prompt
stringlengths
174
59.5k
completion
stringlengths
7
228
api
stringlengths
12
64
""" Functions to visualize the geometry elements and numbering and orientation of their facets (edges and faces). The standard geometry elements can be plotted by running:: $ python sfepy/postprocess/plot_facets.py """ import numpy as nm import matplotlib.pyplot as plt from sfepy.linalg import (get_perpendiculars, normalize_vectors, make_axis_rotation_matrix) from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs def plot_geometry(ax, gel, show=False): """ Plot a geometry element as a wireframe. """ ax = plot_mesh(ax, gel.coors, [gel.conn], gel.edges, show=False) ax = plot_global_dofs(ax, gel.coors, [gel.conn], show=show) return ax def plot_edges(ax, gel, length, show=False): """ Plot edges of a geometry element as numbered arrows. """ dim = gel.dim ax = _get_axes(ax, dim) l2 = 0.5 * length for ii, edge in enumerate(gel.edges): cc = gel.coors[edge] centre = 0.5 * cc.sum(axis=0) vdir = (cc - centre) normalize_vectors(vdir) cc = l2 * vdir + centre draw_arrow(ax, cc, length=0.3*length, linewidth=3, color='b') if dim == 3: cx, cy, cz = centre ax.text(cx, cy, cz, ii, color='b', fontsize=10, weight='light') else: cx, cy = centre ax.text(cx, cy, ii, color='b', fontsize=10, weight='light') return ax def plot_faces(ax, gel, radius, n_point, show=False): """ Plot faces of a 3D geometry element as numbered oriented arcs. An arc centre corresponds to the first node of a face. It points from the first edge towards the last edge of the face. """ dim = gel.dim ax = _get_axes(ax, dim) if dim < 3: return ax for ii, face in enumerate(gel.faces): cc = gel.coors[face] t1 = cc[1, :] - cc[0, :] t2 = cc[-1, :] - cc[0, :] n = nm.cross(t1, t2) nt1 = nm.linalg.norm(t1) nt2 = nm.linalg.norm(t2) angle = nm.arccos(nm.dot(t1, t2) / (nt1 * nt2)) da = angle / (n_point - 1) mtx =
make_axis_rotation_matrix(n, da)
sfepy.linalg.make_axis_rotation_matrix
""" Functions to visualize the geometry elements and numbering and orientation of their facets (edges and faces). The standard geometry elements can be plotted by running:: $ python sfepy/postprocess/plot_facets.py """ import numpy as nm import matplotlib.pyplot as plt from sfepy.linalg import (get_perpendiculars, normalize_vectors, make_axis_rotation_matrix) from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs def plot_geometry(ax, gel, show=False): """ Plot a geometry element as a wireframe. """ ax = plot_mesh(ax, gel.coors, [gel.conn], gel.edges, show=False) ax = plot_global_dofs(ax, gel.coors, [gel.conn], show=show) return ax def plot_edges(ax, gel, length, show=False): """ Plot edges of a geometry element as numbered arrows. """ dim = gel.dim ax = _get_axes(ax, dim) l2 = 0.5 * length for ii, edge in enumerate(gel.edges): cc = gel.coors[edge] centre = 0.5 * cc.sum(axis=0) vdir = (cc - centre) normalize_vectors(vdir) cc = l2 * vdir + centre draw_arrow(ax, cc, length=0.3*length, linewidth=3, color='b') if dim == 3: cx, cy, cz = centre ax.text(cx, cy, cz, ii, color='b', fontsize=10, weight='light') else: cx, cy = centre ax.text(cx, cy, ii, color='b', fontsize=10, weight='light') return ax def plot_faces(ax, gel, radius, n_point, show=False): """ Plot faces of a 3D geometry element as numbered oriented arcs. An arc centre corresponds to the first node of a face. It points from the first edge towards the last edge of the face. """ dim = gel.dim ax = _get_axes(ax, dim) if dim < 3: return ax for ii, face in enumerate(gel.faces): cc = gel.coors[face] t1 = cc[1, :] - cc[0, :] t2 = cc[-1, :] - cc[0, :] n = nm.cross(t1, t2) nt1 = nm.linalg.norm(t1) nt2 = nm.linalg.norm(t2) angle = nm.arccos(nm.dot(t1, t2) / (nt1 * nt2)) da = angle / (n_point - 1) mtx = make_axis_rotation_matrix(n, da) rt = cc[0] + radius * t1 / nt1 coors = [rt] for ip in range(n_point - 1): rt = nm.dot(mtx.T, (rt - cc[0])) + cc[0] coors.append(rt) coors = nm.array(coors, dtype=nm.float64) centre = coors.sum(axis=0) / coors.shape[0] draw_arrow(ax, coors, length=0.3*radius, linewidth=3, color='r') if dim == 3: cx, cy, cz = centre ax.text(cx, cy, cz, ii, color='r', fontsize=10, weight='light') else: cx, cy = centre ax.text(cx, cy, ii, color='r', fontsize=10, weight='light') return ax def draw_arrow(ax, coors, angle=20.0, length=0.3, **kwargs): """ Draw a line ended with an arrow head, in 2D or 3D. """ color = kwargs.get('color', 'b') c0 = coors[-2] c1 = coors[-1] vd = c1 - c0 nvd = nm.linalg.norm(vd) vd /= nvd c0 = c1 - length * vd ps = get_perpendiculars(vd) rangle = nm.deg2rad(min(angle, 60.0)) plength = length * nm.arctan(rangle) if coors.shape[1] == 2: from matplotlib.patches import Polygon cx, cy = coors[:, 0], coors[:, 1] ax.plot(cx, cy, **kwargs) p0 = c0 + plength * ps p1 = c0 - plength * ps pol = Polygon([p0, p1, c1], color=color) ax.add_artist(pol) else: import mpl_toolkits.mplot3d as plt3 cx, cy, cz = coors[:, 0], coors[:, 1], coors[:, 2] ax.plot(cx, cy, cz, **kwargs) p00 = c0 + plength * ps[0] p01 = c0 - plength * ps[0] p10 = c0 + plength * ps[1] p11 = c0 - plength * ps[1] arr = plt3.art3d.Poly3DCollection([[p00, p01, c1], [p10, p11, c1]], color=color) ax.add_collection3d(arr) if __name__ == '__main__': from sfepy.discrete.fem.geometry_element import GeometryElement, geometry_data for key, gd in geometry_data.iteritems(): if key == '1_2' : continue gel =
GeometryElement(key)
sfepy.discrete.fem.geometry_element.GeometryElement
# c: 21.09.2008 import os import numpy as nm from sfepy import data_dir from sfepy.fem import MeshIO filename_mesh = data_dir + '/meshes/2d/special/circle_in_square.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/circle_in_square_small.mesh' ## filename_mesh = data_dir + '/meshes/3d/special/cube_sphere.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/cube_cylinder.mesh' omega = 1 omega_squared = omega**2 conf_dir = os.path.dirname(__file__) io =
MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir)
sfepy.fem.MeshIO.any_from_filename
from sfepy import data_dir filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_data(nodes, nod_ids, conns, mat_ids, descs) ## mesh.write('aux.vtk', io='auto') elif mode == 'write': pass from sfepy.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook,
UserMeshIO(mesh_hook)
sfepy.fem.meshio.UserMeshIO
from sfepy import data_dir filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_data(nodes, nod_ids, conns, mat_ids, descs) ## mesh.write('aux.vtk', io='auto') elif mode == 'write': pass from sfepy.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook, UserMeshIO(mesh_hook)]) same = [(0, 1), (2, 3)] import os.path as op from sfepy.base.testing import TestCommon, assert_ ## # c: 05.02.2008 class Test( TestCommon ): """Write test names explicitely to impose a given order of evaluation.""" tests = ['test_read_meshes', 'test_compare_same_meshes', 'test_read_dimension'] ## # c: 05.02.2008, r: 05.02.2008 def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 05.02.2008, r: 05.02.2008 def test_read_meshes( self ): """Try to read all listed meshes.""" from sfepy.fem import Mesh conf_dir = op.dirname(__file__) meshes = {} for ii, filename in enumerate( filename_meshes ): self.report( '%d. mesh: %s' % (ii + 1, filename) ) mesh =
Mesh.from_file(filename, prefix_dir=conf_dir)
sfepy.fem.Mesh.from_file
