prompt
stringlengths 174
59.5k
| completion
stringlengths 7
228
| api
stringlengths 12
64
|
---|---|---|
#!/usr/bin/env python
r"""
This example shows the use of the `dw_tl_he_genyeoh` hyperelastic term, whose
contribution to the deformation energy density per unit reference volume is
given by
.. math::
W = K \, \left( \overline I_1 - 3 \right)^{p}
where :math:`\overline I_1` is the first main invariant of the deviatoric part
of the right Cauchy-Green deformation tensor :math:`\ull{C}` and `K` and `p`
are its parameters.
This term may be used to implement the generalized Yeoh hyperelastic material
model [1] by adding three such terms:
.. math::
W =
K_1 \, \left( \overline I_1 - 3 \right)^{m}
+K_2 \, \left( \overline I_1 - 3 \right)^{p}
+K_3 \, \left( \overline I_1 - 3 \right)^{q}
where the coefficients :math:`K_1, K_2, K_3` and exponents :math:`m, p, q` are
material parameters. Only a single term is used in this example for the sake of
simplicity.
Components of the second Piola-Kirchhoff stress are in the case of an
incompressible material
.. math::
S_{ij} = 2 \, \pdiff{W}{C_{ij}} - p \, F^{-1}_{ik} \, F^{-T}_{kj} \;,
where :math:`p` is the hydrostatic pressure.
The large deformation is described using the total Lagrangian formulation in
this example. The incompressibility is treated by mixed displacement-pressure
formulation. The weak formulation is:
Find the displacement field :math:`\ul{u}` and pressure field :math:`p`
such that:
.. math::
\intl{\Omega\suz}{} \ull{S}\eff(\ul{u}, p) : \ull{E}(\ul{v})
\difd{V} = 0
\;, \quad \forall \ul{v} \;,
\intl{\Omega\suz}{} q\, (J(\ul{u})-1) \difd{V} = 0
\;, \quad \forall q \;.
The following formula holds for the axial true (Cauchy) stress in the case of
uniaxial stress:
.. math::
\sigma(\lambda) =
\frac{2}{3} \, m \, K_1 \,
\left( \lambda^2 + \frac{2}{\lambda} - 3 \right)^{m-1} \,
\left( \lambda - \frac{1}{\lambda^2} \right) \;,
where :math:`\lambda = l/l_0` is the prescribed stretch (:math:`l_0` and
:math:`l` being the original and deformed specimen length respectively).
The boundary conditions are set so that a state of uniaxial stress is achieved,
i.e. appropriate components of displacement are fixed on the "Left", "Bottom",
and "Near" faces and a monotonously increasing displacement is prescribed on
the "Right" face. This prescribed displacement is then used to calculate
:math:`\lambda` and to convert the second Piola-Kirchhoff stress to the true
(Cauchy) stress.
Note on material parameters
---------------------------
The three-term generalized Yeoh model is meant to be used for modelling of
filled rubbers. The following choice of parameters is suggested [1] based on
experimental data and stability considerations:
:math:`K_1 > 0`,
:math:`K_2 < 0`,
:math:`K_3 > 0`,
:math:`0.7 < m < 1`,
:math:`m < p < q`.
Usage Examples
--------------
Default options::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py
To show a comparison of stress against the analytic formula::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py -p
Using different mesh fineness::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \
--shape "5, 5, 5"
Different dimensions of the computational domain::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \
--dims "2, 1, 3"
Different length of time interval and/or number of time steps::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \
-t 0,15,21
Use higher approximation order (the ``-t`` option to decrease the time step is
required for convergence here)::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \
--order 2 -t 0,2,21
Change material parameters::
$ python examples/large_deformation/gen_yeoh_tl_up_interactive.py -m 2,1
View the results using ``resview.py``
-------------------------------------
Show pressure on deformed mesh (use PgDn/PgUp to jump forward/back)::
$ python resview.py --fields=p:f1:wu:p1 domain.??.vtk
Show the axial component of stress (second Piola-Kirchhoff)::
$ python resview.py --fields=stress:c0 domain.??.vtk
[1] <NAME>, <NAME>, <NAME>, <NAME>.
Busfield. Aconstitutive Model For Both Lowand High Strain Nonlinearities In
Highly Filled Elastomers And Implementation With User-Defined Material
Subroutines In Abaqus. Rubber Chemistry And Technology, Vol. 92, No. 4, Pp.
653-686 (2019)
"""
from __future__ import print_function, absolute_import
import argparse
import sys
SFEPY_DIR = '.'
sys.path.append(SFEPY_DIR)
import matplotlib.pyplot as plt
import numpy as np
from sfepy.base.base import IndexedStruct, Struct
from sfepy.discrete import (
FieldVariable, Material, Integral, Function, Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.discrete.fem import FEDomain, Field
from sfepy.homogenization.utils import define_box_regions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.terms import Term
DIMENSION = 3
def get_displacement(ts, coors, bc=None, problem=None):
"""
Define the time-dependent displacement.
"""
out = 1. * ts.time * coors[:, 0]
return out
def _get_analytic_stress(stretches, coef, exp):
out = np.array([
2 * coef * exp * (stretch**2 + 2 / stretch - 3)**(exp - 1)
* (stretch - stretch**-2)
if (stretch**2 + 2 / stretch > 3) else 0.
for stretch in stretches])
return out
def plot_graphs(
material_parameters, global_stress, global_displacement,
undeformed_length):
"""
Plot a comparison of the nominal stress computed by the FEM and using the
analytic formula.
Parameters
----------
material_parameters : list or tuple of float
The K_1 coefficient and exponent m.
global_displacement
The total displacement for each time step, from the FEM.
global_stress
The true (Cauchy) stress for each time step, from the FEM.
undeformed_length : float
The length of the undeformed specimen.
"""
coef, exp = material_parameters
stretch = 1 + np.array(global_displacement) / undeformed_length
# axial stress values
stress_fem_2pk = np.array([sig for sig in global_stress])
stress_fem = stress_fem_2pk * stretch
stress_analytic = _get_analytic_stress(stretch, coef, exp)
fig, (ax_stress, ax_difference) = plt.subplots(nrows=2, sharex=True)
ax_stress.plot(stretch, stress_fem, '.-', label='FEM')
ax_stress.plot(stretch, stress_analytic, '--', label='analytic')
ax_difference.plot(stretch, stress_fem - stress_analytic, '.-')
ax_stress.legend(loc='best').set_draggable(True)
ax_stress.set_ylabel(r'nominal stress $\mathrm{[Pa]}$')
ax_stress.grid()
ax_difference.set_ylabel(r'difference in nominal stress $\mathrm{[Pa]}$')
ax_difference.set_xlabel(r'stretch $\mathrm{[-]}$')
ax_difference.grid()
plt.tight_layout()
plt.show()
def stress_strain(
out, problem, _state, order=1, global_stress=None,
global_displacement=None, **_):
"""
Compute the stress and the strain and add them to the output.
Parameters
----------
out : dict
Holds the results of the finite element computation.
problem : sfepy.discrete.Problem
order : int
The approximation order of the displacement field.
global_displacement
Total displacement for each time step, current value will be appended.
global_stress
The true (Cauchy) stress for each time step, current value will be
appended.
Returns
-------
out : dict
"""
strain = problem.evaluate(
'dw_tl_he_genyeoh.%d.Omega(m1.par, v, u)' % (2*order),
mode='el_avg', term_mode='strain', copy_materials=False)
out['green_strain'] = Struct(
name='output_data', mode='cell', data=strain, dofs=None)
stress_1 = problem.evaluate(
'dw_tl_he_genyeoh.%d.Omega(m1.par, v, u)' % (2*order),
mode='el_avg', term_mode='stress', copy_materials=False)
stress_p = problem.evaluate(
'dw_tl_bulk_pressure.%d.Omega(v, u, p)' % (2*order),
mode='el_avg', term_mode='stress', copy_materials=False)
stress = stress_1 + stress_p
out['stress'] = Struct(
name='output_data', mode='cell', data=stress, dofs=None)
global_stress.append(stress[0, 0, 0, 0])
global_displacement.append(get_displacement(
problem.ts, np.array([[1., 0, 0]]))[0])
return out
def main(cli_args):
dims = parse_argument_list(cli_args.dims, float)
shape = parse_argument_list(cli_args.shape, int)
centre = parse_argument_list(cli_args.centre, float)
material_parameters = parse_argument_list(cli_args.material_parameters,
float)
order = cli_args.order
ts_vals = cli_args.ts.split(',')
ts = {
't0' : float(ts_vals[0]), 't1' : float(ts_vals[1]),
'n_step' : int(ts_vals[2])}
do_plot = cli_args.plot
### Mesh and regions ###
mesh = gen_block_mesh(
dims, shape, centre, name='block', verbose=False)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
lbn, rtf = domain.get_mesh_bounding_box()
box_regions = define_box_regions(3, lbn, rtf)
regions = dict([
[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
for r in box_regions])
### Fields ###
scalar_field = Field.from_args(
'fu', np.float64, 'scalar', omega, approx_order=order-1)
vector_field = Field.from_args(
'fv', np.float64, 'vector', omega, approx_order=order)
u = FieldVariable('u', 'unknown', vector_field, history=1)
v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
p = FieldVariable('p', 'unknown', scalar_field, history=1)
q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')
### Material ###
coefficient, exponent = material_parameters
m_1 = Material(
'm1', par=[coefficient, exponent],
)
### Boundary conditions ###
x_sym = EssentialBC('x_sym', regions['Left'], {'u.0' : 0.0})
y_sym = EssentialBC('y_sym', regions['Near'], {'u.1' : 0.0})
z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2' : 0.0})
disp_fun = Function('disp_fun', get_displacement)
displacement = EssentialBC(
'displacement', regions['Right'], {'u.0' : disp_fun})
ebcs = Conditions([x_sym, y_sym, z_sym, displacement])
### Terms and equations ###
integral = Integral('i', order=2*order+1)
term_1 = Term.new(
'dw_tl_he_genyeoh(m1.par, v, u)',
integral, omega, m1=m_1, v=v, u=u)
term_pressure = Term.new(
'dw_tl_bulk_pressure(v, u, p)',
integral, omega, v=v, u=u, p=p)
term_volume_change = Term.new(
'dw_tl_volume(q, u)',
integral, omega, q=q, u=u, term_mode='volume')
term_volume = Term.new(
'dw_volume_integrate(q)',
integral, omega, q=q)
eq_balance = Equation('balance', term_1 + term_pressure)
eq_volume = Equation('volume', term_volume_change - term_volume)
equations = Equations([eq_balance, eq_volume])
### Solvers ###
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton(
{'i_max' : 20},
lin_solver=ls, status=nls_status
)
### Problem ###
pb = Problem('hyper', equations=equations)
pb.set_bcs(ebcs=ebcs)
pb.set_ics(ics= | Conditions([]) | sfepy.discrete.conditions.Conditions |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = | Mesh.from_file(filename_in) | sfepy.discrete.fem.Mesh.from_file |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
if center is not None:
cc = 0.5 * mesh.get_bounding_box().sum(0)
shift = center - cc
tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]]
mesh.transform_coors(tr)
if options.refine > 0:
domain = FEDomain(mesh.name, mesh)
output('initial mesh: %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
mesh = domain.mesh
io = MeshIO.for_format(filename_out, format=options.format,
writable=True)
cell_types = ', '.join(supported_cell_types[io.format])
| output('writing [%s] %s...' % (cell_types, filename_out)) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
if center is not None:
cc = 0.5 * mesh.get_bounding_box().sum(0)
shift = center - cc
tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]]
mesh.transform_coors(tr)
if options.refine > 0:
domain = FEDomain(mesh.name, mesh)
output('initial mesh: %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
mesh = domain.mesh
io = MeshIO.for_format(filename_out, format=options.format,
writable=True)
cell_types = ', '.join(supported_cell_types[io.format])
output('writing [%s] %s...' % (cell_types, filename_out))
mesh.write(filename_out, io=io)
| output('...done') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
| output('Supported readable mesh formats:') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
| output('--------------------------------') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
| output_mesh_formats('r') | sfepy.discrete.fem.meshio.output_mesh_formats |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
| output('') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
| output('Supported writable mesh formats:') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
| output('--------------------------------') | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
| output_mesh_formats('w') | sfepy.discrete.fem.meshio.output_mesh_formats |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
if center is not None:
cc = 0.5 * mesh.get_bounding_box().sum(0)
shift = center - cc
tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]]
mesh.transform_coors(tr)
if options.refine > 0:
domain = | FEDomain(mesh.name, mesh) | sfepy.discrete.fem.FEDomain |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = | nm.array(option, dtype=nm.float64, ndmin=1) | sfepy.base.base.nm.array |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
if center is not None:
cc = 0.5 * mesh.get_bounding_box().sum(0)
shift = center - cc
tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]]
mesh.transform_coors(tr)
if options.refine > 0:
domain = FEDomain(mesh.name, mesh)
output('initial mesh: %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
for ii in range(options.refine):
| output('refine %d...' % ii) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
| output('bad %s! (%s)' % (name, option)) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = | nm.eye(mesh.dim, dtype=nm.float64) | sfepy.base.base.nm.eye |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = | nm.diag(scale) | sfepy.base.base.nm.diag |
#!/usr/bin/env python
"""
Convert a mesh file from one SfePy-supported format to another.
