return value.
if mode == 'eval':
out = (val,)
else:
out = (vals, iels)
if goptions['check_term_finiteness']:
assert_(nm.isfinite(out[0]).all(),
msg='%+.2e * %s.%d.%s(%s) term values not finite!'
% (self.sign, self.name, self.integral.order,
self.region.name, self.arg_str))
if ret_status:
out = out + (status,)
if len(out) == 1:
out = out[0]
return out
def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None):
import sfepy.discrete.fem.extmods.assemble as asm
vvar = self.get_virtual_variable()
dc_type = self.get_dof_conn_type()
if mode == 'vector':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_vector
else:
| assert_(asm_obj.dtype == nm.complex128) | sfepy.base.base.assert_ |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
terms.errclear()
raise ValueError
if status:
terms.errclear()
raise ValueError('term evaluation failed! (%s)' % self.name)
return status
def eval_real(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
out = nm.empty(shape, dtype=nm.float64)
if mode == 'eval':
status = self.call_function(out, fargs)
# Sum over elements but not over components.
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
status = self.call_function(out, fargs)
return out, status
def eval_complex(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
rout = nm.empty(shape, dtype=nm.float64)
fargsd = split_complex_args(fargs)
# Assuming linear forms. Then the matrix is the
# same both for real and imaginary part.
rstatus = self.call_function(rout, fargsd['r'])
if (diff_var is None) and len(fargsd) >= 2:
iout = nm.empty(shape, dtype=nm.float64)
istatus = self.call_function(iout, fargsd['i'])
if mode == 'eval' and len(fargsd) >= 4:
irout = nm.empty(shape, dtype=nm.float64)
irstatus = self.call_function(irout, fargsd['ir'])
riout = nm.empty(shape, dtype=nm.float64)
ristatus = self.call_function(riout, fargsd['ri'])
out = (rout - iout) + (riout + irout) * 1j
status = rstatus or istatus or ristatus or irstatus
else:
out = rout + 1j * iout
status = rstatus or istatus
else:
out, status = rout, rstatus
if mode == 'eval':
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
return out, status
def evaluate(self, mode='eval', diff_var=None,
standalone=True, ret_status=False, **kwargs):
"""
Evaluate the term.
Parameters
----------
mode : 'eval' (default), or 'weak'
The term evaluation mode.
Returns
-------
val : float or array
In 'eval' mode, the term returns a single value (the
integral, it does not need to be a scalar), while in 'weak'
mode it returns an array for each element.
status : int, optional
The flag indicating evaluation success (0) or failure
(nonzero). Only provided if `ret_status` is True.
iels : array of ints, optional
The local elements indices in 'weak' mode. Only provided in
non-'eval' modes.
"""
if standalone:
self.standalone_setup()
kwargs = kwargs.copy()
term_mode = kwargs.pop('term_mode', None)
if mode == 'eval':
val = 0.0
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
_v, stat = self.eval_real(shape, fargs, mode, term_mode,
**kwargs)
elif dtype == nm.complex128:
_v, stat = self.eval_complex(shape, fargs, mode, term_mode,
**kwargs)
else:
raise ValueError('unsupported term dtype! (%s)' % dtype)
val += _v
status += stat
val *= self.sign
elif mode in ('el_avg', 'el', 'qp'):
vals = None
iels = nm.empty((0, 2), dtype=nm.int32)
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode,
term_mode, **kwargs)
elif dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode,
term_mode, **kwargs)
if vals is None:
vals = val
else:
vals = nm.r_[vals, val]
_iels = self.get_assembling_cells(val.shape)
aux = nm.c_[nm.repeat(ig, _iels.shape[0])[:, None],
_iels[:, None]]
iels = nm.r_[iels, aux]
status += stat
vals *= self.sign
elif mode == 'weak':
vals = []
iels = []
status = 0
varr = self.get_virtual_variable()
if diff_var is not None:
varc = self.get_variables(as_list=False)[diff_var]
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr)
n_row = n_cr * n_enr
if diff_var is None:
shape = (n_elr, 1, n_row, 1)
else:
n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc)
n_col = n_cc * n_enc
shape = (n_elr, 1, n_row, n_col)
if varr.dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode, term_mode,
diff_var, **kwargs)
elif varr.dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode, term_mode,
diff_var, **kwargs)
else:
raise ValueError('unsupported term dtype! (%s)'
% varr.dtype)
vals.append(self.sign * val)
iels.append((ig, self.get_assembling_cells(val.shape)))
status += stat
# Setup return value.
if mode == 'eval':
out = (val,)
else:
out = (vals, iels)
if goptions['check_term_finiteness']:
assert_(nm.isfinite(out[0]).all(),
msg='%+.2e * %s.%d.%s(%s) term values not finite!'
% (self.sign, self.name, self.integral.order,
self.region.name, self.arg_str))
if ret_status:
out = out + (status,)
if len(out) == 1:
out = out[0]
return out
def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None):
import sfepy.discrete.fem.extmods.assemble as asm
vvar = self.get_virtual_variable()
dc_type = self.get_dof_conn_type()
if mode == 'vector':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_vector
else:
assert_(asm_obj.dtype == nm.complex128)
assemble = asm.assemble_vector_complex
for ii in range(len(val)):
if not(val[ii].dtype == nm.complex128):
val[ii] = nm.complex128(val[ii])
for ii, (ig, _iels) in enumerate(iels):
vec_in_els = val[ii]
dc = vvar.get_dof_conn(dc_type, ig)
| assert_(vec_in_els.shape[2] == dc.shape[1]) | sfepy.base.base.assert_ |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [ | Struct(terms=[self]) | sfepy.base.base.Struct |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
terms.errclear()
raise ValueError
if status:
terms.errclear()
raise ValueError('term evaluation failed! (%s)' % self.name)
return status
def eval_real(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
out = nm.empty(shape, dtype=nm.float64)
if mode == 'eval':
status = self.call_function(out, fargs)