from sfepy import data_dir filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_data(nodes, nod_ids, conns, mat_ids, descs) ## mesh.write('aux.vtk', io='auto') elif mode == 'write': pass from sfepy.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook, UserMeshIO(mesh_hook)]) same = [(0, 1), (2, 3)] import os.path as op from sfepy.base.testing import TestCommon, assert_ ## # c: 05.02.2008 class Test( TestCommon ): """Write test names explicitely to impose a given order of evaluation.""" tests = ['test_read_meshes', 'test_compare_same_meshes', 'test_read_dimension'] ## # c: 05.02.2008, r: 05.02.2008 def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 05.02.2008, r: 05.02.2008 def test_read_meshes( self ): """Try to read all listed meshes.""" from sfepy.fem import Mesh conf_dir = op.dirname(__file__) meshes = {} for ii, filename in enumerate( filename_meshes ): self.report( '%d. mesh: %s' % (ii + 1, filename) ) mesh = Mesh.from_file(filename, prefix_dir=conf_dir) assert_(mesh.dim == (mesh.coors.shape[1])) assert_(mesh.n_nod == (mesh.coors.shape[0])) assert_(mesh.n_nod == (mesh.ngroups.shape[0])) assert_(mesh.n_el == sum(mesh.n_els)) for ig, conn in enumerate( mesh.conns ): assert_(conn.shape[0] == len(mesh.mat_ids[ig])) assert_(conn.shape[0] == mesh.n_els[ig]) assert_(conn.shape[1] == mesh.n_e_ps[ig]) self.report( 'read ok' ) meshes[filename] = mesh self.meshes = meshes return True ## # c: 05.02.2008, r: 05.02.2008 def test_compare_same_meshes( self ): """Compare same meshes in various formats.""" import numpy as nm oks = [] for i0, i1 in same: name0 = filename_meshes[i0] name1 = filename_meshes[i1] self.report( 'comparing meshes from "%s" and "%s"' % (name0, name1) ) mesh0 = self.meshes[name0] mesh1 = self.meshes[name1] ok0 = (mesh0.dim == mesh1.dim) if not ok0: self.report( 'dimension failed!' ) oks.append( ok0 ) ok0 = mesh0.n_nod == mesh1.n_nod if not ok0: self.report( 'number of nodes failed!' ) oks.append( ok0 ) ok0 = mesh0.n_el == mesh1.n_el if not ok0: self.report( 'number of elements failed!' ) oks.append( ok0 ) ok0 = mesh0.n_e_ps == mesh1.n_e_ps if not ok0: self.report( 'number of element points failed!' ) oks.append( ok0 ) ok0 = mesh0.descs == mesh1.descs if not ok0: self.report( 'element types failed!' ) oks.append( ok0 ) ok0 = nm.allclose( mesh0.coors, mesh1.coors ) if not ok0: self.report( 'nodes failed!' ) oks.append( ok0 ) ok0 = nm.all( mesh0.ngroups == mesh1.ngroups ) if not ok0: self.report( 'node groups failed!' ) oks.append( ok0 ) for ii in range( len( mesh0.mat_ids ) ): ok0 = nm.all( mesh0.mat_ids[ii] == mesh1.mat_ids[ii] ) if not ok0: self.report( 'material ids failed!' ) oks.append( ok0 ) for ii in range( len( mesh0.mat_ids ) ): ok0 = nm.all( mesh0.conns[ii] == mesh1.conns[ii] ) if not ok0: self.report( 'connectivities failed!' ) oks.append( ok0 ) return sum( oks ) == len( oks ) ## # c: 03.07.2008, r: 03.07.2008 def test_read_dimension( self ): from sfepy.fem import MeshIO meshes = {data_dir + '/meshes/various_formats/small2d.mesh' : 2, data_dir + '/meshes/various_formats/small2d.vtk' : 2, data_dir + '/meshes/various_formats/small3d.mesh' : 3} ok = True conf_dir = op.dirname(__file__) for filename, adim in meshes.iteritems(): self.report( 'mesh: %s, dimension %d' % (filename, adim) ) io =
MeshIO.any_from_filename(filename, prefix_dir=conf_dir)
sfepy.fem.MeshIO.any_from_filename
from sfepy import data_dir filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_data(nodes, nod_ids, conns, mat_ids, descs) ## mesh.write('aux.vtk', io='auto') elif mode == 'write': pass from sfepy.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook, UserMeshIO(mesh_hook)]) same = [(0, 1), (2, 3)] import os.path as op from sfepy.base.testing import TestCommon, assert_ ## # c: 05.02.2008 class Test( TestCommon ): """Write test names explicitely to impose a given order of evaluation.""" tests = ['test_read_meshes', 'test_compare_same_meshes', 'test_read_dimension'] ## # c: 05.02.2008, r: 05.02.2008 def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 05.02.2008, r: 05.02.2008 def test_read_meshes( self ): """Try to read all listed meshes.""" from sfepy.fem import Mesh conf_dir = op.dirname(__file__) meshes = {} for ii, filename in enumerate( filename_meshes ): self.report( '%d. mesh: %s' % (ii + 1, filename) ) mesh = Mesh.from_file(filename, prefix_dir=conf_dir) assert_(mesh.dim == (mesh.coors.shape[1])) assert_(mesh.n_nod == (mesh.coors.shape[0])) assert_(mesh.n_nod == (mesh.ngroups.shape[0])) assert_(mesh.n_el == sum(mesh.n_els)) for ig, conn in enumerate( mesh.conns ): assert_(conn.shape[0] == len(mesh.mat_ids[ig]))
assert_(conn.shape[0] == mesh.n_els[ig])
sfepy.base.testing.assert_
from sfepy import data_dir filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_data(nodes, nod_ids, conns, mat_ids, descs) ## mesh.write('aux.vtk', io='auto') elif mode == 'write': pass from sfepy.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook, UserMeshIO(mesh_hook)]) same = [(0, 1), (2, 3)] import os.path as op from sfepy.base.testing import TestCommon, assert_ ## # c: 05.02.2008 class Test( TestCommon ): """Write test names explicitely to impose a given order of evaluation.""" tests = ['test_read_meshes', 'test_compare_same_meshes', 'test_read_dimension'] ## # c: 05.02.2008, r: 05.02.2008 def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 05.02.2008, r: 05.02.2008 def test_read_meshes( self ): """Try to read all listed meshes.""" from sfepy.fem import Mesh conf_dir = op.dirname(__file__) meshes = {} for ii, filename in enumerate( filename_meshes ): self.report( '%d. mesh: %s' % (ii + 1, filename) ) mesh = Mesh.from_file(filename, prefix_dir=conf_dir) assert_(mesh.dim == (mesh.coors.shape[1])) assert_(mesh.n_nod == (mesh.coors.shape[0])) assert_(mesh.n_nod == (mesh.ngroups.shape[0])) assert_(mesh.n_el == sum(mesh.n_els)) for ig, conn in enumerate( mesh.conns ): assert_(conn.shape[0] == len(mesh.mat_ids[ig])) assert_(conn.shape[0] == mesh.n_els[ig])
assert_(conn.shape[1] == mesh.n_e_ps[ig])
sfepy.base.testing.assert_
# 10.07.2007, c # last revision: 25.03.2008 from sfepy import data_dir filename_meshes = ['/meshes/3d/cube_medium_tetra.mesh', '/meshes/3d/cube_medium_tetra.mesh', '/meshes/3d/cube_medium_hexa.mesh'] filename_meshes = [data_dir + name for name in filename_meshes] all_your_bases = [1, 2, 1] filename_mesh = None field_1 = { 'name' : '3_displacement', 'dtype' : 'real', 'shape' : (3,), 'region' : 'Omega', 'approx_order' : None, } def get_pars( dim, full = False ): import numpy as nm sym = (dim + 1) * dim / 2 lam = 1e1 mu = 1e0 o = nm.array( [1.] * dim + [0.] * (sym - dim), dtype = nm.float64 ) oot = nm.outer( o, o ) if full: return lam * oot + mu * nm.diag( o + 1.0 ) else: return lam, mu material_1 = { 'name' : 'solid', 'values' : { 'lam' : get_pars( 3 )[0], 'mu' : get_pars( 3 )[1], 'Dijkl' : get_pars( 3, True ), } } material_2 = { 'name' : 'spring', 'values' : { '.pars' : {'stiffness' : 1e0, 'projection' : None}, } } variable_1 = { 'name' : 'u', 'kind' : 'unknown field', 'field' : '3_displacement', 'order' : 0, } variable_2 = { 'name' : 'v', 'kind' : 'test field', 'field' : '3_displacement', 'dual' : 'u', } region_1000 = { 'name' : 'Omega', 'select' : 'all', } region_1 = { 'name' : 'Bottom', 'select' : 'vertices in (z < -0.499)', 'kind' : 'facet', } region_2 = { 'name' : 'Top', 'select' : 'vertices in (z > 0.499)', 'kind' : 'facet', } ebc_1 = { 'name' : 'Load', 'region' : 'Top', 'dofs' : {'u.2' : 0.1}, } integral_1 = { 'name' : 'i', 'order' : 2, } equations_iso = { 'balance_of_forces' : """dw_lin_elastic_iso.i.Omega( solid.lam, solid.mu, v, u ) = dw_point_lspring.i.Bottom( spring.pars, v, u )""", } equations_general = { 'balance_of_forces' : """dw_lin_elastic.i.Omega( solid.Dijkl, v, u ) = dw_point_lspring.i.Bottom( spring.pars, v, u )""", } solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, } from sfepy.base.testing import TestCommon ## # 10.07.2007, c class Test( TestCommon ): tests = ['test_get_solution', 'test_linear_terms'] ## # 10.07.2007, c def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 25.03.2008, r: 25.03.2008 def test_linear_terms( self ): ok = True for sols in self.solutions: ok = ok and self.compare_vectors( sols[0], sols[1], label1 = 'isotropic', label2 = 'general' ) return ok ## # c: 10.07.2007, r: 25.03.2008 def test_get_solution( self ): from sfepy.applications import solve_pde from sfepy.base.base import IndexedStruct import os.path as op ok = True self.solutions = [] for ii, approx_order in enumerate(all_your_bases): fname = filename_meshes[ii] self.conf.filename_mesh = fname fields = {'field_1' : { 'name' : '3_displacement', 'dtype' : 'real', 'shape' : (3,), 'region' : 'Omega', 'approx_order' : approx_order, } } self.conf.edit('fields', fields) self.report( 'mesh: %s, base: %s' % (fname, approx_order) ) status =
IndexedStruct()
sfepy.base.base.IndexedStruct