Examples::
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0
"""
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO,
supported_cell_types)
usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip()
help = {
'scale' : 'scale factor (float or comma-separated list for each axis)'
' [default: %default]',
'center' : 'center of the output mesh (0 for origin or'
' comma-separated list for each axis) applied after scaling'
' [default: %default]',
'refine' : 'uniform refinement level [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported readable/writable output mesh formats',
}
def _parse_val_or_vec(option, name, parser):
if option is not None:
try:
try:
option = float(option)
except ValueError:
option = [float(ii) for ii in option.split(',')]
option = nm.array(option, dtype=nm.float64, ndmin=1)
except:
output('bad %s! (%s)' % (name, option))
parser.print_help()
sys.exit(1)
return option
def main():
parser = OptionParser(usage=usage)
parser.add_option('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=help['scale'])
parser.add_option('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=help['center'])
parser.add_option('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=help['refine'])
parser.add_option('-f', '--format', metavar='format',
action='store', type='string', dest='format',
default=None, help=help['format'])
parser.add_option('-l', '--list', action='store_true',
dest='list', help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
if center is not None:
cc = 0.5 * mesh.get_bounding_box().sum(0)
shift = center - cc
tr = nm.c_[ | nm.eye(mesh.dim, dtype=nm.float64) | sfepy.base.base.nm.eye |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = | Struct(name=name) | sfepy.base.base.Struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return | dict_to_struct(adict, flag=(1,)) | sfepy.base.base.dict_to_struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return | dict_to_struct(adict, flag=(1,), constructor=IndexedStruct) | sfepy.base.base.dict_to_struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return | dict_to_struct(adict, flag=(0,1)) | sfepy.base.base.dict_to_struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return | dict_to_struct(adict, flag=(1,0)) | sfepy.base.base.dict_to_struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = | create_bnf(allow_tuple=allow_tuple, free_word=free_word) | sfepy.base.parse_conf.create_bnf |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return | copy(_required) | sfepy.base.base.copy |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), | copy(_other) | sfepy.base.base.copy |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = | import_file(filename, package_name=False) | sfepy.base.base.import_file |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = import_file(filename, package_name=False)
if "define" in funmod.__dict__:
if define_args is None:
define_dict = funmod.__dict__["define"]()
else:
if isinstance(define_args, str):
define_args = dict_from_string(define_args)
if isinstance(define_args, dict):
define_dict = funmod.__dict__["define"](**define_args)
else:
define_dict = funmod.__dict__["define"](*define_args)
else:
define_dict = funmod.__dict__
obj = ProblemConf(define_dict, funmod=funmod, filename=filename,
required=required, other=other, verbose=verbose,
override=override, setup=setup)
return obj
@staticmethod
def from_file_and_options(filename, options, required=None, other=None,
verbose=True, define_args=None, setup=True):
"""
Utility function, a wrapper around ProblemConf.from_file() with
possible override taken from `options`.
"""
override = dict_from_options(options)
obj = ProblemConf.from_file(filename, required=required, other=other,
verbose=verbose, define_args=define_args,
override=override, setup=setup)
return obj
@staticmethod
def from_module(module, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(module.__dict__, module, module.__name__,
required, other, verbose, override, setup=setup)
return obj
@staticmethod
def from_dict(dict_, funmod, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(dict_, funmod, None, required, other, verbose,
override, setup=setup)
return obj
def __init__(self, define_dict, funmod=None, filename=None,
required=None, other=None, verbose=True, override=None,
setup=True):
if override:
if isinstance(override, Struct):
override = override.__dict__
define_dict = update_dict_recursively(define_dict, override, True)
self.__dict__.update(define_dict)
self.verbose = verbose
if setup:
self.setup(funmod=funmod, filename=filename,
required=required, other=other)
def setup(self, define_dict=None, funmod=None, filename=None,
required=None, other=None):
define_dict = | get_default(define_dict, self.__dict__) | sfepy.base.base.get_default |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = import_file(filename, package_name=False)
if "define" in funmod.__dict__:
if define_args is None:
define_dict = funmod.__dict__["define"]()
else:
if isinstance(define_args, str):
define_args = dict_from_string(define_args)
if isinstance(define_args, dict):
define_dict = funmod.__dict__["define"](**define_args)
else:
define_dict = funmod.__dict__["define"](*define_args)
else:
define_dict = funmod.__dict__
obj = ProblemConf(define_dict, funmod=funmod, filename=filename,
required=required, other=other, verbose=verbose,
override=override, setup=setup)
return obj
@staticmethod
def from_file_and_options(filename, options, required=None, other=None,
verbose=True, define_args=None, setup=True):
"""
Utility function, a wrapper around ProblemConf.from_file() with
possible override taken from `options`.
"""
override = dict_from_options(options)
obj = ProblemConf.from_file(filename, required=required, other=other,
verbose=verbose, define_args=define_args,
override=override, setup=setup)
return obj
@staticmethod
def from_module(module, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(module.__dict__, module, module.__name__,
required, other, verbose, override, setup=setup)
return obj
@staticmethod
def from_dict(dict_, funmod, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(dict_, funmod, None, required, other, verbose,
override, setup=setup)
return obj
def __init__(self, define_dict, funmod=None, filename=None,
required=None, other=None, verbose=True, override=None,
setup=True):
if override:
if isinstance(override, Struct):
override = override.__dict__
define_dict = update_dict_recursively(define_dict, override, True)
self.__dict__.update(define_dict)
self.verbose = verbose
if setup:
self.setup(funmod=funmod, filename=filename,
required=required, other=other)
def setup(self, define_dict=None, funmod=None, filename=None,
required=None, other=None):
define_dict = get_default(define_dict, self.__dict__)
self._filename = filename
self.validate(required=required, other=other)
self.transform_input_trivial()
self._raw = {}
for key, val in six.iteritems(define_dict):
if isinstance(val, dict):
self._raw[key] = copy(val)
self.transform_input()
self.funmod = funmod
def _validate_helper(self, items, but_nots):
keys = list(self.__dict__.keys())
left_over = keys[:]
if but_nots is not None:
for item in but_nots:
match = re.compile('^' + item + '$').match
for key in keys:
if match(key):
left_over.remove(key)
missing = []
if items is not None:
for item in items:
found = False
match = re.compile('^' + item + '$').match
for key in keys:
if match(key):
found = True
left_over.remove(key)
if not found:
missing.append(item)
return left_over, missing
def validate(self, required=None, other=None):
required_left_over, required_missing \
= self._validate_helper(required, other)
other_left_over, other_missing \
= self._validate_helper(other, required)
| assert_(required_left_over == other_left_over) | sfepy.base.base.assert_ |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = | Struct(name=key, select=conf) | sfepy.base.base.Struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = | Struct(name=key, order=conf) | sfepy.base.base.Struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = | Struct(name=key, function=conf) | sfepy.base.base.Struct |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = import_file(filename, package_name=False)
if "define" in funmod.__dict__:
if define_args is None:
define_dict = funmod.__dict__["define"]()
else:
if isinstance(define_args, str):
define_args = dict_from_string(define_args)
if isinstance(define_args, dict):
define_dict = funmod.__dict__["define"](**define_args)
else:
define_dict = funmod.__dict__["define"](*define_args)
else:
define_dict = funmod.__dict__
obj = ProblemConf(define_dict, funmod=funmod, filename=filename,
required=required, other=other, verbose=verbose,
override=override, setup=setup)
return obj
@staticmethod
def from_file_and_options(filename, options, required=None, other=None,
verbose=True, define_args=None, setup=True):
"""
Utility function, a wrapper around ProblemConf.from_file() with
possible override taken from `options`.
"""
override = dict_from_options(options)
obj = ProblemConf.from_file(filename, required=required, other=other,
verbose=verbose, define_args=define_args,
override=override, setup=setup)
return obj
@staticmethod
def from_module(module, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(module.__dict__, module, module.__name__,
required, other, verbose, override, setup=setup)
return obj
@staticmethod
def from_dict(dict_, funmod, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(dict_, funmod, None, required, other, verbose,
override, setup=setup)
return obj
def __init__(self, define_dict, funmod=None, filename=None,
required=None, other=None, verbose=True, override=None,
setup=True):
if override:
if isinstance(override, Struct):
override = override.__dict__
define_dict = | update_dict_recursively(define_dict, override, True) | sfepy.base.base.update_dict_recursively |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = import_file(filename, package_name=False)
if "define" in funmod.__dict__:
if define_args is None:
define_dict = funmod.__dict__["define"]()
else:
if isinstance(define_args, str):
define_args = dict_from_string(define_args)
if isinstance(define_args, dict):
define_dict = funmod.__dict__["define"](**define_args)
else:
define_dict = funmod.__dict__["define"](*define_args)
else:
define_dict = funmod.__dict__
obj = ProblemConf(define_dict, funmod=funmod, filename=filename,
required=required, other=other, verbose=verbose,
override=override, setup=setup)
return obj
@staticmethod
def from_file_and_options(filename, options, required=None, other=None,
verbose=True, define_args=None, setup=True):
"""
Utility function, a wrapper around ProblemConf.from_file() with
possible override taken from `options`.
"""
override = dict_from_options(options)
obj = ProblemConf.from_file(filename, required=required, other=other,
verbose=verbose, define_args=define_args,
override=override, setup=setup)
return obj
@staticmethod
def from_module(module, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(module.__dict__, module, module.__name__,
required, other, verbose, override, setup=setup)
return obj
@staticmethod
def from_dict(dict_, funmod, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(dict_, funmod, None, required, other, verbose,
override, setup=setup)
return obj
def __init__(self, define_dict, funmod=None, filename=None,
required=None, other=None, verbose=True, override=None,
setup=True):
if override:
if isinstance(override, Struct):
override = override.__dict__
define_dict = update_dict_recursively(define_dict, override, True)
self.__dict__.update(define_dict)
self.verbose = verbose
if setup:
self.setup(funmod=funmod, filename=filename,
required=required, other=other)
def setup(self, define_dict=None, funmod=None, filename=None,
required=None, other=None):
define_dict = get_default(define_dict, self.__dict__)
self._filename = filename
self.validate(required=required, other=other)
self.transform_input_trivial()
self._raw = {}
for key, val in six.iteritems(define_dict):
if isinstance(val, dict):
self._raw[key] = copy(val)
self.transform_input()
self.funmod = funmod
def _validate_helper(self, items, but_nots):
keys = list(self.__dict__.keys())
left_over = keys[:]
if but_nots is not None:
for item in but_nots:
match = re.compile('^' + item + '$').match
for key in keys:
if match(key):
left_over.remove(key)
missing = []
if items is not None:
for item in items:
found = False
match = re.compile('^' + item + '$').match
for key in keys:
if match(key):
found = True
left_over.remove(key)
if not found:
missing.append(item)
return left_over, missing
def validate(self, required=None, other=None):
required_left_over, required_missing \
= self._validate_helper(required, other)
other_left_over, other_missing \
= self._validate_helper(other, required)
assert_(required_left_over == other_left_over)
if other_left_over and self.verbose:
| output('left over:', other_left_over) | sfepy.base.base.output |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = Struct(name=key, order=conf)
elif len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['order', 'vals', 'weights'])
d2['integral_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['integral_'+c2.name] = c2
return d2
def transform_fields(adict):
dtypes = {'real' : nm.float64, 'complex' : nm.complex128}
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['dtype', 'shape', 'region', 'approx_order',
'space', 'poly_space_base'])
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dtype', nm.float64)
if c2.dtype in dtypes:
c2.dtype = dtypes[c2.dtype]
d2['field_'+c2.name] = c2
return d2
def transform_materials(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, function=conf)
d2['material_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf,
['values', 'function', 'kind'])
if len(conf) == 4:
c2.flags = conf[3]
d2['material_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['material_'+conf['name']] = c2
return d2
def transform_solvers(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind','params'])
for param, val in six.iteritems(c2.params):
setattr(c2, param, val)
delattr(c2, 'params')
d2['solvers_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['solvers_'+c2.name] = c2
return d2
def transform_functions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['function'])
d2['function_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['function_'+c2.name] = c2
return d2
def transform_to_struct_1(adict):
return dict_to_struct(adict, flag=(1,))
def transform_to_i_struct_1(adict):
return dict_to_struct(adict, flag=(1,), constructor=IndexedStruct)
def transform_to_struct_01(adict):
return dict_to_struct(adict, flag=(0,1))
def transform_to_struct_10(adict):
return dict_to_struct(adict, flag=(1,0))
transforms = {
'options' : transform_to_i_struct_1,
'solvers' : transform_solvers,
'integrals' : transform_integrals,
'regions' : transform_regions,
'fields' : transform_fields,
'variables' : transform_variables,
'ebcs' : transform_ebcs,
'epbcs' : transform_epbcs,
'dgebcs' : transform_dgebcs,
'dgepbcs' : transform_dgepbcs,
'nbcs' : transform_to_struct_01,
'lcbcs' : transform_lcbcs,
'ics' : transform_ics,
'materials' : transform_materials,
'functions' : transform_functions,
}
def dict_from_string(string, allow_tuple=False, free_word=False):
"""
Parse `string` and return a dictionary that can be used to
construct/override a ProblemConf instance.