# Sum over elements but not over components.
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
status = self.call_function(out, fargs)
return out, status
def eval_complex(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
rout = nm.empty(shape, dtype=nm.float64)
fargsd = split_complex_args(fargs)
# Assuming linear forms. Then the matrix is the
# same both for real and imaginary part.
rstatus = self.call_function(rout, fargsd['r'])
if (diff_var is None) and len(fargsd) >= 2:
iout = nm.empty(shape, dtype=nm.float64)
istatus = self.call_function(iout, fargsd['i'])
if mode == 'eval' and len(fargsd) >= 4:
irout = nm.empty(shape, dtype=nm.float64)
irstatus = self.call_function(irout, fargsd['ir'])
riout = nm.empty(shape, dtype=nm.float64)
ristatus = self.call_function(riout, fargsd['ri'])
out = (rout - iout) + (riout + irout) * 1j
status = rstatus or istatus or ristatus or irstatus
else:
out = rout + 1j * iout
status = rstatus or istatus
else:
out, status = rout, rstatus
if mode == 'eval':
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
return out, status
def evaluate(self, mode='eval', diff_var=None,
standalone=True, ret_status=False, **kwargs):
"""
Evaluate the term.
Parameters
----------
mode : 'eval' (default), or 'weak'
The term evaluation mode.
Returns
-------
val : float or array
In 'eval' mode, the term returns a single value (the
integral, it does not need to be a scalar), while in 'weak'
mode it returns an array for each element.
status : int, optional
The flag indicating evaluation success (0) or failure
(nonzero). Only provided if `ret_status` is True.
iels : array of ints, optional
The local elements indices in 'weak' mode. Only provided in
non-'eval' modes.
"""
if standalone:
self.standalone_setup()
kwargs = kwargs.copy()
term_mode = kwargs.pop('term_mode', None)
if mode == 'eval':
val = 0.0
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
_v, stat = self.eval_real(shape, fargs, mode, term_mode,
**kwargs)
elif dtype == nm.complex128:
_v, stat = self.eval_complex(shape, fargs, mode, term_mode,
**kwargs)
else:
raise ValueError('unsupported term dtype! (%s)' % dtype)
val += _v
status += stat
val *= self.sign
elif mode in ('el_avg', 'el', 'qp'):
vals = None
iels = nm.empty((0, 2), dtype=nm.int32)
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode,
term_mode, **kwargs)
elif dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode,
term_mode, **kwargs)
if vals is None:
vals = val
else:
vals = nm.r_[vals, val]
_iels = self.get_assembling_cells(val.shape)
aux = nm.c_[nm.repeat(ig, _iels.shape[0])[:, None],
_iels[:, None]]
iels = nm.r_[iels, aux]
status += stat
vals *= self.sign
elif mode == 'weak':
vals = []
iels = []
status = 0
varr = self.get_virtual_variable()
if diff_var is not None:
varc = self.get_variables(as_list=False)[diff_var]
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr)
n_row = n_cr * n_enr
if diff_var is None:
shape = (n_elr, 1, n_row, 1)
else:
n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc)
n_col = n_cc * n_enc
shape = (n_elr, 1, n_row, n_col)
if varr.dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode, term_mode,
diff_var, **kwargs)
elif varr.dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode, term_mode,
diff_var, **kwargs)
else:
raise ValueError('unsupported term dtype! (%s)'
% varr.dtype)
vals.append(self.sign * val)
iels.append((ig, self.get_assembling_cells(val.shape)))
status += stat
# Setup return value.
if mode == 'eval':
out = (val,)
else:
out = (vals, iels)
if goptions['check_term_finiteness']:
assert_(nm.isfinite(out[0]).all(),
msg='%+.2e * %s.%d.%s(%s) term values not finite!'
% (self.sign, self.name, self.integral.order,
self.region.name, self.arg_str))
if ret_status:
out = out + (status,)
if len(out) == 1:
out = out[0]
return out
def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None):
import sfepy.discrete.fem.extmods.assemble as asm
vvar = self.get_virtual_variable()
dc_type = self.get_dof_conn_type()
if mode == 'vector':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_vector
else:
assert_(asm_obj.dtype == nm.complex128)
assemble = asm.assemble_vector_complex
for ii in range(len(val)):
if not(val[ii].dtype == nm.complex128):
val[ii] = nm.complex128(val[ii])
for ii, (ig, _iels) in enumerate(iels):
vec_in_els = val[ii]
dc = vvar.get_dof_conn(dc_type, ig)
assert_(vec_in_els.shape[2] == dc.shape[1])
assemble(asm_obj, vec_in_els, _iels, 1.0, dc)
elif mode == 'matrix':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_matrix
else:
| assert_(asm_obj.dtype == nm.complex128) | sfepy.base.base.assert_ |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted(term_table.keys()))
raise ValueError(msg)
obj = constructor(name, arg_str, integral, region, **kwargs)
return obj
@staticmethod
def from_desc(constructor, desc, region, integrals=None):
from sfepy.discrete import Integrals
if integrals is None:
integrals = Integrals()
if desc.name == 'intFE':
obj = constructor(desc.name, desc.args, None, region, desc=desc)
else:
obj = constructor(desc.name, desc.args, None, region)
obj.set_integral(integrals.get(desc.integral))
obj.sign = desc.sign
return obj
def __init__(self, name, arg_str, integral, region, **kwargs):
self.name = name
self.arg_str = arg_str
self.region = region
self._kwargs = kwargs
self._integration = self.integration
self.sign = 1.0
self.set_integral(integral)
def __mul__(self, other):
try:
mul = as_float_or_complex(other)
except ValueError:
raise ValueError('cannot multiply Term with %s!' % other)
out = self.copy(name=self.name)
out.sign = mul * self.sign
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = Terms([self, other])
else:
out = NotImplemented
return out
def __sub__(self, other):
if isinstance(other, Term):
out = Terms([self, -1.0 * other])
else:
out = NotImplemented
return out
def __pos__(self):
return self
def __neg__(self):
out = -1.0 * self
return out
def set_integral(self, integral):
"""
Set the term integral.