from __future__ import absolute_import import numpy as nm import numpy.linalg as nla from sfepy.base.base import find_subclasses, assert_, Struct from sfepy.linalg import combine, insert_strided_axis from six.moves import range from functools import reduce # Requires fixed vertex numbering! vertex_maps = {3 : [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]], 2 : [[0, 0], [1, 0], [1, 1], [0, 1]], 1 : [[0], [1]]} def transform_basis(transform, bf): """ Transform a basis `bf` using `transform` array of matrices. """ if bf.ndim == 3: nbf = nm.einsum('cij,qdj->cqdi', transform, bf) else: nbf = nm.einsum('cij,oqdj->cqdi', transform, bf) return nbf class LagrangeNodes(Struct): """Helper class for defining nodes of Lagrange elements.""" @staticmethod def append_edges(nodes, nts, iseq, nt, edges, order): delta = 1.0 / float(order) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(order - 1): c2 = ie + 1 c1 = order - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_faces(nodes, nts, iseq, nt, faces, order): delta = 1.0 / float(order) for ii, face in enumerate(faces): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() for i1 in range(order - 2): for i2 in range(order - 2 - i1): c3 = i1 + 1 c2 = i2 + 1 c1 = order - c3 - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_bubbles(nodes, nts, iseq, nt, order): delta = 1.0 / float(order) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() for i1 in range(order - 3): for i2 in range(order - 3): for i3 in range(order - 3 - i1 - i2): c4 = i1 + 1 c3 = i2 + 1 c2 = i3 + 1 c1 = order - c4 - c3 - c2 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3 + c4 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_edges(nodes, nts, iseq, nt, edges, ao): delta = 1.0 / float(ao) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(ao - 1): c2 = ie + 1 c1 = ao - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_faces(nodes, nts, iseq, nt, faces, ao): delta = 1.0 / (float(ao) ** 2) for ii, face in enumerate( faces ): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() n4 = nodes[face[3],:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): c4 = i1 + 1 c3 = i2 + 1 c2 = ao - c4 c1 = ao - c3 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * n1 + c2 * c3 * n2 + c3 * c4 * n3 + c4 * c1 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_bubbles(nodes, nts, iseq, nt, ao): delta = 1.0 / (float(ao) ** 3) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() n5 = nodes[4,:].copy() n6 = nodes[5,:].copy() n7 = nodes[6,:].copy() n8 = nodes[7,:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): for i3 in range(ao - 1): c6 = i1 + 1 c5 = i2 + 1 c4 = i3 + 1 c3 = ao - c6 c2 = ao - c5 c1 = ao - c4 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * c3 * n1 + c4 * c2 * c3 * n2 + c5 * c4 * c3 * n3 + c1 * c3 * c5 * n4 + c1 * c2 * c6 * n5 + c4 * c2 * c6 * n6 + c5 * c4 * c6 * n7 + c1 * c6 * c5 * n8)] nodes[iseq,:] = aux iseq += 1 return iseq class NodeDescription(Struct): """ Describe FE nodes defined on different parts of a reference element. """ def _describe_facets(self, ii): nts = self.node_types[ii] ik = nm.where(nts[1:,1] > nts[:-1,1])[0] if len(ik) == 0: ifacets = None n_dof = 0 else: ii = ii.astype(nm.int32) ik = nm.r_[0, ik + 1, nts.shape[0]] ifacets = [ii[ik[ir] : ik[ir+1]] for ir in range(len(ik) - 1)] n_dof = len(ifacets[0]) return ifacets, n_dof def _describe_other(self, ii): if len(ii): return ii, len(ii) else: return None, 0 def _get_facet_nodes(self, ifacets, nodes): if ifacets is None: return None else: return [nodes[ii] for ii in ifacets] def _get_nodes(self, ii, nodes): if ii is None: return None else: return nodes[ii] def __init__(self, node_types, nodes): self.node_types = node_types # Vertex nodes. ii = nm.where(node_types[:,0] == 0)[0] self.vertex, self.n_vertex_nod = self._describe_other(ii) self.vertex_nodes = self._get_nodes(self.vertex, nodes) # Edge nodes. ii = nm.where(node_types[:,0] == 1)[0] self.edge, self.n_edge_nod = self._describe_facets(ii) self.edge_nodes = self._get_facet_nodes(self.edge, nodes) # Face nodes. ii = nm.where(node_types[:,0] == 2)[0] self.face, self.n_face_nod = self._describe_facets(ii) self.face_nodes = self._get_facet_nodes(self.face, nodes) # Bubble nodes. ii = nm.where(node_types[:,0] == 3)[0] self.bubble, self.n_bubble_nod = self._describe_other(ii) self.bubble_nodes = self._get_nodes(self.bubble, nodes) def has_extra_nodes(self): """ Return True if the element has some edge, face or bubble nodes. """ return (self.n_edge_nod + self.n_face_nod + self.n_bubble_nod) > 0 class PolySpace(Struct): """Abstract polynomial space class.""" _all = None keys = { (1, 2) : 'simplex', (2, 3) : 'simplex', (3, 4) : 'simplex', (2, 4) : 'tensor_product', (3, 8) : 'tensor_product', } @staticmethod def any_from_args(name, geometry, order, base='lagrange', force_bubble=False): """ Construct a particular polynomial space classes according to the arguments passed in. """ if name is None: name = PolySpace.suggest_name(geometry, order, base, force_bubble) if PolySpace._all is None: PolySpace._all = find_subclasses(globals(), [PolySpace]) table = PolySpace._all key = '%s_%s' % (base, PolySpace.keys[(geometry.dim, geometry.n_vertex)]) if (geometry.name == '1_2') and (key not in table): key = '%s_%s' % (base, 'tensor_product') if force_bubble: key += '_bubble' return table[key](name, geometry, order) @staticmethod def suggest_name(geometry, order, base='lagrange', force_bubble=False): """ Suggest the polynomial space name given its constructor parameters. """ aux = geometry.get_interpolation_name()[:-1] if force_bubble: return aux + ('%dB' % order) else: return aux + ('%d' % order) def __init__(self, name, geometry, order): self.name = name self.geometry = geometry self.order = order self.bbox = nm.vstack((geometry.coors.min(0), geometry.coors.max(0))) def eval_base(self, coors, diff=0, ori=None, force_axis=False, transform=None, suppress_errors=False, eps=1e-15): """ Evaluate the basis or its first or second derivatives in points given by coordinates. The real work is done in _eval_base() implemented in subclasses. Note that the second derivative code is a work-in-progress and only `coors` and `transform` arguments are used. Parameters ---------- coors : array_like The coordinates of points where the basis is evaluated. See Notes. diff : 0, 1 or 2 If nonzero, return the given derivative. ori : array_like, optional Optional orientation of element facets for per element basis. force_axis : bool If True, force the resulting array shape to have one more axis even when `ori` is None. transform : array_like, optional The basis transform array. suppress_errors : bool If True, do not report points outside the reference domain. eps : float Accuracy for comparing coordinates. Returns ------- base : array The basis (shape (n_coor, 1, n_base)) or its first derivative (shape (n_coor, dim, n_base)) or its second derivative (shape (n_coor, dim, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if `ori` is given, or of length 1, if `force_axis` is True. Notes ----- If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell. """ coors = nm.asarray(coors) if not coors.ndim in (2, 3): raise ValueError('coordinates must have 2 or 3 dimensions! (%d)' % coors.ndim) if (coors.ndim == 2): base = self._eval_base(coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if (base.ndim == 3) and force_axis: base = base[None, ...] if not base.flags['C_CONTIGUOUS']: base = nm.ascontiguousarray(base) else: # Several point sets. if diff: bdim = self.geometry.dim else: bdim = 1 base = nm.empty((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64) for ii, _coors in enumerate(coors): base[ii] = self._eval_base(_coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if transform is not None: base = transform_basis(transform, base) return base def get_mtx_i(self): return self.mtx_i def describe_nodes(self): return NodeDescription(self.nts, self.nodes) class LagrangePolySpace(PolySpace): def create_context(self, cmesh, eps, check_errors, i_max, newton_eps, tdim=None): from sfepy.discrete.fem.extmods.bases import CLagrangeContext ref_coors = self.geometry.coors if cmesh is not None: mesh_coors = cmesh.coors conn = cmesh.get_conn(cmesh.tdim, 0) mesh_conn = conn.indices.reshape(cmesh.n_el, -1).astype(nm.int32) if tdim is None: tdim = cmesh.tdim else: mesh_coors = mesh_conn = None if tdim is None: raise ValueError('supply