"""
if string is None:
return {}
if isinstance(string, dict):
return string
parser = create_bnf(allow_tuple=allow_tuple, free_word=free_word)
out = {}
for r in parser.parseString(string, parseAll=True):
out.update(r)
return out
def dict_from_options(options):
"""
Return a dictionary that can be used to construct/override a ProblemConf
instance based on `options`.
See ``--conf`` and ``--options`` options of the ``simple.py`` script.
"""
override = dict_from_string(options.conf)
if options.app_options:
if not 'options' in override:
override['options'] = {}
override_options = dict_from_string(options.app_options)
override['options'].update(override_options)
return override
##
# 27.10.2005, c
class ProblemConf(Struct):
"""
Problem configuration, corresponding to an input (problem description
file). It validates the input using lists of required and other keywords
that have to/can appear in the input. Default keyword lists can be obtained
by sfepy.base.conf.get_standard_keywords().
ProblemConf instance is used to construct a Problem instance via
Problem.from_conf(conf).
"""
@staticmethod
def from_file(filename, required=None, other=None, verbose=True,
define_args=None, override=None, setup=True):
"""
Loads the problem definition from a file.
The filename can either contain plain definitions, or it can contain
the define() function, in which case it will be called to return the
input definitions.
The job of the define() function is to return a dictionary of
parameters. How the dictionary is constructed is not our business, but
the usual way is to simply have a function define() along these lines
in the input file::
def define():
options = {
'save_eig_vectors' : None,
'eigen_solver' : 'eigen1',
}
region_2 = {
'name' : 'Surface',
'select' : 'nodes of surface',
}
return locals()
Optionally, the define() function can accept additional arguments
that should be defined using the `define_args` tuple or dictionary.
"""
funmod = import_file(filename, package_name=False)
if "define" in funmod.__dict__:
if define_args is None:
define_dict = funmod.__dict__["define"]()
else:
if isinstance(define_args, str):
define_args = dict_from_string(define_args)
if isinstance(define_args, dict):
define_dict = funmod.__dict__["define"](**define_args)
else:
define_dict = funmod.__dict__["define"](*define_args)
else:
define_dict = funmod.__dict__
obj = ProblemConf(define_dict, funmod=funmod, filename=filename,
required=required, other=other, verbose=verbose,
override=override, setup=setup)
return obj
@staticmethod
def from_file_and_options(filename, options, required=None, other=None,
verbose=True, define_args=None, setup=True):
"""
Utility function, a wrapper around ProblemConf.from_file() with
possible override taken from `options`.
"""
override = dict_from_options(options)
obj = ProblemConf.from_file(filename, required=required, other=other,
verbose=verbose, define_args=define_args,
override=override, setup=setup)
return obj
@staticmethod
def from_module(module, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(module.__dict__, module, module.__name__,
required, other, verbose, override, setup=setup)
return obj
@staticmethod
def from_dict(dict_, funmod, required=None, other=None, verbose=True,
override=None, setup=True):
obj = ProblemConf(dict_, funmod, None, required, other, verbose,
override, setup=setup)
return obj
def __init__(self, define_dict, funmod=None, filename=None,
required=None, other=None, verbose=True, override=None,
setup=True):
if override:
if isinstance(override, Struct):
override = override.__dict__
define_dict = update_dict_recursively(define_dict, override, True)
self.__dict__.update(define_dict)
self.verbose = verbose
if setup:
self.setup(funmod=funmod, filename=filename,
required=required, other=other)
def setup(self, define_dict=None, funmod=None, filename=None,
required=None, other=None):
define_dict = get_default(define_dict, self.__dict__)
self._filename = filename
self.validate(required=required, other=other)
self.transform_input_trivial()
self._raw = {}
for key, val in six.iteritems(define_dict):
if isinstance(val, dict):
self._raw[key] = | copy(val) | sfepy.base.base.copy |
"""
Problem description file handling.
Notes
-----
Short syntax: key is suffixed with '__<number>' to prevent collisions with long
syntax keys -> both cases can be used in a single input.
"""
from __future__ import absolute_import
import re
import numpy as nm
from sfepy.base.base import (Struct, IndexedStruct, dict_to_struct,
output, copy, update_dict_recursively,
import_file, assert_, get_default, basestr)
from sfepy.base.parse_conf import create_bnf
import six
_required = ['filename_mesh|filename_domain', 'field_[0-9]+|fields',
# TODO originaly EBC were required to be specified but in some examples
# (especially 1D) only EPBCs specified is valid
'ebc_[0-9]+|ebcs|dgebc_[0-9]+|dgebcs|dgepbc_[0-9]+|dgepbcs',
'equations',
'region_[0-9]+|regions', 'variable_[0-9]+|variables',
'material_[0-9]+|materials',
'solver_[0-9]+|solvers']
_other = ['epbc_[0-9]+|epbcs',
'lcbc_[0-9]+|lcbcs', 'nbc_[0-9]+|nbcs',
'ic_[0-9]+|ics', 'function_[0-9]+|functions', 'options',
'integral_[0-9]+|integrals']
def get_standard_keywords():
return copy(_required), copy(_other)
def tuple_to_conf(name, vals, order):
"""
Convert a configuration tuple `vals` into a Struct named `name`, with
attribute names given in and ordered by `order`.
Items in `order` at indices outside the length of `vals` are ignored.
"""
conf = Struct(name=name)
for ii, key in enumerate(order[:len(vals)]):
setattr(conf, key, vals[ii])
return conf
def transform_variables(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['kind', 'field'])
if len(conf) >= 3:
kind = c2.kind.split()[0]
if kind == 'unknown':
c2.order = conf[2]
elif kind == 'test':
c2.dual = conf[2]
elif kind == 'parameter':
if isinstance(conf[2], basestr) or (conf[2] is None):
c2.like = conf[2]
else:
c2.like = None
c2.special = conf[2]
if len(conf) == 4:
c2.history = conf[3]
d2['variable_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['variable_'+c2.name] = c2
return d2
def transform_conditions(adict, prefix):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 2:
c2 = tuple_to_conf(key, conf, ['region', 'dofs'])
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgebcs(adict):
return transform_conditions(adict, "dgebc")
def transform_ebcs(adict):
return transform_conditions(adict, 'ebc')
def transform_ics(adict):
return transform_conditions(adict, 'ic')
def transform_lcbcs(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) >= 4:
if isinstance(conf[1], dict):
c2 = tuple_to_conf(key, conf, ['region', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[4:]
else:
c2 = tuple_to_conf(key, conf, ['region', 'times', 'dofs',
'dof_map_fun', 'kind'])
c2.arguments = conf[5:]
else:
msg = 'LCBC syntax has to be: region[, times], dofs,' \
' dof_map_fun, kind[, other arguments]'
raise SyntaxError(msg)
d2['lcbc_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
c2.set_default('dof_map_fun', None)
c2.set_default('arguments', ())
d2['lcbc_%s' % (c2.name)] = c2
return d2
def transform_epbcs(adict, prefix="epbc"):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, tuple):
if len(conf) == 3:
c2 = tuple_to_conf(key, conf, ['region', 'dofs', 'match'])
else:
c2 = tuple_to_conf(key, conf,
['region', 'times', 'dofs', 'match'])
d2['%s_%s__%d' % (prefix, c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['%s_%s' % (prefix, c2.name)] = c2
return d2
def transform_dgepbcs(adict):
return transform_epbcs(adict, "dgepbc")
def transform_regions(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, basestr):
c2 = Struct(name=key, select=conf)
d2['region_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
c2 = tuple_to_conf(key, conf, ['select', 'kind'])
if len(conf) == 3:
c2.parent = conf[2]
if len(conf) == 4:
c2.parent = conf[2]
c2.extra_options = conf[3]
d2['region_%s__%d' % (c2.name, ii)] = c2
else:
c2 = transform_to_struct_1(conf)
d2['region_'+c2.name] = c2
return d2
def transform_integrals(adict):
d2 = {}
for ii, (key, conf) in enumerate(six.iteritems(adict)):
if isinstance(conf, int):
c2 = Struct(name=key, order=conf)
d2['integral_%s__%d' % (c2.name, ii)] = c2
elif isinstance(conf, tuple):
if len(conf) == 2: # Old tuple version with now-ignored 'kind'.
conf = conf[1]
c2 = | Struct(name=key, order=conf) | sfepy.base.base.Struct |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
| output(mtx_a, '.. analytical') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
| output(mtx_d, '.. difference') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
| output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r)) | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
| NonlinearSolver.__init__(self, conf, **kwargs) | sfepy.solvers.solvers.NonlinearSolver.__init__ |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = | get_logging_conf(conf) | sfepy.base.log.get_logging_conf |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = | Struct(name='log_conf', **log) | sfepy.base.base.Struct |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = | get_default(conf, self.conf) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = | get_default(fun, self.fun) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = | get_default(fun_grad, self.fun_grad) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = | get_default(lin_solver, self.lin_solver) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = | get_default(iter_hook, self.iter_hook) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = | get_default(status, self.status) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = | get_default(ls_eps_a, 1.0) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = | get_default(ls_eps_r, 1.0) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
| NonlinearSolver.__init__(self, conf, **kwargs) | sfepy.solvers.solvers.NonlinearSolver.__init__ |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = | get_default(fun, self.fun) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = | get_default(status, self.status) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = | get_default(fun, self.fun) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = | get_default(fun_grad, self.fun_grad) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = | get_default(lin_solver, self.lin_solver) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = | get_default(iter_hook, self.iter_hook) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = | get_default(status, self.status) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
pmtx = | get_default(pmtx, self.pmtx) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
pmtx = get_default(pmtx, self.pmtx)
prhs = | get_default(prhs, self.prhs) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
output('using broyden3 instead')
solver = so.broyden3
self.solver = solver
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
if conf is not None:
self.set_method(conf)
else:
conf = self.conf
fun = get_default(fun, self.fun)
status = get_default(status, self.status)
tt = time.clock()
kwargs = {'iter' : conf.i_max,
'alpha' : conf.alpha,
'verbose' : conf.verbose}
if conf.method == 'broyden_generalized':
kwargs.update({'M' : conf.M})
elif conf.method in ['anderson', 'anderson2']:
kwargs.update({'M' : conf.M, 'w0' : conf.w0})
if conf.method in ['anderson', 'anderson2',
'broyden', 'broyden2' , 'newton_krylov']:
kwargs.update({'f_tol' : conf.f_tol })
vec_x = self.solver(fun, vec_x0, **kwargs)
vec_x = nm.asarray(vec_x)
if status is not None:
status['time_stats'] = time.clock() - tt
return vec_x
class PETScNonlinearSolver(NonlinearSolver):
"""
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see `comm`
argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global)
PETSc solution vector instead of a (local) numpy array, when given a PETSc
initial guess vector.
For parallel use, the `fun` and `fun_grad` callbacks should be provided by
:class:`PETScParallelEvaluator
<sfepy.parallel.evaluate.PETScParallelEvaluator>`.
"""
name = 'nls.petsc'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'newtonls', False,
'The SNES type.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('if_max', 'int', 100, False,
'The maximum number of function evaluations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_s', 'float', 0.0, False,
"""The convergence tolerance in terms of the norm of the change in
the solution between steps,
i.e. $||delta x|| < \epsilon_s ||x||$"""),
]
def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs):
if comm is None:
try:
import petsc4py
petsc4py.init([])
except ImportError:
msg = 'cannot import petsc4py!'
raise ImportError(msg)
from petsc4py import PETSc as petsc
NonlinearSolver.__init__(self, conf, petsc=petsc,
pmtx=pmtx, prhs=prhs, comm=comm, **kwargs)
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None,
pmtx=None, prhs=None, comm=None):
conf = self.conf
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
pmtx = get_default(pmtx, self.pmtx)
prhs = get_default(prhs, self.prhs)
comm = | get_default(comm, self.comm) | sfepy.base.base.get_default |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
| output('solving linear system...') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
| output('...done') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
| output('%10s: %7.2f [s]' % kv) | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
| output('warning: linear system solution precision is lower') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
| output('scipy solver %s does not exist!' % conf.method) | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
output('linesearch failed, continuing anyway')
break
ls *= red;
vec_dx = ls * vec_dx0;
vec_x = vec_x_last.copy() - vec_dx
# End residual loop.
if self.log is not None:
self.log.plot_vlines([1], color='g', linewidth=0.5)
err_last = err;
vec_x_last = vec_x.copy()
condition = conv_test(conf, it, err, err0)
if condition >= 0:
break
if (not ok) and conf.give_up_warp:
condition = 2
break
tt = time.clock()
if not conf.is_linear:
mtx_a = fun_grad(vec_x)
else:
mtx_a = fun_grad('linear')
time_stats['matrix'] = time.clock() - tt
if conf.check:
tt = time.clock()
wt = check_tangent_matrix(conf, vec_x, fun, fun_grad)
time_stats['check'] = time.clock() - tt - wt
if conf.lin_precision is not None:
if ls_eps_a is not None:
eps_a = max(err * conf.lin_precision, ls_eps_a)
elif ls_eps_r is not None:
eps_r = max(conf.lin_precision, ls_eps_r)
lin_red = max(eps_a, err * eps_r)
if conf.verbose:
output('solving linear system...')
tt = time.clock()
vec_dx = lin_solver(vec_r, x0=vec_x,
eps_a=eps_a, eps_r=eps_r, mtx=mtx_a)
time_stats['solve'] = time.clock() - tt
if conf.verbose:
output('...done')
for kv in time_stats.iteritems():
output('%10s: %7.2f [s]' % kv)
vec_e = mtx_a * vec_dx - vec_r
lerr = nla.norm(vec_e)
if lerr > lin_red:
output('warning: linear system solution precision is lower')
output('then the value set in solver options! (err = %e < %e)'
% (lerr, lin_red))
vec_x -= vec_dx
it += 1
if status is not None:
status['time_stats'] = time_stats
status['err0'] = err0
status['err'] = err
status['n_iter'] = it
status['condition'] = condition
if conf.log.plot is not None:
if self.log is not None:
self.log(save_figure=conf.log.plot)
return vec_x
class ScipyBroyden(NonlinearSolver):
"""
Interface to Broyden and Anderson solvers from ``scipy.optimize``.