"""
self.integral = integral
if self.integral is not None:
self.integral_name = self.integral.name
def setup(self):
self.char_fun = CharacteristicFunction(self.region)
self.function = Struct.get(self, 'function', None)
self.step = 0
self.dt = 1.0
self.is_quasistatic = False
self.has_region = True
self.setup_formal_args()
if self._kwargs:
self.setup_args(**self._kwargs)
else:
self.args = []
def setup_formal_args(self):
self.arg_names = []
self.arg_steps = {}
self.arg_derivatives = {}
self.arg_traces = {}
parser = create_arg_parser()
self.arg_desc = parser.parseString(self.arg_str)
for arg in self.arg_desc:
trace = False
derivative = None
if isinstance(arg[1], int):
name, step = arg
else:
kind = arg[0]
name, step = arg[1]
if kind == 'd':
derivative = arg[2]
elif kind == 'tr':
trace = True
match = _match_material_root(name)
if match:
name = (match.group(1), match.group(2))
self.arg_names.append(name)
self.arg_steps[name] = step
self.arg_derivatives[name] = derivative
self.arg_traces[name] = trace
def setup_args(self, **kwargs):
self._kwargs = kwargs
self.args = []
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
self.args.append(self._kwargs[arg_name])
else:
self.args.append((self._kwargs[arg_name[0]], arg_name[1]))
self.classify_args()
self.check_args()
def __call__(self, diff_var=None, chunk_size=None, **kwargs):
"""
Subclasses either implement __call__ or plug in a proper _call().
"""
return self._call(diff_var, chunk_size, **kwargs)
def _call(self, diff_var=None, chunk_size=None, **kwargs):
msg = 'base class method "_call" called for %s' \
% self.__class__.__name__
raise RuntimeError(msg)
def assign_args(self, variables, materials, user=None):
"""
Check term argument existence in variables, materials, user data
and assign the arguments to terms. Also check compatibility of
field and term subdomain lists (igs).
"""
if user is None:
user = {}
kwargs = {}
for arg_name in self.arg_names:
if isinstance(arg_name, basestr):
if arg_name in variables.names:
kwargs[arg_name] = variables[arg_name]
elif arg_name in user:
kwargs[arg_name] = user[arg_name]
else:
raise ValueError('argument %s not found!' % arg_name)
else:
arg_name = arg_name[0]
if arg_name in materials.names:
kwargs[arg_name] = materials[arg_name]
else:
raise ValueError('material argument %s not found!'
% arg_name)
self.setup_args(**kwargs)
def classify_args(self):
"""
Classify types of the term arguments and find matching call
signature.
A state variable can be in place of a parameter variable and
vice versa.
"""
self.names = Struct(name='arg_names',
material=[], variable=[], user=[],
state=[], virtual=[], parameter=[])
# Prepare for 'opt_material' - just prepend a None argument if needed.
if isinstance(self.arg_types[0], tuple):
arg_types = self.arg_types[0]
else:
arg_types = self.arg_types
if len(arg_types) == (len(self.args) + 1):
self.args.insert(0, (None, None))
self.arg_names.insert(0, (None, None))
if isinstance(self.arg_types[0], tuple):
assert_(len(self.modes) == len(self.arg_types))
# Find matching call signature using variable arguments - material
# and user arguments are ignored!
matched = []
for it, arg_types in enumerate(self.arg_types):
arg_kinds = get_arg_kinds(arg_types)
if self._check_variables(arg_kinds):
matched.append((it, arg_kinds))
if len(matched) == 1:
i_match, arg_kinds = matched[0]
arg_types = self.arg_types[i_match]
self.mode = self.modes[i_match]
elif len(matched) == 0:
msg = 'cannot match arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
msg = 'ambiguous arguments! (%s)' % self.arg_names
raise ValueError(msg)
else:
arg_types = self.arg_types
arg_kinds = get_arg_kinds(self.arg_types)
self.mode = Struct.get(self, 'mode', None)
if not self._check_variables(arg_kinds):
raise ValueError('cannot match variables! (%s)'
% self.arg_names)
# Set actual argument types.
self.ats = list(arg_types)
for ii, arg_kind in enumerate(arg_kinds):
name = self.arg_names[ii]
if arg_kind.endswith('variable'):
names = self.names.variable
if arg_kind == 'virtual_variable':
self.names.virtual.append(name)
elif arg_kind == 'state_variable':
self.names.state.append(name)
elif arg_kind == 'parameter_variable':
self.names.parameter.append(name)
elif arg_kind.endswith('material'):
names = self.names.material
else:
names = self.names.user
names.append(name)
self.n_virtual = len(self.names.virtual)
if self.n_virtual > 1:
raise ValueError('at most one virtual variable is allowed! (%d)'
% self.n_virtual)
self.set_arg_types()
self.setup_integration()
def _check_variables(self, arg_kinds):
for ii, arg_kind in enumerate(arg_kinds):
if arg_kind.endswith('variable'):
var = self.args[ii]
check = {'virtual_variable' : var.is_virtual,
'state_variable' : var.is_state_or_parameter,
'parameter_variable' : var.is_state_or_parameter}
if not check[arg_kind]():
return False
else:
return True
def set_arg_types(self):
pass
def check_args(self):
"""
Common checking to all terms.