either cmesh or tdim!') ctx = CLagrangeContext(order=self.order, tdim=tdim, nodes=self.nodes, ref_coors=ref_coors, mesh_coors=mesh_coors, mesh_conn=mesh_conn, mtx_i=self.get_mtx_i(), eps=eps, check_errors=check_errors, i_max=i_max, newton_eps=newton_eps) return ctx def _eval_base(self, coors, diff=0, ori=None, suppress_errors=False, eps=1e-15): """ See :func:`PolySpace.eval_base()`. """ if diff == 2: base = self._eval_hessian(coors) else: base = self.eval_ctx.evaluate(coors, diff=diff, eps=eps, check_errors=not suppress_errors) return base class LagrangeSimplexPolySpace(LagrangePolySpace): """Lagrange polynomial space on a simplex domain.""" name = 'lagrange_simplex' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) n_v = geometry.n_vertex mtx = nm.ones((n_v, n_v), nm.float64) mtx[0:n_v-1,:] = nm.transpose(geometry.coors) self.mtx_i = nm.ascontiguousarray(nla.inv(mtx)) self.rhs = nm.ones((n_v,), nm.float64) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def _define_nodes(self): # Factorial. fac = lambda n : reduce(lambda a, b : a * (b + 1), range(n), 1) geometry = self.geometry n_v, dim = geometry.n_vertex, geometry.dim order = self.order n_nod = fac(order + dim) // (fac(order) * fac(dim)) ## print n_nod, gd nodes = nm.zeros((n_nod, n_v), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_v,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange(n_v, dtype = nm.int32) aux = order * nm.identity(n_v, dtype = nm.int32) nodes[iseq:iseq+n_v,:] = aux iseq += n_v if dim == 1: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 3, [[0, 1, 2]], order) elif dim == 3: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError ## print nm.concatenate((nts, nodes), 1) # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order): raise AssertionError('wrong orders! (%d == all of %s)' % (order, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: node_coors = nm.dot(nodes, geometry.coors) / order return nodes, nts, node_coors def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ def get_bc(coor): rhs = nm.concatenate((coor, [1])) bc = nm.dot(self.mtx_i, rhs) return bc def get_val(bc, node, omit=[]): val = nm.ones(1, nm.float64) for i1 in range(bc.shape[0]): if i1 in omit: continue for i2 in range(node[i1]): val *= (self.order * bc[i1] - i2) / (i2 + 1.0) return val def get_der(bc1, node1, omit=[]): val = nm.zeros(1, nm.float64) for i1 in range(node1): if i1 in omit: continue aux = nm.ones(1, nm.float64) for i2 in range(node1): if (i1 == i2) or (i2 in omit): continue aux *= (self.order * bc1 - i2) / (i2 + 1.0) val += aux * self.order / (i1 + 1.0) return val n_v = self.mtx_i.shape[0] dim = n_v - 1 mi = self.mtx_i[:, :dim] bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) for ic, coor in enumerate(coors): bc = get_bc(coor) for ii, node in enumerate(self.nodes): for ig1, bc1 in enumerate(bc): # 1. derivative w.r.t. bc1. for ig2, bc2 in enumerate(bc): # 2. derivative w.r.t. bc2. if ig1 == ig2: val = get_val(bc, node, omit=[ig1]) vv = 0.0 for i1 in range(node[ig1]): aux = get_der(bc2, node[ig2], omit=[i1]) vv += aux * self.order / (i1 + 1.0) val *= vv else: val = get_val(bc, node, omit=[ig1, ig2]) val *= get_der(bc1, node[ig1]) val *= get_der(bc2, node[ig2]) bfgg[ic, :, :, ii] += val * mi[ig1] * mi[ig2][:, None] return bfgg class LagrangeSimplexBPolySpace(LagrangeSimplexPolySpace): """Lagrange polynomial space with forced bubble function on a simplex domain.""" name = 'lagrange_simplex_bubble' def __init__(self, name, geometry, order, init_context=True): LagrangeSimplexPolySpace.__init__(self, name, geometry, order, init_context=False) nodes, nts, node_coors = self.nodes, self.nts, self.node_coors shape = [nts.shape[0] + 1, 2] nts = nm.resize(nts, shape) nts[-1,:] = [3, 0] shape = [nodes.shape[0] + 1, nodes.shape[1]] nodes = nm.resize(nodes, shape) # Make a 'hypercubic' (cubic in 2D) node. nodes[-1,:] = 1 n_v = self.geometry.n_vertex tmp = nm.ones((n_v,), nm.int32) node_coors = nm.vstack((node_coors, nm.dot(tmp, self.geometry.coors) / n_v)) self.nodes, self.nts = nodes, nts self.node_coors = nm.ascontiguousarray(node_coors) self.bnode = nodes[-1:,:] self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def create_context(self, *args, **kwargs): ctx = LagrangePolySpace.create_context(self, *args, **kwargs) ctx.is_bubble = 1 return ctx class LagrangeTensorProductPolySpace(LagrangePolySpace): """Lagrange polynomial space on a tensor product domain.""" name = 'lagrange_tensor_product' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) g1d = Struct(n_vertex = 2, dim = 1, coors = self.bbox[:,0:1].copy()) self.ps1d = LagrangeSimplexPolySpace('P_aux', g1d, order, init_context=False) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: tdim = int(nm.sqrt(geometry.n_vertex)) self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=tdim) else: self.eval_ctx = None def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim vertex_map = order * nm.array(vertex_maps[dim], dtype=nm.int32) n_nod = (order + 1) ** dim nodes = nm.zeros((n_nod, 2 * dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_nod,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange( n_v, dtype = nm.int32 ) order * nm.identity( n_v, dtype = nm.int32 ) if dim == 3: for ii in range(n_v): i1, i2, i3 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2, order - i3, i3] iseq += 1 elif dim == 2: for ii in range(n_v): i1, i2 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2] iseq += 1 else: for ii in range(n_v): i1 = vertex_map[ii][0] nodes[iseq,:] = [order - i1, i1] iseq += 1 if dim == 1: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 3, [[0, 1, 2, 3]], order) elif dim == 3: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_tp_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order * dim): raise AssertionError('wrong orders! (%d == all of %s)' % (order * dim, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: c_min, c_max = self.bbox[:,0] cr = nm.arange(2 * dim) node_coors = (nodes[:,cr[::2]] * c_min + nodes[:,cr[1::2]] * c_max) / order return nodes, nts, node_coors def _eval_base_debug(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """Python version of eval_base().""" dim = self.geometry.dim ev = self.ps1d.eval_base if diff: base = nm.ones((coors.shape[0], dim, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod for iv in range(dim): if ii == iv: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=True, suppress_errors=suppress_errors, eps=eps) else: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=False, suppress_errors=suppress_errors, eps=eps) else: base = nm.ones((coors.shape[0], 1, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod base *= ev(coors[:,ii:ii+1].copy(), diff=diff, suppress_errors=suppress_errors, eps=eps) return base def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ evh = self.ps1d.eval_base dim = self.geometry.dim bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) v0s = [] v1s = [] v2s = [] for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod ev = self.ps1d.create_context(None, 0, 1e-15, 100, 1e-8, tdim=1).evaluate v0s.append(ev(coors[:, ii:ii+1].copy())[:, 0, :]) v1s.append(ev(coors[:, ii:ii+1].copy(), diff=1)[:, 0, :]) v2s.append(evh(coors[:, ii:ii+1], diff=2)[:, 0, 0, :]) for ir in range(dim): vv = v2s[ir] # Destroys v2s! for ik in range(dim): if ik == ir: continue vv *= v0s[ik] bfgg[:, ir, ir, :] = vv for ic in range(dim): if ic == ir: continue val = v1s[ir] * v1s[ic] for ik in range(dim): if (ik == ir) or (ik == ic): continue val *= v0s[ik] bfgg[:, ir, ic, :] += val return bfgg def get_mtx_i(self): return self.ps1d.mtx_i class LobattoTensorProductPolySpace(PolySpace): """ Hierarchical polynomial space using Lobatto functions. Each row of the `nodes` attribute defines indices of Lobatto functions that need to be multiplied together to evaluate the corresponding shape function. This defines the ordering of basis functions on the reference element. """ name = 'lobatto_tensor_product' def __init__(self, name, geometry, order): PolySpace.