"""
name = 'nls.scipy_broyden_like'
__metaclass__ = SolverMeta
_parameters = [
('method', 'str', 'anderson', False,
'The name of the solver in ``scipy.optimize``.'),
('i_max', 'int', 10, False,
'The maximum number of iterations.'),
('alpha', 'float', 0.9, False,
'See ``scipy.optimize``.'),
('M', 'float', 5, False,
'See ``scipy.optimize``.'),
('f_tol', 'float', 1e-6, False,
'See ``scipy.optimize``.'),
('w0', 'float', 0.1, False,
'See ``scipy.optimize``.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
self.set_method(self.conf)
def set_method(self, conf):
import scipy.optimize as so
try:
solver = getattr(so, conf.method)
except AttributeError:
output('scipy solver %s does not exist!' % conf.method)
| output('using broyden3 instead') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
output('giving up!')
break
red = conf.ls_red_warp;
output('rezidual computation failed for iter %d'
' (new ls: %e)!' % (it, red * ls))
if ls < conf.ls_min:
| output('linesearch failed, continuing anyway') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
debug()
if self.log is not None:
self.log(err, it)
if it == 0:
err0 = err;
break
if err < (err_last * conf.ls_on): break
red = conf.ls_red;
output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)'
% (it, err, err_last * conf.ls_on, red * ls))
else: # Failure.
if conf.give_up_warp:
| output('giving up!') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
| output('giving up!') | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
| output('infs or nans in the residual:', vec_r) | sfepy.base.base.output |
"""
Nonlinear solvers.
"""
import time
import numpy as nm
import numpy.linalg as nla
from sfepy.base.base import output, get_default, debug, Struct
from sfepy.base.log import Log, get_logging_conf
from sfepy.solvers.solvers import SolverMeta, NonlinearSolver
def check_tangent_matrix(conf, vec_x0, fun, fun_grad):
"""
Verify the correctness of the tangent matrix as computed by `fun_grad()` by
comparing it with its finite difference approximation evaluated by
repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta.
"""
vec_x = vec_x0.copy()
delta = conf.delta
vec_r = fun(vec_x) # Update state.
mtx_a0 = fun_grad(vec_x)
mtx_a = mtx_a0.tocsc()
mtx_d = mtx_a.copy()
mtx_d.data[:] = 0.0
vec_dx = nm.zeros_like(vec_r)
for ic in range(vec_dx.shape[0]):
vec_dx[ic] = delta
xx = vec_x.copy() - vec_dx
vec_r1 = fun(xx)
vec_dx[ic] = -delta
xx = vec_x.copy() - vec_dx
vec_r2 = fun(xx)
vec_dx[ic] = 0.0;
vec = 0.5 * (vec_r2 - vec_r1) / delta
ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]]
mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir]
vec_r = fun(vec_x) # Restore.
tt = time.clock()
output(mtx_a, '.. analytical')
output(mtx_d, '.. difference')
import sfepy.base.plotutils as plu
plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'],
conf.check)
return time.clock() - tt
def conv_test(conf, it, err, err0):
"""
Nonlinear solver convergence test.
Parameters
----------
conf : Struct instance
The nonlinear solver configuration.
it : int
The current iteration.
err : float
The current iteration error.
err0 : float
The initial error.
Returns
-------
status : int
The convergence status: -1 = no convergence (yet), 0 = solver converged
- tolerances were met, 1 = max. number of iterations reached.
"""
status = -1
if (abs(err0) < conf.macheps):
err_r = 0.0
else:
err_r = err / err0
output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))
conv_a = err < conf.eps_a
if it > 0:
conv_r = err_r < conf.eps_r
if conv_a and conv_r:
status = 0
elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r):
status = 0
else:
if conv_a:
status = 0
if (status == -1) and (it >= conf.i_max):
status = 1
return status
class Newton(NonlinearSolver):
r"""
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
"""
name = 'nls.newton'
__metaclass__ = SolverMeta
_parameters = [
('i_max', 'int', 1, False,
'The maximum number of iterations.'),
('eps_a', 'float', 1e-10, False,
'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'),
('eps_r', 'float', 1.0, False,
"""The relative tolerance for the residual, i.e. :math:`||f(x^i)|| /
||f(x^0)||`."""),
('eps_mode', "'and' or 'or'", 'and', False,
"""The logical operator to use for combining the absolute and relative
tolerances."""),
('macheps', 'float', nm.finfo(nm.float64).eps, False,
'The float considered to be machine "zero".'),
('lin_red', 'float', 1.0, False,
"""The linear system solution error should be smaller than (`eps_a` *
`lin_red`), otherwise a warning is printed."""),
('lin_precision', 'float or None', None, False,
"""If not None, the linear system solution tolerances are set in each
nonlinear iteration relative to the current residual norm by the
`lin_precision` factor. Ignored for direct linear solvers."""),
('ls_on', 'float', 0.99999, False,
"""Start the backtracking line-search by reducing the step, if
:math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""),
('ls_red', '0.0 < float < 1.0', 0.1, False,
'The step reduction factor in case of correct residual assembling.'),
('ls_red_warp', '0.0 < float < 1.0', 0.001, False,
"""The step reduction factor in case of failed residual assembling
(e.g. the "warp violation" error caused by a negative volume
element resulting from too large deformations)."""),
('ls_min', '0.0 < float < 1.0', 1e-5, False,
'The minimum step reduction factor.'),
('give_up_warp', 'bool', False, False,
'If True, abort on the "warp violation" error.'),
('check', '0, 1 or 2', 0, False,
"""If >= 1, check the tangent matrix using finite differences. If 2,
plot the resulting sparsity patterns."""),
('delta', 'float', 1e-6, False,
r"""If `check >= 1`, the finite difference matrix is taken as
:math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2
\delta}`."""),
('log', 'dict or None', None, False,
"""If not None, log the convergence according to the configuration in
the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``.
Each of the dict items can be None."""),
('is_linear', 'bool', False, False,
'If True, the problem is considered to be linear.'),
]
def __init__(self, conf, **kwargs):
NonlinearSolver.__init__(self, conf, **kwargs)
conf = self.conf
log = get_logging_conf(conf)
conf.log = log = Struct(name='log_conf', **log)
conf.is_any_log = (log.text is not None) or (log.plot is not None)
if conf.is_any_log:
self.log = Log([[r'$||r||$'], ['iteration']],
xlabels=['', 'all iterations'],
ylabels=[r'$||r||$', 'iteration'],
yscales=['log', 'linear'],
is_plot=conf.log.plot is not None,
log_filename=conf.log.text,
formats=[['%.8e'], ['%d']])
else:
self.log = None
def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None,
lin_solver=None, iter_hook=None, status=None):
"""
Nonlinear system solver call.
Solves a nonlinear system :math:`f(x) = 0` using the Newton method with
backtracking line-search, starting with an initial guess :math:`x^0`.
Parameters
----------
vec_x0 : array
The initial guess vector :math:`x_0`.
conf : Struct instance, optional
The solver configuration parameters,
fun : function, optional
The function :math:`f(x)` whose zero is sought - the residual.
fun_grad : function, optional
The gradient of :math:`f(x)` - the tangent matrix.
lin_solver : LinearSolver instance, optional
The linear solver for each nonlinear iteration.
iter_hook : function, optional
User-supplied function to call before each iteration.
status : dict-like, optional
The user-supplied object to hold convergence statistics.
Notes
-----
* The optional parameters except `iter_hook` and `status` need
to be given either here or upon `Newton` construction.
* Setting `conf.is_linear == True` means a pre-assembled and possibly
pre-solved matrix. This is mostly useful for linear time-dependent
problems.
"""
conf = get_default(conf, self.conf)
fun = get_default(fun, self.fun)
fun_grad = get_default(fun_grad, self.fun_grad)
lin_solver = get_default(lin_solver, self.lin_solver)
iter_hook = get_default(iter_hook, self.iter_hook)
status = get_default(status, self.status)
ls_eps_a, ls_eps_r = lin_solver.get_tolerance()
eps_a = get_default(ls_eps_a, 1.0)
eps_r = get_default(ls_eps_r, 1.0)
lin_red = conf.eps_a * conf.lin_red
time_stats = {}
vec_x = vec_x0.copy()
vec_x_last = vec_x0.copy()
vec_dx = None
if self.log is not None:
self.log.plot_vlines(color='r', linewidth=1.0)
err = err0 = -1.0
err_last = -1.0
it = 0
while 1:
if iter_hook is not None:
iter_hook(self, vec_x, it, err, err0)
ls = 1.0
vec_dx0 = vec_dx;
while 1:
tt = time.clock()
try:
vec_r = fun(vec_x)
except ValueError:
if (it == 0) or (ls < conf.ls_min):
output('giving up!')
raise
else:
ok = False
else:
ok = True
time_stats['rezidual'] = time.clock() - tt
if ok:
try:
err = nla.norm(vec_r)
except:
output('infs or nans in the residual:', vec_r)
output(nm.isfinite(vec_r).all())
| debug() | sfepy.base.base.debug |
from __future__ import absolute_import
from sfepy import data_dir
import six
filename_mesh = data_dir + '/meshes/3d/special/cube_cylinder.mesh'
if 0:
from sfepy.discrete.fem.utils import refine_mesh
refinement_level = 1
filename_mesh = | refine_mesh(filename_mesh, refinement_level) | sfepy.discrete.fem.utils.refine_mesh |
from __future__ import absolute_import
from sfepy import data_dir
import six
filename_mesh = data_dir + '/meshes/3d/special/cube_cylinder.mesh'
if 0:
from sfepy.discrete.fem.utils import refine_mesh
refinement_level = 1
filename_mesh = refine_mesh(filename_mesh, refinement_level)
material_2 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
variables = {
't' : ('unknown field', 'temperature', 0),
's' : ('test field', 'temperature', 't'),
}
regions = {
'Omega' : 'all',
'Gamma_Left' : ('vertices in (x < 0.0001)', 'facet'),
'Gamma_Right' : ('vertices in (x > 0.999)', 'facet'),
}
ebcs = {
't1' : ('Gamma_Left', {'t.0' : 2.0}),
't2' : ('Gamma_Right', {'t.0' : -2.0}),
}
integral_1 = {
'name' : 'i',
'order' : 1,
}
equations = {
'Temperature' : """dw_laplace.i.Omega(coef.val, s, t) = 0"""
}
class DiagPC(object):
"""
Diagonal (Jacobi) preconditioner.
Equivalent to setting `'precond' : 'jacobi'`.
"""
def setUp(self, pc):
A = pc.getOperators()[0]
self.idiag = 1.0 / A.getDiagonal()
def apply(self, pc, x, y):
y.pointwiseMult(x, self.idiag)
def setup_petsc_precond(mtx, problem):
return DiagPC()
solvers = {
'd00' : ('ls.scipy_direct',
{'method' : 'umfpack',
'warn' : True,}
),
'd01' : ('ls.scipy_direct',
{'method' : 'superlu',
'warn' : True,}
),
'd10' : ('ls.mumps', {}),
'i00' : ('ls.pyamg',
{'method' : 'ruge_stuben_solver',
'accel' : 'cg',
'eps_r' : 1e-12,
'method:max_levels' : 5,
'solve:cycle' : 'V',}
),
'i01' : ('ls.pyamg',
{'method' : 'smoothed_aggregation_solver',
'accel' : 'cg',
'eps_r' : 1e-12,}
),
'i02' : ('ls.pyamg_krylov',
{'method' : 'cg',
'eps_r' : 1e-12,
'i_max' : 1000,}
),
'i10' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'none', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i11' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'python', # just for output (unused)
'setup_precond' : setup_petsc_precond, # user-defined pc
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i12' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'jacobi', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i13' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'icc', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i20' : ('ls.scipy_iterative',
{'method' : 'cg',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i21' : ('ls.scipy_iterative',
{'method' : 'bicgstab',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i22' : ('ls.scipy_iterative',
{'method' : 'qmr',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'newton' : ('nls.newton', {
'i_max' : 1,
'eps_a' : 1e-10,
}),
}
options = {
'nls' : 'newton',
}
from sfepy.base.testing import TestCommon
output_name = 'test_linear_solvers_%s.vtk'
class Test(TestCommon):
can_fail = ['ls.pyamg', 'ls.pyamg_krylov', 'ls.petsc', 'ls.mumps',]
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = | Problem.from_conf(conf) | sfepy.discrete.Problem.from_conf |
from __future__ import absolute_import
from sfepy import data_dir
import six
filename_mesh = data_dir + '/meshes/3d/special/cube_cylinder.mesh'
if 0:
from sfepy.discrete.fem.utils import refine_mesh
refinement_level = 1
filename_mesh = refine_mesh(filename_mesh, refinement_level)
material_2 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
variables = {
't' : ('unknown field', 'temperature', 0),
's' : ('test field', 'temperature', 't'),
}
regions = {
'Omega' : 'all',
'Gamma_Left' : ('vertices in (x < 0.0001)', 'facet'),
'Gamma_Right' : ('vertices in (x > 0.999)', 'facet'),
}
ebcs = {
't1' : ('Gamma_Left', {'t.0' : 2.0}),
't2' : ('Gamma_Right', {'t.0' : -2.0}),
}
integral_1 = {
'name' : 'i',
'order' : 1,
}
equations = {
'Temperature' : """dw_laplace.i.Omega(coef.val, s, t) = 0"""
}
class DiagPC(object):
"""
Diagonal (Jacobi) preconditioner.