Check compatibility of field and term subdomain lists (igs).
"""
vns = self.get_variable_names()
for name in vns:
field = self._kwargs[name].get_field()
if field is None:
continue
if not nm.all(in1d(self.region.vertices,
field.region.vertices)):
msg = ('%s: incompatible regions: (self, field %s)'
+ '(%s in %s)') %\
(self.name, field.name,
self.region.vertices, field.region.vertices)
raise ValueError(msg)
def get_variable_names(self):
return self.names.variable
def get_material_names(self):
out = []
for aux in self.names.material:
if aux[0] is not None:
out.append(aux[0])
return out
def get_user_names(self):
return self.names.user
def get_virtual_name(self):
if not self.names.virtual:
return None
var = self.get_virtual_variable()
return var.name
def get_state_names(self):
"""
If variables are given, return only true unknowns whose data are of
the current time step (0).
"""
variables = self.get_state_variables()
return [var.name for var in variables]
def get_parameter_names(self):
return copy(self.names.parameter)
def get_conn_key(self):
"""The key to be used in DOF connectivity information."""
key = (self.name,) + tuple(self.arg_names)
key += (self.integral_name, self.region.name)
return key
def get_conn_info(self):
vvar = self.get_virtual_variable()
svars = self.get_state_variables()
pvars = self.get_parameter_variables()
all_vars = self.get_variables()
dc_type = self.get_dof_conn_type()
tgs = self.get_geometry_types()
v_igs = v_tg = None
if vvar is not None:
field = vvar.get_field()
if field is not None:
v_igs = field.igs
if vvar.name in tgs:
v_tg = tgs[vvar.name]
else:
v_tg = None
else:
# No virtual variable -> all unknowns are in fact known parameters.
pvars += svars
svars = []
region = self.get_region()
if region is not None:
is_any_trace = reduce(lambda x, y: x or y,
self.arg_traces.values())
if is_any_trace:
region.setup_mirror_region()
self.char_fun.igs = region.igs
vals = []
aux_pvars = []
for svar in svars:
# Allow only true state variables.
if not svar.is_state():
aux_pvars.append(svar)
continue
field = svar.get_field()
if field is not None:
s_igs = field.igs
else:
s_igs = None
is_trace = self.arg_traces[svar.name]
if svar.name in tgs:
ps_tg = tgs[svar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=svar, state_igs=s_igs,
primary=svar, primary_igs=s_igs,
has_virtual=True,
has_state=True,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
pvars += aux_pvars
for pvar in pvars:
field = pvar.get_field()
if field is not None:
p_igs = field.igs
else:
p_igs = None
is_trace = self.arg_traces[pvar.name]
if pvar.name in tgs:
ps_tg = tgs[pvar.name]
else:
ps_tg = v_tg
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=None, state_igs=[],
primary=pvar.get_primary(), primary_igs=p_igs,
has_virtual=vvar is not None,
has_state=False,
is_trace=is_trace,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=ps_tg,
region=region,
all_vars=all_vars)
vals.append(val)
if vvar and (len(vals) == 0):
# No state, parameter variables, just the virtual one.
val = ConnInfo(virtual=vvar, virtual_igs=v_igs,
state=vvar.get_primary(), state_igs=v_igs,
primary=vvar.get_primary(), primary_igs=v_igs,
has_virtual=True,
has_state=False,
is_trace=False,
dc_type=dc_type,
v_tg=v_tg,
ps_tg=v_tg,
region=region,
all_vars=all_vars)
vals.append(val)
return vals
def get_args_by_name(self, arg_names):
"""
Return arguments by name.
"""
out = []
for name in arg_names:
try:
ii = self.arg_names.index(name)
except ValueError:
raise ValueError('non-existing argument! (%s)' % name)
out.append(self.args[ii])
return out
def get_args(self, arg_types=None, **kwargs):
"""
Return arguments by type as specified in arg_types (or
self.ats). Arguments in **kwargs can override the ones assigned
at the term construction - this is useful for passing user data.
"""
ats = self.ats
if arg_types is None:
arg_types = ats
args = []
iname, region_name, ig = self.get_current_group()
for at in arg_types:
ii = ats.index(at)
arg_name = self.arg_names[ii]
if isinstance(arg_name, basestr):
if arg_name in kwargs:
args.append(kwargs[arg_name])
else:
args.append(self.args[ii])
else:
mat, par_name = self.args[ii]
if mat is not None:
mat_data = mat.get_data((region_name, self.integral_name),
ig, par_name)
else:
mat_data = None
args.append(mat_data)
return args
def get_kwargs(self, keys, **kwargs):
"""Extract arguments from **kwargs listed in keys (default is
None)."""
return [kwargs.get(name) for name in keys]
def get_arg_name(self, arg_type, full=False, join=None):
"""
Get the name of the argument specified by `arg_type.`
Parameters
----------
arg_type : str
The argument type string.
full : bool
If True, return the full name. For example, if the name of a
variable argument is 'u' and its time derivative is
requested, the full name is 'du/dt'.
join : str, optional
Optionally, the material argument name tuple can be joined
to a single string using the `join` string.
Returns
-------
name : str
The argument name.