Equivalent to setting `'precond' : 'jacobi'`.
"""
def setUp(self, pc):
A = pc.getOperators()[0]
self.idiag = 1.0 / A.getDiagonal()
def apply(self, pc, x, y):
y.pointwiseMult(x, self.idiag)
def setup_petsc_precond(mtx, problem):
return DiagPC()
solvers = {
'd00' : ('ls.scipy_direct',
{'method' : 'umfpack',
'warn' : True,}
),
'd01' : ('ls.scipy_direct',
{'method' : 'superlu',
'warn' : True,}
),
'd10' : ('ls.mumps', {}),
'i00' : ('ls.pyamg',
{'method' : 'ruge_stuben_solver',
'accel' : 'cg',
'eps_r' : 1e-12,
'method:max_levels' : 5,
'solve:cycle' : 'V',}
),
'i01' : ('ls.pyamg',
{'method' : 'smoothed_aggregation_solver',
'accel' : 'cg',
'eps_r' : 1e-12,}
),
'i02' : ('ls.pyamg_krylov',
{'method' : 'cg',
'eps_r' : 1e-12,
'i_max' : 1000,}
),
'i10' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'none', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i11' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'python', # just for output (unused)
'setup_precond' : setup_petsc_precond, # user-defined pc
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i12' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'jacobi', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i13' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'icc', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i20' : ('ls.scipy_iterative',
{'method' : 'cg',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i21' : ('ls.scipy_iterative',
{'method' : 'bicgstab',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i22' : ('ls.scipy_iterative',
{'method' : 'qmr',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'newton' : ('nls.newton', {
'i_max' : 1,
'eps_a' : 1e-10,
}),
}
options = {
'nls' : 'newton',
}
from sfepy.base.testing import TestCommon
output_name = 'test_linear_solvers_%s.vtk'
class Test(TestCommon):
can_fail = ['ls.pyamg', 'ls.pyamg_krylov', 'ls.petsc', 'ls.mumps',]
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = Problem.from_conf(conf)
problem.time_update()
test = Test(problem=problem, conf=conf, options=options)
return test
def _list_linear_solvers(self, confs):
d = []
for key, val in six.iteritems(confs):
if val.kind.find('ls.') == 0:
d.append(val)
d.sort(key=lambda a: a.name)
return d
def test_solvers(self):
from sfepy.base.base import IndexedStruct
import os.path as op
solver_confs = self._list_linear_solvers(self.problem.solver_confs)
ok = True
tt = []
for solver_conf in solver_confs:
method = solver_conf.get('method', '')
precond = solver_conf.get('precond', '')
name = ' '.join((solver_conf.name, solver_conf.kind,
method, precond)).rstrip()
self.report(name)
self.report('matrix size:', self.problem.mtx_a.shape)
self.report(' nnz:', self.problem.mtx_a.nnz)
status = IndexedStruct()
try:
self.problem.init_solvers(status=status,
ls_conf=solver_conf,
force=True)
state = self.problem.solve()
failed = status.nls_status.condition != 0
except Exception as aux:
failed = True
status = None
exc = aux
ok = ok and ((not failed) or (solver_conf.kind in self.can_fail))
if status is not None:
status = status.nls_status
for kv in six.iteritems(status.time_stats):
self.report('%10s: %7.2f [s]' % kv)
self.report('condition: %d, err0: %.3e, err: %.3e'
% (status.condition, status.err0, status.err))
tt.append([name,
status.time_stats['solve'],
status.ls_n_iter,
status.err])
aux = name.replace(' ', '_')
fname = op.join(self.options.out_dir,
op.split(self.conf.output_name)[1]) % aux
self.problem.save_state(fname, state)
else:
self.report('solver failed:')
self.report(exc)
tt.append([name, -1, 1e10, 1e10])
tt.sort(key=lambda a: a[1])
self.report('solution times / numbers of iterations (residual norms):')
for row in tt:
self.report('%.2f [s] / % 4d' % (row[1], row[2]),
'(%.3e)' % row[3], ':', row[0])
return ok
def test_ls_reuse(self):
import numpy as nm
from sfepy.solvers import Solver
from sfepy.discrete.state import State
self.problem.init_solvers(ls_conf=self.problem.solver_confs['d00'])
nls = self.problem.get_nls()
state0 = | State(self.problem.equations.variables) | sfepy.discrete.state.State |
from __future__ import absolute_import
from sfepy import data_dir
import six
filename_mesh = data_dir + '/meshes/3d/special/cube_cylinder.mesh'
if 0:
from sfepy.discrete.fem.utils import refine_mesh
refinement_level = 1
filename_mesh = refine_mesh(filename_mesh, refinement_level)
material_2 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
variables = {
't' : ('unknown field', 'temperature', 0),
's' : ('test field', 'temperature', 't'),
}
regions = {
'Omega' : 'all',
'Gamma_Left' : ('vertices in (x < 0.0001)', 'facet'),
'Gamma_Right' : ('vertices in (x > 0.999)', 'facet'),
}
ebcs = {
't1' : ('Gamma_Left', {'t.0' : 2.0}),
't2' : ('Gamma_Right', {'t.0' : -2.0}),
}
integral_1 = {
'name' : 'i',
'order' : 1,
}
equations = {
'Temperature' : """dw_laplace.i.Omega(coef.val, s, t) = 0"""
}
class DiagPC(object):
"""
Diagonal (Jacobi) preconditioner.
Equivalent to setting `'precond' : 'jacobi'`.
"""
def setUp(self, pc):
A = pc.getOperators()[0]
self.idiag = 1.0 / A.getDiagonal()
def apply(self, pc, x, y):
y.pointwiseMult(x, self.idiag)
def setup_petsc_precond(mtx, problem):
return DiagPC()
solvers = {
'd00' : ('ls.scipy_direct',
{'method' : 'umfpack',
'warn' : True,}
),
'd01' : ('ls.scipy_direct',
{'method' : 'superlu',
'warn' : True,}
),
'd10' : ('ls.mumps', {}),
'i00' : ('ls.pyamg',
{'method' : 'ruge_stuben_solver',
'accel' : 'cg',
'eps_r' : 1e-12,
'method:max_levels' : 5,
'solve:cycle' : 'V',}
),
'i01' : ('ls.pyamg',
{'method' : 'smoothed_aggregation_solver',
'accel' : 'cg',
'eps_r' : 1e-12,}
),
'i02' : ('ls.pyamg_krylov',
{'method' : 'cg',
'eps_r' : 1e-12,
'i_max' : 1000,}
),
'i10' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'none', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i11' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'python', # just for output (unused)
'setup_precond' : setup_petsc_precond, # user-defined pc
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i12' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'jacobi', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i13' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'icc', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i20' : ('ls.scipy_iterative',
{'method' : 'cg',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i21' : ('ls.scipy_iterative',
{'method' : 'bicgstab',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i22' : ('ls.scipy_iterative',
{'method' : 'qmr',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'newton' : ('nls.newton', {
'i_max' : 1,
'eps_a' : 1e-10,
}),
}
options = {
'nls' : 'newton',
}
from sfepy.base.testing import TestCommon
output_name = 'test_linear_solvers_%s.vtk'
class Test(TestCommon):
can_fail = ['ls.pyamg', 'ls.pyamg_krylov', 'ls.petsc', 'ls.mumps',]
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = Problem.from_conf(conf)
problem.time_update()
test = Test(problem=problem, conf=conf, options=options)
return test
def _list_linear_solvers(self, confs):
d = []
for key, val in six.iteritems(confs):
if val.kind.find('ls.') == 0:
d.append(val)
d.sort(key=lambda a: a.name)
return d
def test_solvers(self):
from sfepy.base.base import IndexedStruct
import os.path as op
solver_confs = self._list_linear_solvers(self.problem.solver_confs)
ok = True
tt = []
for solver_conf in solver_confs:
method = solver_conf.get('method', '')
precond = solver_conf.get('precond', '')
name = ' '.join((solver_conf.name, solver_conf.kind,
method, precond)).rstrip()
self.report(name)
self.report('matrix size:', self.problem.mtx_a.shape)
self.report(' nnz:', self.problem.mtx_a.nnz)
status = | IndexedStruct() | sfepy.base.base.IndexedStruct |
from __future__ import absolute_import
from sfepy import data_dir
import six
filename_mesh = data_dir + '/meshes/3d/special/cube_cylinder.mesh'
if 0:
from sfepy.discrete.fem.utils import refine_mesh
refinement_level = 1
filename_mesh = refine_mesh(filename_mesh, refinement_level)
material_2 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
variables = {
't' : ('unknown field', 'temperature', 0),
's' : ('test field', 'temperature', 't'),
}
regions = {
'Omega' : 'all',
'Gamma_Left' : ('vertices in (x < 0.0001)', 'facet'),
'Gamma_Right' : ('vertices in (x > 0.999)', 'facet'),
}
ebcs = {
't1' : ('Gamma_Left', {'t.0' : 2.0}),
't2' : ('Gamma_Right', {'t.0' : -2.0}),
}
integral_1 = {
'name' : 'i',
'order' : 1,
}
equations = {
'Temperature' : """dw_laplace.i.Omega(coef.val, s, t) = 0"""
}
class DiagPC(object):
"""
Diagonal (Jacobi) preconditioner.
Equivalent to setting `'precond' : 'jacobi'`.
"""
def setUp(self, pc):
A = pc.getOperators()[0]
self.idiag = 1.0 / A.getDiagonal()
def apply(self, pc, x, y):
y.pointwiseMult(x, self.idiag)
def setup_petsc_precond(mtx, problem):
return DiagPC()
solvers = {
'd00' : ('ls.scipy_direct',
{'method' : 'umfpack',
'warn' : True,}
),
'd01' : ('ls.scipy_direct',
{'method' : 'superlu',
'warn' : True,}
),
'd10' : ('ls.mumps', {}),
'i00' : ('ls.pyamg',
{'method' : 'ruge_stuben_solver',
'accel' : 'cg',
'eps_r' : 1e-12,
'method:max_levels' : 5,
'solve:cycle' : 'V',}
),
'i01' : ('ls.pyamg',
{'method' : 'smoothed_aggregation_solver',
'accel' : 'cg',
'eps_r' : 1e-12,}
),
'i02' : ('ls.pyamg_krylov',
{'method' : 'cg',
'eps_r' : 1e-12,
'i_max' : 1000,}
),
'i10' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'none', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i11' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'python', # just for output (unused)
'setup_precond' : setup_petsc_precond, # user-defined pc
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i12' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'jacobi', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i13' : ('ls.petsc',
{'method' : 'cg', # ksp_type
'precond' : 'icc', # pc_type
'eps_a' : 1e-12, # abstol
'eps_r' : 1e-12, # rtol
'i_max' : 1000,} # maxits
),
'i20' : ('ls.scipy_iterative',
{'method' : 'cg',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i21' : ('ls.scipy_iterative',
{'method' : 'bicgstab',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'i22' : ('ls.scipy_iterative',
{'method' : 'qmr',
'i_max' : 1000,
'eps_r' : 1e-12,}
),
'newton' : ('nls.newton', {
'i_max' : 1,
'eps_a' : 1e-10,
}),
}
options = {
'nls' : 'newton',
}
from sfepy.base.testing import TestCommon
output_name = 'test_linear_solvers_%s.vtk'
class Test(TestCommon):
can_fail = ['ls.pyamg', 'ls.pyamg_krylov', 'ls.petsc', 'ls.mumps',]
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import Problem
problem = Problem.from_conf(conf)
problem.time_update()
test = Test(problem=problem, conf=conf, options=options)
return test
def _list_linear_solvers(self, confs):
d = []
for key, val in six.iteritems(confs):
if val.kind.find('ls.') == 0:
d.append(val)
d.sort(key=lambda a: a.name)
return d
def test_solvers(self):
from sfepy.base.base import IndexedStruct
import os.path as op
solver_confs = self._list_linear_solvers(self.problem.solver_confs)
ok = True
tt = []
for solver_conf in solver_confs:
method = solver_conf.get('method', '')
precond = solver_conf.get('precond', '')
name = ' '.join((solver_conf.name, solver_conf.kind,
method, precond)).rstrip()
self.report(name)
self.report('matrix size:', self.problem.mtx_a.shape)
self.report(' nnz:', self.problem.mtx_a.nnz)
status = IndexedStruct()
try:
self.problem.init_solvers(status=status,
ls_conf=solver_conf,
force=True)
state = self.problem.solve()
failed = status.nls_status.condition != 0
except Exception as aux:
failed = True
status = None
exc = aux
ok = ok and ((not failed) or (solver_conf.kind in self.can_fail))
if status is not None:
status = status.nls_status
for kv in six.iteritems(status.time_stats):
self.report('%10s: %7.2f [s]' % kv)
self.report('condition: %d, err0: %.3e, err: %.3e'
% (status.condition, status.err0, status.err))
tt.append([name,
status.time_stats['solve'],
status.ls_n_iter,
status.err])
aux = name.replace(' ', '_')
fname = op.join(self.options.out_dir,
op.split(self.conf.output_name)[1]) % aux
self.problem.save_state(fname, state)
else:
self.report('solver failed:')
self.report(exc)
tt.append([name, -1, 1e10, 1e10])
tt.sort(key=lambda a: a[1])
self.report('solution times / numbers of iterations (residual norms):')
for row in tt:
self.report('%.2f [s] / % 4d' % (row[1], row[2]),
'(%.3e)' % row[3], ':', row[0])
return ok
def test_ls_reuse(self):
import numpy as nm
from sfepy.solvers import Solver
from sfepy.discrete.state import State
self.problem.init_solvers(ls_conf=self.problem.solver_confs['d00'])
nls = self.problem.get_nls()
state0 = State(self.problem.equations.variables)
state0.apply_ebc()
vec0 = state0.get_reduced()
self.problem.update_materials()
rhs = nls.fun(vec0)
mtx = nls.fun_grad(vec0)
ok = True
for name in ['i12', 'i01']:
solver_conf = self.problem.solver_confs[name]
method = solver_conf.get('method', '')
precond = solver_conf.get('precond', '')
name = ' '.join((solver_conf.name, solver_conf.kind,
method, precond)).rstrip()
self.report(name)
try:
ls = | Solver.any_from_conf(solver_conf) | sfepy.solvers.Solver.any_from_conf |
"""
Quantum oscillator.
See :ref:`quantum-quantum_common`.
"""
from __future__ import absolute_import
from sfepy.linalg import norm_l2_along_axis
from examples.quantum.quantum_common import common
def get_exact(n_eigs, box_size, dim):
if dim == 2:
eigs = [1] + [2]*2 + [3]*3 + [4]*4 + [5]*5 + [6]*6
elif dim == 3:
eigs = [float(1)/2 + x for x in [1] + [2]*3 + [3]*6 + [4]*10]
return eigs
def fun_v(ts, coor, mode=None, **kwargs):
if not mode == 'qp': return
out = {}
C = 0.5
val = C * | norm_l2_along_axis(coor, axis=1, squared=True) | sfepy.linalg.norm_l2_along_axis |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = | prepare_remap(facets, cmesh.num[dim]) | sfepy.discrete.fem.utils.prepare_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
| output('evaluating in %d points...' % coors.shape[0], verbose=verbose) | sfepy.base.base.output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
output('evaluating in %d points...' % coors.shape[0], verbose=verbose)
ref_coors, cells, status = get_ref_coors(self, coors,
strategy=strategy,
close_limit=close_limit,
cache=cache,
verbose=verbose)
tt = time.clock()
vertex_coorss, nodess, orders, mtx_is = [], [], [], []
conns = []
for ap in self.aps.itervalues():
ps = ap.interp.poly_spaces['v']
vertex_coorss.append(ps.geometry.coors)
nodess.append(ps.nodes)
mtx_is.append(ps.get_mtx_i())
orders.append(ps.order)
conns.append(ap.econn)
orders = nm.array(orders, dtype=nm.int32)
# Interpolate to the reference coordinates.
vals = nm.empty((coors.shape[0], source_vals.shape[1]),
dtype=source_vals.dtype)
evaluate_in_rc(vals, ref_coors, cells, status, source_vals,
conns, vertex_coorss, nodess, orders, mtx_is,
1e-15)
output('interpolation: %f s' % (time.clock()-tt),verbose=verbose)
| output('...done',verbose=verbose) | sfepy.base.base.output |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
output('evaluating in %d points...' % coors.shape[0], verbose=verbose)
ref_coors, cells, status = get_ref_coors(self, coors,
strategy=strategy,
close_limit=close_limit,
cache=cache,
verbose=verbose)
tt = time.clock()
vertex_coorss, nodess, orders, mtx_is = [], [], [], []
conns = []
for ap in self.aps.itervalues():
ps = ap.interp.poly_spaces['v']
vertex_coorss.append(ps.geometry.coors)
nodess.append(ps.nodes)
mtx_is.append(ps.get_mtx_i())
orders.append(ps.order)
conns.append(ap.econn)
orders = nm.array(orders, dtype=nm.int32)
# Interpolate to the reference coordinates.
vals = nm.empty((coors.shape[0], source_vals.shape[1]),
dtype=source_vals.dtype)
evaluate_in_rc(vals, ref_coors, cells, status, source_vals,
conns, vertex_coorss, nodess, orders, mtx_is,
1e-15)
output('interpolation: %f s' % (time.clock()-tt),verbose=verbose)
output('...done',verbose=verbose)
if ret_ref_coors:
return vals, ref_coors, cells, status
elif ret_status:
return vals, cells, status
elif ret_cells:
return vals, cells
else:
return vals
class H1NodalVolumeField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange'
def interp_v_vals_to_n_vals(self, vec):
"""
Interpolate a function defined by vertex DOF values using the FE
geometry base (P1 or Q1) into the extra nodes, i.e. define the
extra DOF values.
"""
if not self.node_desc.has_extra_nodes():
enod_vol_val = vec.copy()
else:
dim = vec.shape[1]
enod_vol_val = nm.zeros((self.n_nod, dim), dtype=nm.float64)
for ig, ap in self.aps.iteritems():
group = self.domain.groups[ig]
econn = ap.econn
coors = ap.interp.poly_spaces['v'].node_coors
ginterp = ap.interp.gel.interp
bf = ginterp.poly_spaces['v'].eval_base(coors)
bf = bf[:,0,:].copy()
evec = nm.dot(bf, vec[group.conn])
enod_vol_val[econn] = nm.swapaxes(evec, 0, 1)
return enod_vol_val
def set_basis(self, maps, methods):
"""
This function along with eval_basis supports the general term IntFE.
It sets parameters and basis functions at reference element
according to its method (val, grad, div, etc).
Parameters
----------
maps : class
It provides information about mapping between reference and real
element. Quadrature points stored in maps.qp_coor are used here.
method : list of string
It stores methods for variable evaluation. At first position, there
is one of val, grad, or div.
self.bfref : numpy.array of shape = (n_qp, n_basis) + basis_shape
An array that stores basis functions evaluated at quadrature
points. Here n_qp is number of quadrature points, n_basis is
number of basis functions, and basis_shape is a shape of basis
function, i.e. (1,) for scalar-valued, (dim,) for vector-valued,
(dim, dim) for matrix-valued, etc.
Returns
-------
self.bfref : numpy.array
It stores a basis functions at quadrature points of shape according
to proceeded methods.
self.n_basis : int
number of basis functions
"""
self.eval_method = methods
def get_grad(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=True).swapaxes(1, 2)
if shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1: # vector variable
vec_shape = nm.array(bfref0.shape + shape)
vec_shape[1] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc, ii] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
def get_val(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=False).swapaxes(1, 2)
if self.shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1:
vec_shape = nm.array(bfref0.shape)
vec_shape[1:3] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
eval_base = self.interp.poly_spaces['v'].eval_base
if self.eval_method[0] == 'val':
bfref = get_val(maps, self.shape)
elif self.eval_method[0] == 'grad':
bfref = get_grad(maps, self.shape)
elif self.eval_method[0] == 'div':
bfref = get_grad(maps, self.shape)
else:
raise NotImplementedError("The method '%s' is not implemented" \
% (self.eval_method))
self.bfref = bfref
self.n_basis = self.bfref.shape[1]
def eval_basis(self, maps):
"""
It returns basis functions evaluated at quadrature points and mapped
at reference element according to real element.
"""
if self.eval_method == ['grad']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
return val
elif self.eval_method == ['val']:
return self.bfref
elif self.eval_method == ['div']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
val = nm.atleast_3d(nm.einsum('ijkk', val))
return val
elif self.eval_method == ['grad', 'sym', 'Man']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
from sfepy.terms.terms_general import proceed_methods
val = proceed_methods(val, self.eval_method[1:])
return val
else:
msg = "Improper method '%s' for evaluation of basis functions" \
% (self.eval_method)
raise NotImplementedError(msg)
class H1DiscontinuousField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange_discontinuous'
def _setup_approximations(self):
self.aps = {}
self.aps_by_name = {}
for ig in self.igs:
name = self.interp.name + '_%s_ig%d' % (self.region.name, ig)
ap = fea.DiscontinuousApproximation(name, self.interp,
self.region, ig)
self.aps[ig] = ap
self.aps_by_name[ap.name] = ap
def _setup_global_base(self):
"""
Setup global DOF/base function indices and connectivity of the field.
"""
self._setup_facet_orientations()
self._init_econn()
n_dof = 0
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
nd = nm.prod(ap.econn.shape)
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(n_dof, n_dof + nd, dtype=nm.int32)
aux.shape = ap.econn.shape
ap.econn[:] = aux
all_dofs[ig] = aux
n_dof += nd
self.n_nod = n_dof
self.n_bubble_dof = n_dof
self.bubble_dofs = all_dofs
self.bubble_remaps = remaps
self.n_vertex_dof = self.n_edge_dof = self.n_face_dof = 0
self._setup_esurface()
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if self.approx_order != 0:
dofs = self.average_to_vertices(dofs)
new_dofs = | FEField.extend_dofs(self, dofs) | sfepy.discrete.fem.fields_base.FEField.extend_dofs |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
output('evaluating in %d points...' % coors.shape[0], verbose=verbose)
ref_coors, cells, status = get_ref_coors(self, coors,
strategy=strategy,
close_limit=close_limit,
cache=cache,
verbose=verbose)
tt = time.clock()
vertex_coorss, nodess, orders, mtx_is = [], [], [], []
conns = []
for ap in self.aps.itervalues():
ps = ap.interp.poly_spaces['v']
vertex_coorss.append(ps.geometry.coors)
nodess.append(ps.nodes)
mtx_is.append(ps.get_mtx_i())
orders.append(ps.order)
conns.append(ap.econn)
orders = nm.array(orders, dtype=nm.int32)
# Interpolate to the reference coordinates.
vals = nm.empty((coors.shape[0], source_vals.shape[1]),
dtype=source_vals.dtype)
evaluate_in_rc(vals, ref_coors, cells, status, source_vals,
conns, vertex_coorss, nodess, orders, mtx_is,
1e-15)
output('interpolation: %f s' % (time.clock()-tt),verbose=verbose)
output('...done',verbose=verbose)
if ret_ref_coors:
return vals, ref_coors, cells, status
elif ret_status:
return vals, cells, status
elif ret_cells:
return vals, cells
else:
return vals
class H1NodalVolumeField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange'
def interp_v_vals_to_n_vals(self, vec):
"""
Interpolate a function defined by vertex DOF values using the FE
geometry base (P1 or Q1) into the extra nodes, i.e. define the
extra DOF values.
"""
if not self.node_desc.has_extra_nodes():
enod_vol_val = vec.copy()
else:
dim = vec.shape[1]
enod_vol_val = nm.zeros((self.n_nod, dim), dtype=nm.float64)
for ig, ap in self.aps.iteritems():
group = self.domain.groups[ig]
econn = ap.econn
coors = ap.interp.poly_spaces['v'].node_coors
ginterp = ap.interp.gel.interp
bf = ginterp.poly_spaces['v'].eval_base(coors)
bf = bf[:,0,:].copy()
evec = nm.dot(bf, vec[group.conn])
enod_vol_val[econn] = nm.swapaxes(evec, 0, 1)
return enod_vol_val
def set_basis(self, maps, methods):
"""
This function along with eval_basis supports the general term IntFE.
It sets parameters and basis functions at reference element
according to its method (val, grad, div, etc).
Parameters
----------
maps : class
It provides information about mapping between reference and real
element. Quadrature points stored in maps.qp_coor are used here.
method : list of string
It stores methods for variable evaluation. At first position, there
is one of val, grad, or div.
self.bfref : numpy.array of shape = (n_qp, n_basis) + basis_shape
An array that stores basis functions evaluated at quadrature
points. Here n_qp is number of quadrature points, n_basis is
number of basis functions, and basis_shape is a shape of basis
function, i.e. (1,) for scalar-valued, (dim,) for vector-valued,
(dim, dim) for matrix-valued, etc.