"""
try:
ii = self.ats.index(arg_type)
except ValueError:
return None
name = self.arg_names[ii]
if full:
# Include derivatives.
if self.arg_derivatives[name]:
name = 'd%s/%s' % (name, self.arg_derivatives[name])
if (join is not None) and isinstance(name, tuple):
name = join.join(name)
return name
def setup_integration(self):
self.has_geometry = True
self.geometry_types = {}
if isinstance(self.integration, basestr):
for var in self.get_variables():
self.geometry_types[var.name] = self.integration
else:
if self.mode is not None:
self.integration = self._integration[self.mode]
if self.integration is not None:
for arg_type, gtype in self.integration.iteritems():
var = self.get_args(arg_types=[arg_type])[0]
self.geometry_types[var.name] = gtype
gtypes = list(set(self.geometry_types.itervalues()))
if 'surface_extra' in gtypes:
self.dof_conn_type = 'volume'
elif len(gtypes):
self.dof_conn_type = gtypes[0]
def get_region(self):
return self.region
def get_geometry_types(self):
"""
Returns
-------
out : dict
The required geometry types for each variable argument.
"""
return self.geometry_types
def get_current_group(self):
return (self.integral_name, self.region.name, self.char_fun.ig)
def get_dof_conn_type(self):
return Struct(name='dof_conn_info', type=self.dof_conn_type,
region_name=self.region.name)
def set_current_group(self, ig):
self.char_fun.set_current_group(ig)
def igs(self):
return self.char_fun.igs
def get_assembling_cells(self, shape=None):
"""
Return the assembling cell indices into a DOF connectivity.
"""
cells = nm.arange(shape[0], dtype=nm.int32)
return cells
def iter_groups(self):
if self.dof_conn_type == 'point':
igs = self.igs()[0:1]
else:
igs = self.igs()
for ig in igs:
if self.integration in ('volume', 'plate'):
if not len(self.region.get_cells(ig)): continue
self.set_current_group(ig)
yield ig
def time_update(self, ts):
if ts is not None:
self.step = ts.step
self.dt = ts.dt
self.is_quasistatic = ts.is_quasistatic
def advance(self, ts):
"""
Advance to the next time step. Implemented in subclasses.
"""
def get_vector(self, variable):
"""Get the vector stored in `variable` according to self.arg_steps
and self.arg_derivatives. Supports only the backward difference w.r.t.
time."""
name = variable.name
return variable(step=self.arg_steps[name],
derivative=self.arg_derivatives[name])
def get_approximation(self, variable, get_saved=False):
"""
Return approximation corresponding to `variable`. Also return
the corresponding geometry (actual or saved, according to
`get_saved`).
"""
geo, _, key = self.get_mapping(variable, get_saved=get_saved,
return_key=True)
ig = key[2]
ap = variable.get_approximation(ig)
return ap, geo
def get_variables(self, as_list=True):
if as_list:
variables = self.get_args_by_name(self.names.variable)
else:
variables = {}
for var in self.get_args_by_name(self.names.variable):
variables[var.name] = var
return variables
def get_virtual_variable(self):
aux = self.get_args_by_name(self.names.virtual)
if len(aux) == 1:
var = aux[0]
else:
var = None
return var
def get_state_variables(self, unknown_only=False):
variables = self.get_args_by_name(self.names.state)
if unknown_only:
variables = [var for var in variables
if (var.kind == 'unknown') and
(self.arg_steps[var.name] == 0)]
return variables
def get_parameter_variables(self):
return self.get_args_by_name(self.names.parameter)
def get_materials(self, join=False):
materials = self.get_args_by_name(self.names.material)
for mat in materials:
if mat[0] is None:
materials.remove(mat)
if join:
materials = list(set(mat[0] for mat in materials))
return materials
def get_qp_key(self):
"""
Return a key identifying uniquely the term quadrature points.
"""
return (self.region.name, self.integral.name)
def get_physical_qps(self):
"""
Get physical quadrature points corresponding to the term region
and integral.
"""
from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs
if self.integration == 'point':
phys_qps = PhysicalQPs(self.region.igs)
elif self.integration == 'plate':
phys_qps = get_physical_qps(self.region, self.integral,
map_kind='v')
else:
phys_qps = get_physical_qps(self.region, self.integral)
return phys_qps
def get_mapping(self, variable, get_saved=False, return_key=False):
"""
Get the reference mapping from a variable.
Notes
-----
This is a convenience wrapper of Field.get_mapping() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.field.get_mapping(ig, region,
self.integral, integration,
get_saved=get_saved,
return_key=return_key)
return out
def get_data_shape(self, variable):
"""
Get data shape information from variable.
Notes
-----
This is a convenience wrapper of FieldVariable.get_data_shape() that
initializes the arguments using the term data.
"""
integration = self.geometry_types[variable.name]
is_trace = self.arg_traces[variable.name]
if is_trace:
region, ig_map, ig_map_i = self.region.get_mirror_region()
ig = ig_map_i[self.char_fun.ig]
else:
region = self.region
ig = self.char_fun.ig
out = variable.get_data_shape(ig, self.integral,
integration, region.name)
return out
def get(self, variable, quantity_name, bf=None, integration=None,
step=None, time_derivative=None):
"""
Get the named quantity related to the variable.
Notes
-----
This is a convenience wrapper of Variable.evaluate() that
initializes the arguments using the term data.
"""
name = variable.name
step = get_default(step, self.arg_steps[name])
time_derivative = get_default(time_derivative,
self.arg_derivatives[name])
integration = get_default(integration, self.geometry_types[name])
data = variable.evaluate(self.char_fun.ig, mode=quantity_name,
region=self.region, integral=self.integral,
integration=integration,
step=step, time_derivative=time_derivative,
is_trace=self.arg_traces[name], bf=bf)
return data
def check_shapes(self, *args, **kwargs):
"""
Default implementation of function to check term argument shapes
at run-time.