Returns
-------
self.bfref : numpy.array
It stores a basis functions at quadrature points of shape according
to proceeded methods.
self.n_basis : int
number of basis functions
"""
self.eval_method = methods
def get_grad(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=True).swapaxes(1, 2)
if shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1: # vector variable
vec_shape = nm.array(bfref0.shape + shape)
vec_shape[1] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc, ii] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
def get_val(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=False).swapaxes(1, 2)
if self.shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1:
vec_shape = nm.array(bfref0.shape)
vec_shape[1:3] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
eval_base = self.interp.poly_spaces['v'].eval_base
if self.eval_method[0] == 'val':
bfref = get_val(maps, self.shape)
elif self.eval_method[0] == 'grad':
bfref = get_grad(maps, self.shape)
elif self.eval_method[0] == 'div':
bfref = get_grad(maps, self.shape)
else:
raise NotImplementedError("The method '%s' is not implemented" \
% (self.eval_method))
self.bfref = bfref
self.n_basis = self.bfref.shape[1]
def eval_basis(self, maps):
"""
It returns basis functions evaluated at quadrature points and mapped
at reference element according to real element.
"""
if self.eval_method == ['grad']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
return val
elif self.eval_method == ['val']:
return self.bfref
elif self.eval_method == ['div']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
val = nm.atleast_3d(nm.einsum('ijkk', val))
return val
elif self.eval_method == ['grad', 'sym', 'Man']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
from sfepy.terms.terms_general import proceed_methods
val = proceed_methods(val, self.eval_method[1:])
return val
else:
msg = "Improper method '%s' for evaluation of basis functions" \
% (self.eval_method)
raise NotImplementedError(msg)
class H1DiscontinuousField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange_discontinuous'
def _setup_approximations(self):
self.aps = {}
self.aps_by_name = {}
for ig in self.igs:
name = self.interp.name + '_%s_ig%d' % (self.region.name, ig)
ap = fea.DiscontinuousApproximation(name, self.interp,
self.region, ig)
self.aps[ig] = ap
self.aps_by_name[ap.name] = ap
def _setup_global_base(self):
"""
Setup global DOF/base function indices and connectivity of the field.
"""
self._setup_facet_orientations()
self._init_econn()
n_dof = 0
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
nd = nm.prod(ap.econn.shape)
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(n_dof, n_dof + nd, dtype=nm.int32)
aux.shape = ap.econn.shape
ap.econn[:] = aux
all_dofs[ig] = aux
n_dof += nd
self.n_nod = n_dof
self.n_bubble_dof = n_dof
self.bubble_dofs = all_dofs
self.bubble_remaps = remaps
self.n_vertex_dof = self.n_edge_dof = self.n_face_dof = 0
self._setup_esurface()
def extend_dofs(self, dofs, fill_value=None):
"""
Extend DOFs to the whole domain using the `fill_value`, or the
smallest value in `dofs` if `fill_value` is None.
"""
if self.approx_order != 0:
dofs = self.average_to_vertices(dofs)
new_dofs = FEField.extend_dofs(self, dofs)
return new_dofs
def remove_extra_dofs(self, dofs):
"""
Remove DOFs defined in higher order nodes (order > 1).
"""
if self.approx_order != 0:
dofs = self.average_to_vertices(dofs)
new_dofs = | FEField.remove_extra_dofs(self, dofs) | sfepy.discrete.fem.fields_base.FEField.remove_extra_dofs |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + | expand_nodes_to_dofs(ii, n_dof_per_facet) | sfepy.discrete.common.dof_info.expand_nodes_to_dofs |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = | prepare_remap(ii, group.shape.n_el) | sfepy.discrete.fem.utils.prepare_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
output('evaluating in %d points...' % coors.shape[0], verbose=verbose)
ref_coors, cells, status = get_ref_coors(self, coors,
strategy=strategy,
close_limit=close_limit,
cache=cache,
verbose=verbose)
tt = time.clock()
vertex_coorss, nodess, orders, mtx_is = [], [], [], []
conns = []
for ap in self.aps.itervalues():
ps = ap.interp.poly_spaces['v']
vertex_coorss.append(ps.geometry.coors)
nodess.append(ps.nodes)
mtx_is.append(ps.get_mtx_i())
orders.append(ps.order)
conns.append(ap.econn)
orders = nm.array(orders, dtype=nm.int32)
# Interpolate to the reference coordinates.
vals = nm.empty((coors.shape[0], source_vals.shape[1]),
dtype=source_vals.dtype)
evaluate_in_rc(vals, ref_coors, cells, status, source_vals,
conns, vertex_coorss, nodess, orders, mtx_is,
1e-15)
output('interpolation: %f s' % (time.clock()-tt),verbose=verbose)
output('...done',verbose=verbose)
if ret_ref_coors:
return vals, ref_coors, cells, status
elif ret_status:
return vals, cells, status
elif ret_cells:
return vals, cells
else:
return vals
class H1NodalVolumeField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange'
def interp_v_vals_to_n_vals(self, vec):
"""
Interpolate a function defined by vertex DOF values using the FE
geometry base (P1 or Q1) into the extra nodes, i.e. define the
extra DOF values.
"""
if not self.node_desc.has_extra_nodes():
enod_vol_val = vec.copy()
else:
dim = vec.shape[1]
enod_vol_val = nm.zeros((self.n_nod, dim), dtype=nm.float64)
for ig, ap in self.aps.iteritems():
group = self.domain.groups[ig]
econn = ap.econn
coors = ap.interp.poly_spaces['v'].node_coors
ginterp = ap.interp.gel.interp
bf = ginterp.poly_spaces['v'].eval_base(coors)
bf = bf[:,0,:].copy()
evec = nm.dot(bf, vec[group.conn])
enod_vol_val[econn] = nm.swapaxes(evec, 0, 1)
return enod_vol_val
def set_basis(self, maps, methods):
"""
This function along with eval_basis supports the general term IntFE.
It sets parameters and basis functions at reference element
according to its method (val, grad, div, etc).
Parameters
----------
maps : class
It provides information about mapping between reference and real
element. Quadrature points stored in maps.qp_coor are used here.
method : list of string
It stores methods for variable evaluation. At first position, there
is one of val, grad, or div.
self.bfref : numpy.array of shape = (n_qp, n_basis) + basis_shape
An array that stores basis functions evaluated at quadrature
points. Here n_qp is number of quadrature points, n_basis is
number of basis functions, and basis_shape is a shape of basis
function, i.e. (1,) for scalar-valued, (dim,) for vector-valued,
(dim, dim) for matrix-valued, etc.
Returns
-------
self.bfref : numpy.array
It stores a basis functions at quadrature points of shape according
to proceeded methods.
self.n_basis : int
number of basis functions
"""
self.eval_method = methods
def get_grad(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=True).swapaxes(1, 2)
if shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1: # vector variable
vec_shape = nm.array(bfref0.shape + shape)
vec_shape[1] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc, ii] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
def get_val(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=False).swapaxes(1, 2)
if self.shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1:
vec_shape = nm.array(bfref0.shape)
vec_shape[1:3] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
eval_base = self.interp.poly_spaces['v'].eval_base
if self.eval_method[0] == 'val':
bfref = get_val(maps, self.shape)
elif self.eval_method[0] == 'grad':
bfref = get_grad(maps, self.shape)
elif self.eval_method[0] == 'div':
bfref = get_grad(maps, self.shape)
else:
raise NotImplementedError("The method '%s' is not implemented" \
% (self.eval_method))
self.bfref = bfref
self.n_basis = self.bfref.shape[1]
def eval_basis(self, maps):
"""
It returns basis functions evaluated at quadrature points and mapped
at reference element according to real element.
"""
if self.eval_method == ['grad']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
return val
elif self.eval_method == ['val']:
return self.bfref
elif self.eval_method == ['div']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
val = nm.atleast_3d(nm.einsum('ijkk', val))
return val
elif self.eval_method == ['grad', 'sym', 'Man']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
from sfepy.terms.terms_general import proceed_methods
val = proceed_methods(val, self.eval_method[1:])
return val
else:
msg = "Improper method '%s' for evaluation of basis functions" \
% (self.eval_method)
raise NotImplementedError(msg)
class H1DiscontinuousField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange_discontinuous'
def _setup_approximations(self):
self.aps = {}
self.aps_by_name = {}
for ig in self.igs:
name = self.interp.name + '_%s_ig%d' % (self.region.name, ig)
ap = fea.DiscontinuousApproximation(name, self.interp,
self.region, ig)
self.aps[ig] = ap
self.aps_by_name[ap.name] = ap
def _setup_global_base(self):
"""
Setup global DOF/base function indices and connectivity of the field.
"""
self._setup_facet_orientations()
self._init_econn()
n_dof = 0
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
nd = nm.prod(ap.econn.shape)
group = self.domain.groups[ig]
remaps[ig] = | prepare_remap(ii, group.shape.n_el) | sfepy.discrete.fem.utils.prepare_remap |
"""
Notes
-----
Important attributes of continuous (order > 0) :class:`Field` and
:class:`SurfaceField` instances:
- `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]`
- `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]`
where `conn` is the mesh vertex connectivity, `econn` is the
region-local field connectivity.
"""
import time
import numpy as nm
from sfepy.base.base import output, assert_
import fea
from sfepy.discrete.fem.utils import prepare_remap
from sfepy.discrete.common.dof_info import expand_nodes_to_dofs
from sfepy.discrete.fem.global_interp import get_ref_coors
from sfepy.discrete.fem.facets import get_facet_dof_permutations
from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField,
H1Mixin)
from sfepy.discrete.fem.extmods.bases import evaluate_in_rc
class H1NodalMixin(H1Mixin):
def _setup_facet_orientations(self):
order = self.approx_order
self.node_desc = self.interp.describe_nodes()
edge_nodes = self.node_desc.edge_nodes
if edge_nodes is not None:
n_fp = self.gel.edges.shape[1]
self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
face_nodes = self.node_desc.face_nodes
if face_nodes is not None:
n_fp = self.gel.faces.shape[1]
self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs,
order)
def _setup_edge_dofs(self):
"""
Setup edge DOF connectivity.
"""
if self.node_desc.edge is None:
return 0, None, None
return self._setup_facet_dofs(1, self.node_desc.edge,
self.edge_dof_perms,
self.n_vertex_dof)
def _setup_face_dofs(self):
"""
Setup face DOF connectivity.
"""
if self.node_desc.face is None:
return 0, None, None
return self._setup_facet_dofs(self.domain.shape.tdim - 1,
self.node_desc.face,
self.face_dof_perms,
self.n_vertex_dof + self.n_edge_dof)
def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset):
"""
Helper function to setup facet DOF connectivity, works for both
edges and faces.
"""
facet_desc = nm.array(facet_desc)
n_dof_per_facet = facet_desc.shape[1]
cmesh = self.domain.cmesh
facets = self.region.entities[dim]
ii = nm.arange(facets.shape[0], dtype=nm.int32)
all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet)
# Prepare global facet id remapping to field-local numbering.
remap = prepare_remap(facets, cmesh.num[dim])
cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim)
offs = cconn.offsets
n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0]
oris = cmesh.get_orientations(dim)
for ig, ap in self.aps.iteritems():
gcells = self.region.get_cells(ig, offset=False)
n_el = gcells.shape[0]
indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]]
facets_of_cells = remap[indices]
ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]]
perms = facet_perms[ig][ori]
# Define global facet dof numbers.
gdofs = offset + expand_nodes_to_dofs(facets_of_cells,
n_dof_per_facet)
# Elements of facets.
iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f)
ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el)
# DOF columns in econn for each facet.
iep = facet_desc[ies]
iaux = nm.arange(gdofs.shape[0], dtype=nm.int32)
ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms]
n_dof = n_dof_per_facet * facets.shape[0]
assert_(n_dof == nm.prod(all_dofs.shape))
return n_dof, all_dofs, remap
def _setup_bubble_dofs(self):
"""
Setup bubble DOF connectivity.
"""
if self.node_desc.bubble is None:
return 0, None, None
offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof
n_dof = 0
n_dof_per_cell = self.node_desc.bubble.shape[0]
all_dofs = {}
remaps = {}
for ig, ap in self.aps.iteritems():
ii = self.region.get_cells(ig)
n_cell = ii.shape[0]
nd = n_dof_per_cell * n_cell
group = self.domain.groups[ig]
remaps[ig] = prepare_remap(ii, group.shape.n_el)
aux = nm.arange(offset + n_dof, offset + n_dof + nd,
dtype=nm.int32)
aux.shape = (n_cell, n_dof_per_cell)
iep = self.node_desc.bubble[0]
ap.econn[:,iep:] = aux
all_dofs[ig] = aux
n_dof += nd
return n_dof, all_dofs, remaps
def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None):
"""
Set the values of DOFs in a given region using a function of space
coordinates or value `fun`.
"""
if region is None:
region = self.region
if dpn is None:
dpn = self.n_components
aux = self.get_dofs_in_region(region, clean=True, warn=warn)
nods = nm.unique(nm.hstack(aux))
if callable(fun):
vals = fun(self.get_coor(nods))
elif nm.isscalar(fun):
vals = nm.repeat([fun], nods.shape[0] * dpn)
elif isinstance(fun, nm.ndarray):
assert_(len(fun) == dpn)
vals = nm.repeat(fun, nods.shape[0])
else:
raise ValueError('unknown function/value type! (%s)' % type(fun))
return nods, vals
def evaluate_at(self, coors, source_vals, strategy='kdtree',
close_limit=0.1, cache=None, ret_cells=False,
ret_status=False, ret_ref_coors=False, verbose=True):
"""
Evaluate source DOF values corresponding to the field in the given
coordinates using the field interpolation.
Parameters
----------
coors : array
The coordinates the source values should be interpolated into.
source_vals : array
The source DOF values corresponding to the field.
strategy : str, optional
The strategy for finding the elements that contain the
coordinates. Only 'kdtree' is supported for the moment.
close_limit : float, optional
The maximum limit distance of a point from the closest
element allowed for extrapolation.
cache : Struct, optional
To speed up a sequence of evaluations, the field mesh, the inverse
connectivity of the field mesh and the KDTree instance can
be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and
`cache.kdtree`. Optionally, the cache can also contain the
reference element coordinates as `cache.ref_coors`,
`cache.cells` and `cache.status`, if the evaluation occurs
in the same coordinates repeatedly. In that case the KDTree
related data are ignored.
ret_cells : bool, optional
If True, return also the cell indices the coordinates are in.
ret_status : bool, optional
If True, return also the status for each point: 0 is
success, 1 is extrapolation within `close_limit`, 2 is
extrapolation outside `close_limit`, 3 is failure.
ret_ref_coors : bool, optional
If True, return also the found reference element coordinates.
verbose : bool
If False, reduce verbosity.
Returns
-------
vals : array
The interpolated values.
cells : array
The cell indices, if `ret_cells` or `ret_status` are True.
status : array
The status, if `ret_status` is True.
"""
output('evaluating in %d points...' % coors.shape[0], verbose=verbose)
ref_coors, cells, status = get_ref_coors(self, coors,
strategy=strategy,
close_limit=close_limit,
cache=cache,
verbose=verbose)
tt = time.clock()
vertex_coorss, nodess, orders, mtx_is = [], [], [], []
conns = []
for ap in self.aps.itervalues():
ps = ap.interp.poly_spaces['v']
vertex_coorss.append(ps.geometry.coors)
nodess.append(ps.nodes)
mtx_is.append(ps.get_mtx_i())
orders.append(ps.order)
conns.append(ap.econn)
orders = nm.array(orders, dtype=nm.int32)
# Interpolate to the reference coordinates.
vals = nm.empty((coors.shape[0], source_vals.shape[1]),
dtype=source_vals.dtype)
evaluate_in_rc(vals, ref_coors, cells, status, source_vals,
conns, vertex_coorss, nodess, orders, mtx_is,
1e-15)
output('interpolation: %f s' % (time.clock()-tt),verbose=verbose)
output('...done',verbose=verbose)
if ret_ref_coors:
return vals, ref_coors, cells, status
elif ret_status:
return vals, cells, status
elif ret_cells:
return vals, cells
else:
return vals
class H1NodalVolumeField(H1NodalMixin, VolumeField):
family_name = 'volume_H1_lagrange'
def interp_v_vals_to_n_vals(self, vec):
"""
Interpolate a function defined by vertex DOF values using the FE
geometry base (P1 or Q1) into the extra nodes, i.e. define the
extra DOF values.
"""
if not self.node_desc.has_extra_nodes():
enod_vol_val = vec.copy()
else:
dim = vec.shape[1]
enod_vol_val = nm.zeros((self.n_nod, dim), dtype=nm.float64)
for ig, ap in self.aps.iteritems():
group = self.domain.groups[ig]
econn = ap.econn
coors = ap.interp.poly_spaces['v'].node_coors
ginterp = ap.interp.gel.interp
bf = ginterp.poly_spaces['v'].eval_base(coors)
bf = bf[:,0,:].copy()
evec = nm.dot(bf, vec[group.conn])
enod_vol_val[econn] = nm.swapaxes(evec, 0, 1)
return enod_vol_val
def set_basis(self, maps, methods):
"""
This function along with eval_basis supports the general term IntFE.
It sets parameters and basis functions at reference element
according to its method (val, grad, div, etc).
Parameters
----------
maps : class
It provides information about mapping between reference and real
element. Quadrature points stored in maps.qp_coor are used here.
method : list of string
It stores methods for variable evaluation. At first position, there
is one of val, grad, or div.
self.bfref : numpy.array of shape = (n_qp, n_basis) + basis_shape
An array that stores basis functions evaluated at quadrature
points. Here n_qp is number of quadrature points, n_basis is
number of basis functions, and basis_shape is a shape of basis
function, i.e. (1,) for scalar-valued, (dim,) for vector-valued,
(dim, dim) for matrix-valued, etc.
Returns
-------
self.bfref : numpy.array
It stores a basis functions at quadrature points of shape according
to proceeded methods.
self.n_basis : int
number of basis functions
"""
self.eval_method = methods
def get_grad(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=True).swapaxes(1, 2)
if shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1: # vector variable
vec_shape = nm.array(bfref0.shape + shape)
vec_shape[1] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc, ii] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
def get_val(maps, shape):
bfref0 = eval_base(maps.qp_coor, diff=False).swapaxes(1, 2)
if self.shape == (1,): # scalar variable
bfref = bfref0
elif len(shape) == 1:
vec_shape = nm.array(bfref0.shape)
vec_shape[1:3] *= shape[0]
bfref = nm.zeros(vec_shape)
for ii in nm.arange(shape[0]):
slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1])
bfref[:, slc] = bfref0
else: # higher-order tensors variable
msg = "Evaluation of basis has not been implemented \
for higher-order tensors yet."
raise NotImplementedError(msg)
return bfref
eval_base = self.interp.poly_spaces['v'].eval_base
if self.eval_method[0] == 'val':
bfref = get_val(maps, self.shape)
elif self.eval_method[0] == 'grad':
bfref = get_grad(maps, self.shape)
elif self.eval_method[0] == 'div':
bfref = get_grad(maps, self.shape)
else:
raise NotImplementedError("The method '%s' is not implemented" \
% (self.eval_method))
self.bfref = bfref
self.n_basis = self.bfref.shape[1]
def eval_basis(self, maps):
"""
It returns basis functions evaluated at quadrature points and mapped
at reference element according to real element.
"""
if self.eval_method == ['grad']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
return val
elif self.eval_method == ['val']:
return self.bfref
elif self.eval_method == ['div']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
val = nm.atleast_3d(nm.einsum('ijkk', val))
return val
elif self.eval_method == ['grad', 'sym', 'Man']:
val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0))
from sfepy.terms.terms_general import proceed_methods
val = | proceed_methods(val, self.eval_method[1:]) | sfepy.terms.terms_general.proceed_methods |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
| output('Supported writable mesh formats are:') | sfepy.base.base.output |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in | supported_capabilities.iteritems() | sfepy.fem.meshio.supported_capabilities.iteritems |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = | Mesh.from_file(filename_in) | sfepy.fem.Mesh.from_file |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
io = 'auto'
if options.format:
try:
io = io_table[options.format](filename_out)
except KeyError:
output('unknown output mesh format! (%s)' % options.format)
output_writable_meshes()
sys.exit(1)
if 'w' not in supported_capabilities[options.format]:
output('write support not implemented for output mesh format! (%s)'
% options.format)
output_writable_meshes()
sys.exit(1)
| output('writing %s...' % filename_out) | sfepy.base.base.output |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
io = 'auto'
if options.format:
try:
io = io_table[options.format](filename_out)
except KeyError:
output('unknown output mesh format! (%s)' % options.format)
output_writable_meshes()
sys.exit(1)
if 'w' not in supported_capabilities[options.format]:
output('write support not implemented for output mesh format! (%s)'
% options.format)
output_writable_meshes()
sys.exit(1)
output('writing %s...' % filename_out)
mesh.write(filename_out, io=io)
| output('...done') | sfepy.base.base.output |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
| output(key) | sfepy.base.base.output |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = | nm.array(scale, dtype=nm.float64, ndmin=1) | sfepy.base.base.nm.array |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
| output('bad scale! (%s)' % scale) | sfepy.base.base.output |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = | nm.eye(mesh.dim, dtype=nm.float64) | sfepy.base.base.nm.eye |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = | nm.diag(scale) | sfepy.base.base.nm.diag |
#!/usr/bin/env python
import sys
sys.path.append('.')
from optparse import OptionParser
from sfepy.base.base import nm, output
from sfepy.fem import Mesh
from sfepy.fem.meshio import io_table, supported_capabilities
usage = """%prog [options] filename_in filename_out
Convert a mesh file from one SfePy-supported format to another.
Examples:
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5
$ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1
"""
help = {
'scale' : 'scale factor [default: %default]',
'format' : 'output mesh format (overrides filename_out extension)',
'list' : 'list supported writable output mesh formats',
}
def output_writable_meshes():
output('Supported writable mesh formats are:')
for key, val in supported_capabilities.iteritems():
if 'w' in val:
output(key)
def main():
parser = OptionParser(usage=usage)
parser.add_option("-s", "--scale", metavar='scale',
action="store", dest="scale",
default=None, help=help['scale'])
parser.add_option("-f", "--format", metavar='format',
action="store", type='string', dest="format",
default=None, help=help['format'])
parser.add_option("-l", "--list", action="store_true",
dest="list", help=help['list'])
(options, args) = parser.parse_args()
if options.list:
output_writable_meshes()
sys.exit(0)
if len(args) != 2:
parser.print_help()
sys.exit(1)
scale = options.scale
if scale is not None:
try:
try:
scale = float(scale)
except ValueError:
scale = [float(ii) for ii in scale.split(',')]
scale = nm.array(scale, dtype=nm.float64, ndmin=1)
except:
output('bad scale! (%s)' % scale)
parser.print_help()
sys.exit(1)
filename_in, filename_out = args
mesh = Mesh.from_file(filename_in)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
io = 'auto'
if options.format:
try:
io = io_table[options.format](filename_out)
except KeyError:
| output('unknown output mesh format! (%s)' % options.format) | sfepy.base.base.output |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = | UserMeshIO(mesh_hook) | sfepy.discrete.fem.meshio.UserMeshIO |
#!/usr/bin/env python
# This code was adapted from http://sfepy.org/doc-devel/mat_optim.html.
"""
Compare various elastic materials w.r.t. uniaxial tension/compression test.
Requires Matplotlib.
"""
from __future__ import absolute_import
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import six
sys.path.append('.')
from sfepy.base.base import output
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.discrete import Problem
from sfepy.base.plotutils import plt
from matplotlib.collections import PolyCollection
from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection
import numpy as np
from functools import partial
def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ):
"""Define the problem to solve."""
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import stiffness_from_lame
def mesh_hook(mesh, mode):
"""
Generate the block mesh.
"""
if mode == 'read':
mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3',
verbose=False)
return mesh
elif mode == 'write':
pass
filename_mesh = UserMeshIO(mesh_hook)
options = {
'nls' : 'newton',
'ls' : 'ls',
'ts' : 'ts',
'save_times' : 'all',
}
functions = {
'linear_pressure' : (linear_pressure,),
'empty' : (lambda ts, coor, mode, region, ig: None,),
}
fields = {
'displacement' : ('real', 3, 'Omega', 1),
}
# Coefficients are chosen so that the tangent stiffness is the same for all
# material for zero strains.
materials = {
'solid' : ({
'K' : K, # bulk modulus
'mu_nh' : mu_nh, # shear modulus of neoHookean term
'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term
'kappa' : kappa, # second modulus of Mooney-Rivlin term
# elasticity for LE term
'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu),
},),
'load' : 'empty',
}
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (z < 0.1)', 'facet'),
'Top' : ('vertices in (z > 2.9)', 'facet'),
}
ebcs = {
'fixb' : ('Bottom', {'u.all' : 0.0}),
'fixt' : ('Top', {'u.[0,1]' : 0.0}),
}
integrals = {
'i' : 1,
'isurf' : 2,
}
equations = {
'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u)
+ dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u)
+ dw_tl_bulk_penalty.i.Omega(solid.K, v, u)
= dw_surface_ltr.isurf.Top(load.val, v)""",
}
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 5,
'eps_a' : 1e-10,
'eps_r' : 1.0,
}),
'ts' : ('ts.simple', {
't0' : 0,
't1' : 1,
'dt' : None,
'n_step' : 26, # has precedence over dt!
'verbose' : 1,
}),
}
return locals()
##
# Pressure tractions.
def linear_pressure(ts, coor, mode=None, coef=1, **kwargs):
if mode == 'qp':
val = np.tile(coef * ts.step, (coor.shape[0], 1, 1))
return {'val' : val}
def store_top_u(displacements):
"""Function _store() will be called at the end of each loading step. Top
displacements will be stored into `displacements`."""
def _store(problem, ts, state):
top = problem.domain.regions['Top']
top_u = problem.get_variables()['u'].get_state_in_region(top)
displacements.append(np.mean(top_u[:,-1]))
return _store
def solve_branch(problem, branch_function, material_type):
eq = problem.conf.equations[material_type]
problem.set_equations({material_type : eq})
load = problem.get_materials()['load']
load.set_function(branch_function)
out = []
problem.solve(save_results=False, step_hook=store_top_u(out))
displacements = np.array(out, dtype=np.float64)
return displacements
helps = {
'no_plot' : 'do not show plot window',
}
def plot_mesh(pb):
# plot mesh for macro problem
coors = pb.domain.mesh.coors
graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0])
fig2 = | plt.figure(figsize=(5,6)) | sfepy.base.plotutils.plt.figure |