"""
pass
def standalone_setup(self):
from sfepy.discrete import create_adof_conns, Variables
conn_info = {'aux' : self.get_conn_info()}
adcs = create_adof_conns(conn_info, None)
variables = Variables(self.get_variables())
variables.set_adof_conns(adcs)
materials = self.get_materials(join=True)
for mat in materials:
mat.time_update(None, [Struct(terms=[self])])
def call_get_fargs(self, args, kwargs):
try:
fargs = self.get_fargs(*args, **kwargs)
except RuntimeError:
terms.errclear()
raise ValueError
return fargs
def call_function(self, out, fargs):
try:
status = self.function(out, *fargs)
except RuntimeError:
terms.errclear()
raise ValueError
if status:
terms.errclear()
raise ValueError('term evaluation failed! (%s)' % self.name)
return status
def eval_real(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
out = nm.empty(shape, dtype=nm.float64)
if mode == 'eval':
status = self.call_function(out, fargs)
# Sum over elements but not over components.
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
status = self.call_function(out, fargs)
return out, status
def eval_complex(self, shape, fargs, mode='eval', term_mode=None,
diff_var=None, **kwargs):
rout = nm.empty(shape, dtype=nm.float64)
fargsd = split_complex_args(fargs)
# Assuming linear forms. Then the matrix is the
# same both for real and imaginary part.
rstatus = self.call_function(rout, fargsd['r'])
if (diff_var is None) and len(fargsd) >= 2:
iout = nm.empty(shape, dtype=nm.float64)
istatus = self.call_function(iout, fargsd['i'])
if mode == 'eval' and len(fargsd) >= 4:
irout = nm.empty(shape, dtype=nm.float64)
irstatus = self.call_function(irout, fargsd['ir'])
riout = nm.empty(shape, dtype=nm.float64)
ristatus = self.call_function(riout, fargsd['ri'])
out = (rout - iout) + (riout + irout) * 1j
status = rstatus or istatus or ristatus or irstatus
else:
out = rout + 1j * iout
status = rstatus or istatus
else:
out, status = rout, rstatus
if mode == 'eval':
out1 = nm.sum(out, 0).squeeze()
return out1, status
else:
return out, status
def evaluate(self, mode='eval', diff_var=None,
standalone=True, ret_status=False, **kwargs):
"""
Evaluate the term.
Parameters
----------
mode : 'eval' (default), or 'weak'
The term evaluation mode.
Returns
-------
val : float or array
In 'eval' mode, the term returns a single value (the
integral, it does not need to be a scalar), while in 'weak'
mode it returns an array for each element.
status : int, optional
The flag indicating evaluation success (0) or failure
(nonzero). Only provided if `ret_status` is True.
iels : array of ints, optional
The local elements indices in 'weak' mode. Only provided in
non-'eval' modes.
"""
if standalone:
self.standalone_setup()
kwargs = kwargs.copy()
term_mode = kwargs.pop('term_mode', None)
if mode == 'eval':
val = 0.0
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
_v, stat = self.eval_real(shape, fargs, mode, term_mode,
**kwargs)
elif dtype == nm.complex128:
_v, stat = self.eval_complex(shape, fargs, mode, term_mode,
**kwargs)
else:
raise ValueError('unsupported term dtype! (%s)' % dtype)
val += _v
status += stat
val *= self.sign
elif mode in ('el_avg', 'el', 'qp'):
vals = None
iels = nm.empty((0, 2), dtype=nm.int32)
status = 0
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
shape, dtype = self.get_eval_shape(*_args, **kwargs)
if dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode,
term_mode, **kwargs)
elif dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode,
term_mode, **kwargs)
if vals is None:
vals = val
else:
vals = nm.r_[vals, val]
_iels = self.get_assembling_cells(val.shape)
aux = nm.c_[nm.repeat(ig, _iels.shape[0])[:, None],
_iels[:, None]]
iels = nm.r_[iels, aux]
status += stat
vals *= self.sign
elif mode == 'weak':
vals = []
iels = []
status = 0
varr = self.get_virtual_variable()
if diff_var is not None:
varc = self.get_variables(as_list=False)[diff_var]
for ig in self.iter_groups():
args = self.get_args(**kwargs)
self.check_shapes(*args)
_args = tuple(args) + (mode, term_mode, diff_var)
fargs = self.call_get_fargs(_args, kwargs)
n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr)
n_row = n_cr * n_enr
if diff_var is None:
shape = (n_elr, 1, n_row, 1)
else:
n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc)
n_col = n_cc * n_enc
shape = (n_elr, 1, n_row, n_col)
if varr.dtype == nm.float64:
val, stat = self.eval_real(shape, fargs, mode, term_mode,
diff_var, **kwargs)
elif varr.dtype == nm.complex128:
val, stat = self.eval_complex(shape, fargs, mode, term_mode,
diff_var, **kwargs)
else:
raise ValueError('unsupported term dtype! (%s)'
% varr.dtype)
vals.append(self.sign * val)
iels.append((ig, self.get_assembling_cells(val.shape)))
status += stat
# Setup return value.
if mode == 'eval':
out = (val,)
else:
out = (vals, iels)
if goptions['check_term_finiteness']:
assert_(nm.isfinite(out[0]).all(),
msg='%+.2e * %s.%d.%s(%s) term values not finite!'
% (self.sign, self.name, self.integral.order,
self.region.name, self.arg_str))
if ret_status:
out = out + (status,)
if len(out) == 1:
out = out[0]
return out
def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None):
import sfepy.discrete.fem.extmods.assemble as asm
vvar = self.get_virtual_variable()
dc_type = self.get_dof_conn_type()
if mode == 'vector':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_vector
else:
assert_(asm_obj.dtype == nm.complex128)
assemble = asm.assemble_vector_complex
for ii in range(len(val)):
if not(val[ii].dtype == nm.complex128):
val[ii] = nm.complex128(val[ii])
for ii, (ig, _iels) in enumerate(iels):
vec_in_els = val[ii]
dc = vvar.get_dof_conn(dc_type, ig)
assert_(vec_in_els.shape[2] == dc.shape[1])
assemble(asm_obj, vec_in_els, _iels, 1.0, dc)
elif mode == 'matrix':
if asm_obj.dtype == nm.float64:
assemble = asm.assemble_matrix
else:
assert_(asm_obj.dtype == nm.complex128)
assemble = asm.assemble_matrix_complex
svar = diff_var
tmd = (asm_obj.data, asm_obj.indptr, asm_obj.indices)
for ii, (ig, _iels) in enumerate(iels):
mtx_in_els = val[ii]
if ((asm_obj.dtype == nm.complex128)
and (mtx_in_els.dtype == nm.float64)):
mtx_in_els = mtx_in_els.astype(nm.complex128)
rdc = vvar.get_dof_conn(dc_type, ig)
is_trace = self.arg_traces[svar.name]
cdc = svar.get_dof_conn(dc_type, ig, is_trace=is_trace)
| assert_(mtx_in_els.shape[2:] == (rdc.shape[1], cdc.shape[1])) | sfepy.base.base.assert_ |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted(term_table.keys()))
raise ValueError(msg)
try:
region = regions[td.region]
except IndexError:
raise KeyError('region "%s" does not exist!' % td.region)
term = Term.from_desc(constructor, td, region, integrals=integrals)
terms.append(term)
return terms
def __init__(self, objs=None):
Container.__init__(self, objs=objs)
self.update_expression()
def insert(self, ii, obj):
Container.insert(self, ii, obj)
self.update_expression()
def append(self, obj):
Container.append(self, obj)
self.update_expression()
def update_expression(self):
self.expression = []
for term in self:
aux = [term.sign, term.name, term.arg_str,
term.integral_name, term.region.name]
self.expression.append(aux)
def __mul__(self, other):
out = Terms()
for name, term in self.iteritems():
out.append(term * other)
return out
def __rmul__(self, other):
return self * other
def __add__(self, other):
if isinstance(other, Term):
out = self.copy()
out.append(other)
elif isinstance(other, Terms):
out = Terms(self._objs + other._objs)
else:
raise ValueError('cannot add Terms with %s!' % other)
return out
def __radd__(self, other):
return self + other
def __sub__(self, other):
if isinstance(other, Term):
out = self + (-other)
elif isinstance(other, Terms):
out = self + (-other)
else:
raise ValueError('cannot subtract Terms with %s!' % other)
return out
def __rsub__(self, other):
return -self + other
def __pos__(self):
return self
def __neg__(self):
return -1.0 * self
def setup(self):
for term in self:
term.setup()
def assign_args(self, variables, materials, user=None):
"""
Assign all term arguments.
"""
for term in self:
term.assign_args(variables, materials, user)
def get_variable_names(self):
out = []
for term in self:
out.extend(term.get_variable_names())
return list(set(out))
def get_material_names(self):
out = []
for term in self:
out.extend(term.get_material_names())
return list(set(out))
def get_user_names(self):
out = []
for term in self:
out.extend(term.get_user_names())
return list(set(out))
def set_current_group(self, ig):
for term in self:
term.char_fun.set_current_group(ig)
class Term(Struct):
name = ''
arg_types = ()
arg_shapes = {}
integration = 'volume'
geometries = ['2_3', '2_4', '3_4', '3_8']
@staticmethod
def new(name, integral, region, **kwargs):
from sfepy.terms import term_table
arg_str = _match_args(name)
if arg_str is not None:
name, arg_str = arg_str.groups()
else:
raise ValueError('bad term syntax! (%s)' % name)
if name in term_table:
constructor = term_table[name]
else:
msg = "term '%s' is not in %s" % (name, sorted( | term_table.keys() | sfepy.terms.term_table.keys |
import re
from copy import copy
import numpy as nm
from sfepy.base.base import (as_float_or_complex, get_default, assert_,
Container, Struct, basestr, goptions)
from sfepy.base.compat import in1d
# Used for imports in term files.
from sfepy.terms.extmods import terms
from sfepy.linalg import split_range
_match_args = re.compile('^([^\(\}]*)\((.*)\)$').match
_match_virtual = re.compile('^virtual$').match
_match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match
_match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match
_match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match
_match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match
_match_material_root = re.compile('(.+)\.(.*)').match
def get_arg_kinds(arg_types):
"""
Translate `arg_types` of a Term to a canonical form.
Parameters
----------
arg_types : tuple of strings
The term argument types, as given in the `arg_types` attribute.
Returns
-------
arg_kinds : list of strings
The argument kinds - one of 'virtual_variable', 'state_variable',
'parameter_variable', 'opt_material', 'user'.
"""
arg_kinds = []
for ii, arg_type in enumerate(arg_types):
if _match_virtual(arg_type):
arg_kinds.append('virtual_variable')
elif _match_state(arg_type):
arg_kinds.append('state_variable')
elif _match_parameter(arg_type):
arg_kinds.append('parameter_variable')
elif _match_material(arg_type):
arg_kinds.append('material')
elif _match_material_opt(arg_type):
arg_kinds.append('opt_material')
if ii > 0:
msg = 'opt_material at position %d, must be at 0!' % ii
raise ValueError(msg)
else:
arg_kinds.append('user')
return arg_kinds
def get_shape_kind(integration):
"""
Get data shape kind for given integration type.
"""
if integration == 'surface':
shape_kind = 'surface'
elif integration in ('volume', 'plate', 'surface_extra'):
shape_kind = 'volume'
elif integration == 'point':
shape_kind = 'point'
else:
raise NotImplementedError('unsupported term integration! (%s)'
% integration)
return shape_kind
def split_complex_args(args):
"""
Split complex arguments to real and imaginary parts.
Returns
-------
newargs : dictionary
Dictionary with lists corresponding to `args` such that each
argument of numpy.complex128 data type is split to its real and
imaginary part. The output depends on the number of complex
arguments in 'args':
- 0: list (key 'r') identical to input one
- 1: two lists with keys 'r', 'i' corresponding to real
and imaginary parts
- 2: output dictionary contains four lists:
- 'r' - real(arg1), real(arg2)
- 'i' - imag(arg1), imag(arg2)
- 'ri' - real(arg1), imag(arg2)
- 'ir' - imag(arg1), real(arg2)
"""
newargs = {}
cai = []
for ii, arg in enumerate(args):
if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128):
cai.append(ii)
if len(cai) > 0:
newargs['r'] = list(args[:])
newargs['i'] = list(args[:])
arg1 = cai[0]
newargs['r'][arg1] = args[arg1].real.copy()
newargs['i'][arg1] = args[arg1].imag.copy()
if len(cai) == 2:
arg2 = cai[1]
newargs['r'][arg2] = args[arg2].real.copy()
newargs['i'][arg2] = args[arg2].imag.copy()
newargs['ri'] = list(args[:])
newargs['ir'] = list(args[:])
newargs['ri'][arg1] = newargs['r'][arg1]
newargs['ri'][arg2] = newargs['i'][arg2]
newargs['ir'][arg1] = newargs['i'][arg1]
newargs['ir'][arg2] = newargs['r'][arg2]
elif len(cai) > 2:
raise NotImplementedError('more than 2 complex arguments! (%d)'
% len(cai))
else:
newargs['r'] = args[:]
return newargs
def vector_chunk_generator(total_size, chunk_size, shape_in,
zero=False, set_shape=True, dtype=nm.float64):
if not chunk_size:
chunk_size = total_size
shape = list(shape_in)
sizes = split_range(total_size, chunk_size)
ii = nm.array(0, dtype=nm.int32)
for size in sizes:
chunk = nm.arange(size, dtype=nm.int32) + ii
if set_shape:
shape[0] = size
if zero:
out = nm.zeros(shape, dtype=dtype)
else:
out = nm.empty(shape, dtype=dtype)
yield out, chunk
ii += size
def create_arg_parser():
from pyparsing import Literal, Word, delimitedList, Group, \
StringStart, StringEnd, Optional, nums, alphas, alphanums
inumber = Word("+-" + nums, nums)
history = Optional(Literal('[').suppress() + inumber
+ Literal(']').suppress(), default=0)("history")
history.setParseAction(lambda str, loc, toks: int(toks[0]))
variable = Group(Word(alphas, alphanums + '._') + history)
derivative = Group(Literal('d') + variable\
+ Literal('/').suppress() + Literal('dt'))
trace = Group(Literal('tr') + Literal('(').suppress() + variable \
+ Literal(')').suppress())
generalized_var = derivative | trace | variable
args = StringStart() + delimitedList(generalized_var) + StringEnd()
return args
# 22.01.2006, c
class CharacteristicFunction(Struct):
def __init__(self, region):
self.igs = region.igs
self.region = region
self.local_chunk = None
self.ig = None
def __call__(self, chunk_size, shape_in, zero=False, set_shape=True,
ret_local_chunk=False, dtype=nm.float64):
els = self.region.get_cells(self.ig)
for out, chunk in vector_chunk_generator(els.shape[0], chunk_size,
shape_in, zero, set_shape,
dtype):
self.local_chunk = chunk
if ret_local_chunk:
yield out, chunk
else:
yield out, els[chunk]
self.local_chunk = None
def set_current_group(self, ig):
self.ig = ig
def get_local_chunk(self):
return self.local_chunk
class ConnInfo(Struct):
def get_region(self, can_trace=True):
if self.is_trace and can_trace:
return self.region.get_mirror_region()[0]
else:
return self.region
def get_region_name(self, can_trace=True):
if self.is_trace and can_trace:
reg = self.region.get_mirror_region()[0]
else:
reg = self.region
if reg is not None:
return reg.name
else:
return None
def iter_igs(self):
if self.region is not None:
for ig in self.region.igs:
if self.virtual_igs is not None:
ir = self.virtual_igs.tolist().index(ig)
rig = self.virtual_igs[ir]
else:
rig = None
if not self.is_trace:
ii = ig
else:
ig_map_i = self.region.get_mirror_region()[2]
ii = ig_map_i[ig]
if self.state_igs is not None:
ic = self.state_igs.tolist().index(ii)
cig = self.state_igs[ic]
else:
cig = None
yield rig, cig
else:
yield None, None
class Terms(Container):
@staticmethod
def from_desc(term_descs, regions, integrals=None):
"""
Create terms, assign each term its region.
"""
from sfepy.terms import term_table
terms = Terms()
for td in term_descs:
try:
constructor = term_table[td.name]
except:
msg = "term '%s' is not in %s" % (td.name,
sorted( | term_table.keys() | sfepy.terms.term_table.keys |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = | Integral('aux', order=order) | sfepy.discrete.Integral |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = | GeometryElement(geometry) | sfepy.discrete.fem.geometry_element.GeometryElement |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = | FEDomain('domain', mesh) | sfepy.discrete.fem.FEDomain |
"""
Functions to visualize quadrature points in reference elements.
"""
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import output
from sfepy.postprocess.plot_dofs import _get_axes, _to2d
from sfepy.postprocess.plot_facets import plot_geometry
def _get_qp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
aux = Integral('aux', order=order)
coors, weights = aux.get_qp(geometry)
true_order = aux.qps[geometry].order
output('geometry:', geometry, 'order:', order, 'num. points:',
coors.shape[0], 'true_order:', true_order)
output('min. weight:', weights.min())
output('max. weight:', weights.max())
return GeometryElement(geometry), coors, weights
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = | Integral('aux', order=order) | sfepy.discrete.Integral |