__init__(self, name, geometry, order) aux = self._define_nodes() self.nodes, self.nts, node_coors, self.face_axes, self.sfnodes = aux self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] aux = nm.where(self.nodes > 0, self.nodes, 1) self.node_orders = nm.prod(aux, axis=1) self.edge_indx = nm.where(self.nts[:, 0] == 1)[0] self.face_indx = nm.where(self.nts[:, 0] == 2)[0] self.face_axes_nodes = self._get_face_axes_nodes(self.face_axes) def _get_counts(self): order = self.order dim = self.geometry.dim n_nod = (order + 1) ** dim n_per_edge = (order - 1) n_per_face = (order - 1) ** (dim - 1) n_bubble = (order - 1) ** dim return n_nod, n_per_edge, n_per_face, n_bubble def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim n_nod, n_per_edge, n_per_face, n_bubble = self._get_counts() nodes = nm.zeros((n_nod, dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) # Vertex nodes. nts[0:n_v, 0] = 0 nts[0:n_v, 1] = nm.arange(n_v, dtype=nm.int32) nodes[0:n_v] = nm.array(vertex_maps[dim], dtype=nm.int32) ii = n_v # Edge nodes. if (dim > 1) and (n_per_edge > 0): ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_edge, 2), dtype=nm.int32) zo[:, 1] = 1 for ie, edge in enumerate(geometry.edges): n1, n2 = nodes[edge] ifix = nm.where(n1 == n2)[0] irun = nm.where(n1 != n2)[0][0] ic = n1[ifix] nodes[ii:ii + n_per_edge, ifix] = zo[:, ic] nodes[ii:ii + n_per_edge, irun] = ik nts[ii:ii + n_per_edge] = [[1, ie]] ii += n_per_edge # 3D face nodes. face_axes = [] sfnodes = None if (dim == 3) and (n_per_face > 0): n_face = len(geometry.faces) sfnodes = nm.zeros((n_per_face * n_face, dim), nm.int32) ii0 = ii ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_face, 2), dtype=nm.int32) zo[:, 1] = 1 for ifa, face in enumerate(geometry.faces): ns = nodes[face] diff = nm.diff(ns, axis=0) asum = nm.abs(diff).sum(axis=0) ifix = nm.where(asum == 0)[0][0] ic = ns[0, ifix] irun1 = nm.where(asum == 2)[0][0] irun2 = nm.where(asum == 1)[0][0] iy, ix = nm.meshgrid(ik, ik) nodes[ii:ii + n_per_face, ifix] = zo[:, ic] nodes[ii:ii + n_per_face, irun1] = ix.ravel() nodes[ii:ii + n_per_face, irun2] = iy.ravel() nts[ii:ii + n_per_face] = [[2, ifa]] ij = ii - ii0 sfnodes[ij:ij + n_per_face, ifix] = zo[:, ic] sfnodes[ij:ij + n_per_face, irun1] = iy.ravel() sfnodes[ij:ij + n_per_face, irun2] = ix.ravel() face_axes.append([irun1, irun2]) ii += n_per_face face_axes = nm.array(face_axes) # Bubble nodes. if n_bubble > 0: ik = nm.arange(2, order + 1, dtype=nm.int32) nodes[ii:] = nm.array([aux for aux in combine([ik] * dim)]) nts[ii:ii + n_bubble] = [[3, 0]] ii += n_bubble
assert_(ii == n_nod)
sfepy.base.base.assert_
from __future__ import absolute_import import numpy as nm import numpy.linalg as nla from sfepy.base.base import find_subclasses, assert_, Struct from sfepy.linalg import combine, insert_strided_axis from six.moves import range from functools import reduce # Requires fixed vertex numbering! vertex_maps = {3 : [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]], 2 : [[0, 0], [1, 0], [1, 1], [0, 1]], 1 : [[0], [1]]} def transform_basis(transform, bf): """ Transform a basis `bf` using `transform` array of matrices. """ if bf.ndim == 3: nbf = nm.einsum('cij,qdj->cqdi', transform, bf) else: nbf = nm.einsum('cij,oqdj->cqdi', transform, bf) return nbf class LagrangeNodes(Struct): """Helper class for defining nodes of Lagrange elements.""" @staticmethod def append_edges(nodes, nts, iseq, nt, edges, order): delta = 1.0 / float(order) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(order - 1): c2 = ie + 1 c1 = order - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_faces(nodes, nts, iseq, nt, faces, order): delta = 1.0 / float(order) for ii, face in enumerate(faces): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() for i1 in range(order - 2): for i2 in range(order - 2 - i1): c3 = i1 + 1 c2 = i2 + 1 c1 = order - c3 - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_bubbles(nodes, nts, iseq, nt, order): delta = 1.0 / float(order) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() for i1 in range(order - 3): for i2 in range(order - 3): for i3 in range(order - 3 - i1 - i2): c4 = i1 + 1 c3 = i2 + 1 c2 = i3 + 1 c1 = order - c4 - c3 - c2 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3 + c4 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_edges(nodes, nts, iseq, nt, edges, ao): delta = 1.0 / float(ao) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(ao - 1): c2 = ie + 1 c1 = ao - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_faces(nodes, nts, iseq, nt, faces, ao): delta = 1.0 / (float(ao) ** 2) for ii, face in enumerate( faces ): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() n4 = nodes[face[3],:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): c4 = i1 + 1 c3 = i2 + 1 c2 = ao - c4 c1 = ao - c3 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * n1 + c2 * c3 * n2 + c3 * c4 * n3 + c4 * c1 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_bubbles(nodes, nts, iseq, nt, ao): delta = 1.0 / (float(ao) ** 3) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() n5 = nodes[4,:].copy() n6 = nodes[5,:].copy() n7 = nodes[6,:].copy() n8 = nodes[7,:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): for i3 in range(ao - 1): c6 = i1 + 1 c5 = i2 + 1 c4 = i3 + 1 c3 = ao - c6 c2 = ao - c5 c1 = ao - c4 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * c3 * n1 + c4 * c2 * c3 * n2 + c5 * c4 * c3 * n3 + c1 * c3 * c5 * n4 + c1 * c2 * c6 * n5 + c4 * c2 * c6 * n6 + c5 * c4 * c6 * n7 + c1 * c6 * c5 * n8)] nodes[iseq,:] = aux iseq += 1 return iseq class NodeDescription(Struct): """ Describe FE nodes defined on different parts of a reference element. """ def _describe_facets(self, ii): nts = self.node_types[ii] ik = nm.where(nts[1:,1] > nts[:-1,1])[0] if len(ik) == 0: ifacets = None n_dof = 0 else: ii = ii.astype(nm.int32) ik = nm.r_[0, ik + 1, nts.shape[0]] ifacets = [ii[ik[ir] : ik[ir+1]] for ir in range(len(ik) - 1)] n_dof = len(ifacets[0]) return ifacets, n_dof def _describe_other(self, ii): if len(ii): return ii, len(ii) else: return None, 0 def _get_facet_nodes(self, ifacets, nodes): if ifacets is None: return None else: return [nodes[ii] for ii in ifacets] def _get_nodes(self, ii, nodes): if ii is None: return None else: return nodes[ii] def __init__(self, node_types, nodes): self.node_types = node_types # Vertex nodes. ii = nm.where(node_types[:,0] == 0)[0] self.vertex, self.n_vertex_nod = self._describe_other(ii) self.vertex_nodes = self._get_nodes(self.vertex, nodes) # Edge nodes. ii = nm.where(node_types[:,0] == 1)[0] self.edge, self.n_edge_nod = self._describe_facets(ii) self.edge_nodes = self._get_facet_nodes(self.edge, nodes) # Face nodes. ii = nm.where(node_types[:,0] == 2)[0] self.face, self.n_face_nod = self._describe_facets(ii) self.face_nodes = self._get_facet_nodes(self.face, nodes) # Bubble nodes. ii = nm.where(node_types[:,0] == 3)[0] self.bubble, self.n_bubble_nod = self._describe_other(ii) self.bubble_nodes = self._get_nodes(self.bubble, nodes) def has_extra_nodes(self): """ Return True if the element has some edge, face or bubble nodes. """ return (self.n_edge_nod + self.n_face_nod + self.n_bubble_nod) > 0 class PolySpace(Struct): """Abstract polynomial space class.""" _all = None keys = { (1, 2) : 'simplex', (2, 3) : 'simplex', (3, 4) : 'simplex', (2, 4) : 'tensor_product', (3, 8) : 'tensor_product', } @staticmethod def any_from_args(name, geometry, order, base='lagrange', force_bubble=False): """ Construct a particular polynomial space classes according to the arguments passed in. """ if name is None: name = PolySpace.suggest_name(geometry, order, base, force_bubble) if PolySpace._all is None: PolySpace._all = find_subclasses(globals(), [PolySpace]) table = PolySpace._all key = '%s_%s' % (base, PolySpace.keys[(geometry.dim, geometry.n_vertex)]) if (geometry.name == '1_2') and (key not in table): key = '%s_%s' % (base, 'tensor_product') if force_bubble: key += '_bubble' return table[key](name, geometry, order) @staticmethod def suggest_name(geometry, order, base='lagrange', force_bubble=False): """ Suggest the polynomial space name given its constructor parameters. """ aux = geometry.get_interpolation_name()[:-1] if force_bubble: return aux + ('%dB' % order) else: return aux + ('%d' % order) def __init__(self, name, geometry, order): self.name = name self.geometry = geometry self.order = order self.bbox = nm.vstack((geometry.coors.min(0), geometry.coors.max(0))) def eval_base(self, coors, diff=0, ori=None, force_axis=False, transform=None, suppress_errors=False, eps=1e-15): """ Evaluate the basis or its first or second derivatives in points given by coordinates. The real work is done in _eval_base() implemented in subclasses. Note that the second derivative code is a work-in-progress and only `coors` and `transform` arguments are used. Parameters ---------- coors : array_like The coordinates of points where the basis is evaluated. See Notes. diff : 0, 1 or 2 If nonzero, return the given derivative. ori : array_like, optional Optional orientation of element facets for per element basis. force_axis : bool If True, force the resulting array shape to have one more axis even when `ori` is None. transform : array_like, optional The basis transform array. suppress_errors : bool If True, do not report points outside the reference domain. eps : float Accuracy for comparing coordinates. Returns ------- base : array The basis (shape (n_coor, 1, n_base)) or its first derivative (shape (n_coor, dim, n_base)) or its second derivative (shape (n_coor, dim, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if `ori` is given, or of length 1, if `force_axis` is True. Notes ----- If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell. """ coors = nm.asarray(coors) if not coors.ndim in (2, 3): raise ValueError('coordinates must have 2 or 3 dimensions! (%d)' % coors.ndim) if (coors.ndim == 2): base = self._eval_base(coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if (base.ndim == 3) and force_axis: base = base[None, ...] if not base.flags['C_CONTIGUOUS']: base = nm.ascontiguousarray(base) else: # Several point sets. if diff: bdim = self.geometry.dim else: bdim = 1 base = nm.empty((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64) for ii, _coors in enumerate(coors): base[ii] = self._eval_base(_coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if transform is not None: base = transform_basis(transform, base) return base def get_mtx_i(self): return self.mtx_i def describe_nodes(self): return NodeDescription(self.nts, self.nodes) class LagrangePolySpace(PolySpace): def create_context(self, cmesh, eps, check_errors, i_max, newton_eps, tdim=None): from sfepy.discrete.fem.extmods.bases import CLagrangeContext ref_coors = self.geometry.coors if cmesh is not None: mesh_coors = cmesh.coors conn = cmesh.get_conn(cmesh.tdim, 0) mesh_conn = conn.indices.reshape(cmesh.n_el, -1).astype(nm.int32) if tdim is None: tdim = cmesh.tdim else: mesh_coors = mesh_conn = None if tdim is None: raise ValueError('supply either cmesh or tdim!') ctx = CLagrangeContext(order=self.order, tdim=tdim, nodes=self.nodes, ref_coors=ref_coors, mesh_coors=mesh_coors, mesh_conn=mesh_conn, mtx_i=self.get_mtx_i(), eps=eps, check_errors=check_errors, i_max=i_max, newton_eps=newton_eps) return ctx def _eval_base(self, coors, diff=0, ori=None, suppress_errors=False, eps=1e-15): """ See :func:`PolySpace.eval_base()`. """ if diff == 2: base = self._eval_hessian(coors) else: base = self.eval_ctx.evaluate(coors, diff=diff, eps=eps, check_errors=not suppress_errors) return base class LagrangeSimplexPolySpace(LagrangePolySpace): """Lagrange polynomial space on a simplex domain.""" name = 'lagrange_simplex' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) n_v = geometry.n_vertex mtx = nm.ones((n_v, n_v), nm.float64) mtx[0:n_v-1,:] = nm.transpose(geometry.coors) self.mtx_i = nm.ascontiguousarray(nla.inv(mtx)) self.rhs = nm.ones((n_v,), nm.float64) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def _define_nodes(self): # Factorial. fac = lambda n : reduce(lambda a, b : a * (b + 1), range(n), 1) geometry = self.geometry n_v, dim = geometry.n_vertex, geometry.dim order = self.order n_nod = fac(order + dim) // (fac(order) * fac(dim)) ## print n_nod, gd nodes = nm.zeros((n_nod, n_v), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_v,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange(n_v, dtype = nm.int32) aux = order * nm.identity(n_v, dtype = nm.int32) nodes[iseq:iseq+n_v,:] = aux iseq += n_v if dim == 1: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 3, [[0, 1, 2]], order) elif dim == 3: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError ## print nm.concatenate((nts, nodes), 1) # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order): raise AssertionError('wrong orders! (%d == all of %s)' % (order, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: node_coors = nm.dot(nodes, geometry.coors) / order return nodes, nts, node_coors def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ def get_bc(coor): rhs = nm.concatenate((coor, [1])) bc = nm.dot(self.mtx_i, rhs) return bc def get_val(bc, node, omit=[]): val = nm.ones(1, nm.float64) for i1 in range(bc.shape[0]): if i1 in omit: continue for i2 in range(node[i1]): val *= (self.order * bc[i1] - i2) / (i2 + 1.0) return val def get_der(bc1, node1, omit=[]): val = nm.zeros(1, nm.float64) for i1 in range(node1): if i1 in omit: continue aux = nm.ones(1, nm.float64) for i2 in range(node1): if (i1 == i2) or (i2 in omit): continue aux *= (self.order * bc1 - i2) / (i2 + 1.0) val += aux * self.order / (i1 + 1.0) return val n_v = self.mtx_i.shape[0] dim = n_v - 1 mi = self.mtx_i[:, :dim] bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) for ic, coor in enumerate(coors): bc = get_bc(coor) for ii, node in enumerate(self.nodes): for ig1, bc1 in enumerate(bc): # 1. derivative w.r.t. bc1. for ig2, bc2 in enumerate(bc): # 2. derivative w.r.t. bc2. if ig1 == ig2: val = get_val(bc, node, omit=[ig1]) vv = 0.0 for i1 in range(node[ig1]): aux = get_der(bc2, node[ig2], omit=[i1]) vv += aux * self.order / (i1 + 1.0) val *= vv else: val = get_val(bc, node, omit=[ig1, ig2]) val *= get_der(bc1, node[ig1]) val *= get_der(bc2, node[ig2]) bfgg[ic, :, :, ii] += val * mi[ig1] * mi[ig2][:, None] return bfgg class LagrangeSimplexBPolySpace(LagrangeSimplexPolySpace): """Lagrange polynomial space with forced bubble function on a simplex domain.""" name = 'lagrange_simplex_bubble' def __init__(self, name, geometry, order, init_context=True): LagrangeSimplexPolySpace.__init__(self, name, geometry, order, init_context=False) nodes, nts, node_coors = self.nodes, self.nts, self.node_coors shape = [nts.shape[0] + 1, 2] nts = nm.resize(nts, shape) nts[-1,:] = [3, 0] shape = [nodes.shape[0] + 1, nodes.shape[1]] nodes = nm.resize(nodes, shape) # Make a 'hypercubic' (cubic in 2D) node. nodes[-1,:] = 1 n_v = self.geometry.n_vertex tmp = nm.ones((n_v,), nm.int32) node_coors = nm.vstack((node_coors, nm.dot(tmp, self.geometry.coors) / n_v)) self.nodes, self.nts = nodes, nts self.node_coors = nm.ascontiguousarray(node_coors) self.bnode = nodes[-1:,:] self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def create_context(self, *args, **kwargs): ctx = LagrangePolySpace.create_context(self, *args, **kwargs) ctx.is_bubble = 1 return ctx class LagrangeTensorProductPolySpace(LagrangePolySpace): """Lagrange polynomial space on a tensor product domain.""" name = 'lagrange_tensor_product' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) g1d = Struct(n_vertex = 2, dim = 1, coors = self.bbox[:,0:1].copy()) self.ps1d = LagrangeSimplexPolySpace('P_aux', g1d, order, init_context=False) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: tdim = int(nm.sqrt(geometry.n_vertex)) self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=tdim) else: self.eval_ctx = None def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim vertex_map = order * nm.array(vertex_maps[dim], dtype=nm.int32) n_nod = (order + 1) ** dim nodes = nm.zeros((n_nod, 2 * dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_nod,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange( n_v, dtype = nm.int32 ) order * nm.identity( n_v, dtype = nm.int32 ) if dim == 3: for ii in range(n_v): i1, i2, i3 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2, order - i3, i3] iseq += 1 elif dim == 2: for ii in range(n_v): i1, i2 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2] iseq += 1 else: for ii in range(n_v): i1 = vertex_map[ii][0] nodes[iseq,:] = [order - i1, i1] iseq += 1 if dim == 1: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 3, [[0, 1, 2, 3]], order) elif dim == 3: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_tp_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order * dim): raise AssertionError('wrong orders! (%d == all of %s)' % (order * dim, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: c_min, c_max = self.bbox[:,0] cr = nm.arange(2 * dim) node_coors = (nodes[:,cr[::2]] * c_min + nodes[:,cr[1::2]] * c_max) / order return nodes, nts, node_coors def _eval_base_debug(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """Python version of eval_base().""" dim = self.geometry.dim ev = self.ps1d.eval_base if diff: base = nm.ones((coors.shape[0], dim, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod for iv in range(dim): if ii == iv: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=True, suppress_errors=suppress_errors, eps=eps) else: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=False, suppress_errors=suppress_errors, eps=eps) else: base = nm.ones((coors.shape[0], 1, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod base *= ev(coors[:,ii:ii+1].copy(), diff=diff, suppress_errors=suppress_errors, eps=eps) return base def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ evh = self.ps1d.eval_base dim = self.geometry.dim bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) v0s = [] v1s = [] v2s = [] for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod ev = self.ps1d.create_context(None, 0, 1e-15, 100, 1e-8, tdim=1).evaluate v0s.append(ev(coors[:, ii:ii+1].copy())[:, 0, :]) v1s.append(ev(coors[:, ii:ii+1].copy(), diff=1)[:, 0, :]) v2s.append(evh(coors[:, ii:ii+1], diff=2)[:, 0, 0, :]) for ir in range(dim): vv = v2s[ir] # Destroys v2s! for ik in range(dim): if ik == ir: continue vv *= v0s[ik] bfgg[:, ir, ir, :] = vv for ic in range(dim): if ic == ir: continue val = v1s[ir] * v1s[ic] for ik in range(dim): if (ik == ir) or (ik == ic): continue val *= v0s[ik] bfgg[:, ir, ic, :] += val return bfgg def get_mtx_i(self): return self.ps1d.mtx_i class LobattoTensorProductPolySpace(PolySpace): """ Hierarchical polynomial space using Lobatto functions. Each row of the `nodes` attribute defines indices of Lobatto functions that need to be multiplied together to evaluate the corresponding shape function. This defines the ordering of basis functions on the reference element. """ name = 'lobatto_tensor_product' def __init__(self, name, geometry, order): PolySpace.__init__(self, name, geometry, order) aux = self._define_nodes() self.nodes, self.nts, node_coors, self.face_axes, self.sfnodes = aux self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] aux = nm.where(self.nodes > 0, self.nodes, 1) self.node_orders = nm.prod(aux, axis=1) self.edge_indx = nm.where(self.nts[:, 0] == 1)[0] self.face_indx = nm.where(self.nts[:, 0] == 2)[0] self.face_axes_nodes = self._get_face_axes_nodes(self.face_axes) def _get_counts(self): order = self.order dim = self.geometry.dim n_nod = (order + 1) ** dim n_per_edge = (order - 1) n_per_face = (order - 1) ** (dim - 1) n_bubble = (order - 1) ** dim return n_nod, n_per_edge, n_per_face, n_bubble def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim n_nod, n_per_edge, n_per_face, n_bubble = self._get_counts() nodes = nm.zeros((n_nod, dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) # Vertex nodes. nts[0:n_v, 0] = 0 nts[0:n_v, 1] = nm.arange(n_v, dtype=nm.int32) nodes[0:n_v] = nm.array(vertex_maps[dim], dtype=nm.int32) ii = n_v # Edge nodes. if (dim > 1) and (n_per_edge > 0): ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_edge, 2), dtype=nm.int32) zo[:, 1] = 1 for ie, edge in enumerate(geometry.edges): n1, n2 = nodes[edge] ifix = nm.where(n1 == n2)[0] irun = nm.where(n1 != n2)[0][0] ic = n1[ifix] nodes[ii:ii + n_per_edge, ifix] = zo[:, ic] nodes[ii:ii + n_per_edge, irun] = ik nts[ii:ii + n_per_edge] = [[1, ie]] ii += n_per_edge # 3D face nodes. face_axes = [] sfnodes = None if (dim == 3) and (n_per_face > 0): n_face = len(geometry.faces) sfnodes = nm.zeros((n_per_face * n_face, dim), nm.int32) ii0 = ii ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_face, 2), dtype=nm.int32) zo[:, 1] = 1 for ifa, face in enumerate(geometry.faces): ns = nodes[face] diff = nm.diff(ns, axis=0) asum = nm.abs(diff).sum(axis=0) ifix = nm.where(asum == 0)[0][0] ic = ns[0, ifix] irun1 = nm.where(asum == 2)[0][0] irun2 = nm.where(asum == 1)[0][0] iy, ix = nm.meshgrid(ik, ik) nodes[ii:ii + n_per_face, ifix] = zo[:, ic] nodes[ii:ii + n_per_face, irun1] = ix.ravel() nodes[ii:ii + n_per_face, irun2] = iy.ravel() nts[ii:ii + n_per_face] = [[2, ifa]] ij = ii - ii0 sfnodes[ij:ij + n_per_face, ifix] = zo[:, ic] sfnodes[ij:ij + n_per_face, irun1] = iy.ravel() sfnodes[ij:ij + n_per_face, irun2] = ix.ravel() face_axes.append([irun1, irun2]) ii += n_per_face face_axes = nm.array(face_axes) # Bubble nodes. if n_bubble > 0: ik = nm.arange(2, order + 1, dtype=nm.int32) nodes[ii:] = nm.array([aux for aux in combine([ik] * dim)]) nts[ii:ii + n_bubble] = [[3, 0]] ii += n_bubble assert_(ii == n_nod) # Coordinates of the "nodes". All nodes on a facet have the same # coordinates - the centre of the facet. c_min, c_max = self.bbox[:, 0] node_coors = nm.zeros(nodes.shape, dtype=nm.float64) node_coors[:n_v] = nodes[:n_v] if (dim > 1) and (n_per_edge > 0): ie = nm.where(nts[:, 0] == 1)[0] node_coors[ie] = node_coors[geometry.edges[nts[ie, 1]]].mean(1) if (dim == 3) and (n_per_face > 0): ifa = nm.where(nts[:, 0] == 2)[0] node_coors[ifa] = node_coors[geometry.faces[nts[ifa, 1]]].mean(1) if n_bubble > 0: ib = nm.where(nts[:, 0] == 3)[0] node_coors[ib] = node_coors[geometry.conn].mean(0) return nodes, nts, node_coors, face_axes, sfnodes def _get_face_axes_nodes(self, face_axes): if not len(face_axes): return None nodes = self.nodes[self.face_indx] n_per_face = self._get_counts()[2] anodes = nm.tile(nodes[:n_per_face, face_axes[0]], (6, 1)) return anodes def _eval_base(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """ See PolySpace.eval_base(). """ from .extmods.lobatto_bases import eval_lobatto_tensor_product as ev c_min, c_max = self.bbox[:, 0] base = ev(coors, self.nodes, c_min, c_max, self.order, diff) if ori is not None: ebase = nm.tile(base, (ori.shape[0], 1, 1, 1)) if self.edge_indx.shape[0]: # Orient edge functions. ie, ii = nm.where(ori[:, self.edge_indx] == 1) ii = self.edge_indx[ii] ebase[ie, :, :, ii] *= -1.0 if self.face_indx.shape[0]: # Orient face functions. fori = ori[:, self.face_indx] # ... normal axis order ie, ii = nm.where((fori == 1) | (fori == 2)) ii = self.face_indx[ii] ebase[ie, :, :, ii] *= -1.0 # ... swapped axis order sbase = ev(coors, self.sfnodes, c_min, c_max, self.order, diff) sbase =
insert_strided_axis(sbase, 0, ori.shape[0])
sfepy.linalg.insert_strided_axis
from __future__ import absolute_import import numpy as nm import numpy.linalg as nla from sfepy.base.base import find_subclasses, assert_, Struct from sfepy.linalg import combine, insert_strided_axis from six.moves import range from functools import reduce # Requires fixed vertex numbering! vertex_maps = {3 : [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]], 2 : [[0, 0], [1, 0], [1, 1], [0, 1]], 1 : [[0], [1]]} def transform_basis(transform, bf): """ Transform a basis `bf` using `transform` array of matrices. """ if bf.ndim == 3: nbf = nm.einsum('cij,qdj->cqdi', transform, bf) else: nbf = nm.einsum('cij,oqdj->cqdi', transform, bf) return nbf class LagrangeNodes(Struct): """Helper class for defining nodes of Lagrange elements.""" @staticmethod def append_edges(nodes, nts, iseq, nt, edges, order): delta = 1.0 / float(order) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(order - 1): c2 = ie + 1 c1 = order - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_faces(nodes, nts, iseq, nt, faces, order): delta = 1.0 / float(order) for ii, face in enumerate(faces): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() for i1 in range(order - 2): for i2 in range(order - 2 - i1): c3 = i1 + 1 c2 = i2 + 1 c1 = order - c3 - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_bubbles(nodes, nts, iseq, nt, order): delta = 1.0 / float(order) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() for i1 in range(order - 3): for i2 in range(order - 3): for i3 in range(order - 3 - i1 - i2): c4 = i1 + 1 c3 = i2 + 1 c2 = i3 + 1 c1 = order - c4 - c3 - c2 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2 + c3 * n3 + c4 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_edges(nodes, nts, iseq, nt, edges, ao): delta = 1.0 / float(ao) for ii, edge in enumerate(edges): n1 = nodes[edge[0],:].copy() n2 = nodes[edge[1],:].copy() for ie in range(ao - 1): c2 = ie + 1 c1 = ao - c2 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * n1 + c2 * n2)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_faces(nodes, nts, iseq, nt, faces, ao): delta = 1.0 / (float(ao) ** 2) for ii, face in enumerate( faces ): n1 = nodes[face[0],:].copy() n2 = nodes[face[1],:].copy() n3 = nodes[face[2],:].copy() n4 = nodes[face[3],:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): c4 = i1 + 1 c3 = i2 + 1 c2 = ao - c4 c1 = ao - c3 nts[iseq] = [nt, ii] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * n1 + c2 * c3 * n2 + c3 * c4 * n3 + c4 * c1 * n4)] nodes[iseq,:] = aux iseq += 1 return iseq @staticmethod def append_tp_bubbles(nodes, nts, iseq, nt, ao): delta = 1.0 / (float(ao) ** 3) n1 = nodes[0,:].copy() n2 = nodes[1,:].copy() n3 = nodes[2,:].copy() n4 = nodes[3,:].copy() n5 = nodes[4,:].copy() n6 = nodes[5,:].copy() n7 = nodes[6,:].copy() n8 = nodes[7,:].copy() for i1 in range(ao - 1): for i2 in range(ao - 1): for i3 in range(ao - 1): c6 = i1 + 1 c5 = i2 + 1 c4 = i3 + 1 c3 = ao - c6 c2 = ao - c5 c1 = ao - c4 nts[iseq] = [nt, 0] aux = [int(round(tmp)) for tmp in delta * (c1 * c2 * c3 * n1 + c4 * c2 * c3 * n2 + c5 * c4 * c3 * n3 + c1 * c3 * c5 * n4 + c1 * c2 * c6 * n5 + c4 * c2 * c6 * n6 + c5 * c4 * c6 * n7 + c1 * c6 * c5 * n8)] nodes[iseq,:] = aux iseq += 1 return iseq class NodeDescription(Struct): """ Describe FE nodes defined on different parts of a reference element. """ def _describe_facets(self, ii): nts = self.node_types[ii] ik = nm.where(nts[1:,1] > nts[:-1,1])[0] if len(ik) == 0: ifacets = None n_dof = 0 else: ii = ii.astype(nm.int32) ik = nm.r_[0, ik + 1, nts.shape[0]] ifacets = [ii[ik[ir] : ik[ir+1]] for ir in range(len(ik) - 1)] n_dof = len(ifacets[0]) return ifacets, n_dof def _describe_other(self, ii): if len(ii): return ii, len(ii) else: return None, 0 def _get_facet_nodes(self, ifacets, nodes): if ifacets is None: return None else: return [nodes[ii] for ii in ifacets] def _get_nodes(self, ii, nodes): if ii is None: return None else: return nodes[ii] def __init__(self, node_types, nodes): self.node_types = node_types # Vertex nodes. ii = nm.where(node_types[:,0] == 0)[0] self.vertex, self.n_vertex_nod = self._describe_other(ii) self.vertex_nodes = self._get_nodes(self.vertex, nodes) # Edge nodes. ii = nm.where(node_types[:,0] == 1)[0] self.edge, self.n_edge_nod = self._describe_facets(ii) self.edge_nodes = self._get_facet_nodes(self.edge, nodes) # Face nodes. ii = nm.where(node_types[:,0] == 2)[0] self.face, self.n_face_nod = self._describe_facets(ii) self.face_nodes = self._get_facet_nodes(self.face, nodes) # Bubble nodes. ii = nm.where(node_types[:,0] == 3)[0] self.bubble, self.n_bubble_nod = self._describe_other(ii) self.bubble_nodes = self._get_nodes(self.bubble, nodes) def has_extra_nodes(self): """ Return True if the element has some edge, face or bubble nodes. """ return (self.n_edge_nod + self.n_face_nod + self.n_bubble_nod) > 0 class PolySpace(Struct): """Abstract polynomial space class.""" _all = None keys = { (1, 2) : 'simplex', (2, 3) : 'simplex', (3, 4) : 'simplex', (2, 4) : 'tensor_product', (3, 8) : 'tensor_product', } @staticmethod def any_from_args(name, geometry, order, base='lagrange', force_bubble=False): """ Construct a particular polynomial space classes according to the arguments passed in. """ if name is None: name = PolySpace.suggest_name(geometry, order, base, force_bubble) if PolySpace._all is None: PolySpace._all = find_subclasses(globals(), [PolySpace]) table = PolySpace._all key = '%s_%s' % (base, PolySpace.keys[(geometry.dim, geometry.n_vertex)]) if (geometry.name == '1_2') and (key not in table): key = '%s_%s' % (base, 'tensor_product') if force_bubble: key += '_bubble' return table[key](name, geometry, order) @staticmethod def suggest_name(geometry, order, base='lagrange', force_bubble=False): """ Suggest the polynomial space name given its constructor parameters. """ aux = geometry.get_interpolation_name()[:-1] if force_bubble: return aux + ('%dB' % order) else: return aux + ('%d' % order) def __init__(self, name, geometry, order): self.name = name self.geometry = geometry self.order = order self.bbox = nm.vstack((geometry.coors.min(0), geometry.coors.max(0))) def eval_base(self, coors, diff=0, ori=None, force_axis=False, transform=None, suppress_errors=False, eps=1e-15): """ Evaluate the basis or its first or second derivatives in points given by coordinates. The real work is done in _eval_base() implemented in subclasses. Note that the second derivative code is a work-in-progress and only `coors` and `transform` arguments are used. Parameters ---------- coors : array_like The coordinates of points where the basis is evaluated. See Notes. diff : 0, 1 or 2 If nonzero, return the given derivative. ori : array_like, optional Optional orientation of element facets for per element basis. force_axis : bool If True, force the resulting array shape to have one more axis even when `ori` is None. transform : array_like, optional The basis transform array. suppress_errors : bool If True, do not report points outside the reference domain. eps : float Accuracy for comparing coordinates. Returns ------- base : array The basis (shape (n_coor, 1, n_base)) or its first derivative (shape (n_coor, dim, n_base)) or its second derivative (shape (n_coor, dim, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if `ori` is given, or of length 1, if `force_axis` is True. Notes ----- If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell. """ coors = nm.asarray(coors) if not coors.ndim in (2, 3): raise ValueError('coordinates must have 2 or 3 dimensions! (%d)' % coors.ndim) if (coors.ndim == 2): base = self._eval_base(coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if (base.ndim == 3) and force_axis: base = base[None, ...] if not base.flags['C_CONTIGUOUS']: base = nm.ascontiguousarray(base) else: # Several point sets. if diff: bdim = self.geometry.dim else: bdim = 1 base = nm.empty((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64) for ii, _coors in enumerate(coors): base[ii] = self._eval_base(_coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if transform is not None: base = transform_basis(transform, base) return base def get_mtx_i(self): return self.mtx_i def describe_nodes(self): return NodeDescription(self.nts, self.nodes) class LagrangePolySpace(PolySpace): def create_context(self, cmesh, eps, check_errors, i_max, newton_eps, tdim=None): from sfepy.discrete.fem.extmods.bases import CLagrangeContext ref_coors = self.geometry.coors if cmesh is not None: mesh_coors = cmesh.coors conn = cmesh.get_conn(cmesh.tdim, 0) mesh_conn = conn.indices.reshape(cmesh.n_el, -1).astype(nm.int32) if tdim is None: tdim = cmesh.tdim else: mesh_coors = mesh_conn = None if tdim is None: raise ValueError('supply either cmesh or tdim!') ctx = CLagrangeContext(order=self.order, tdim=tdim, nodes=self.nodes, ref_coors=ref_coors, mesh_coors=mesh_coors, mesh_conn=mesh_conn, mtx_i=self.get_mtx_i(), eps=eps, check_errors=check_errors, i_max=i_max, newton_eps=newton_eps) return ctx def _eval_base(self, coors, diff=0, ori=None, suppress_errors=False, eps=1e-15): """ See :func:`PolySpace.eval_base()`. """ if diff == 2: base = self._eval_hessian(coors) else: base = self.eval_ctx.evaluate(coors, diff=diff, eps=eps, check_errors=not suppress_errors) return base class LagrangeSimplexPolySpace(LagrangePolySpace): """Lagrange polynomial space on a simplex domain.""" name = 'lagrange_simplex' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) n_v = geometry.n_vertex mtx = nm.ones((n_v, n_v), nm.float64) mtx[0:n_v-1,:] = nm.transpose(geometry.coors) self.mtx_i = nm.ascontiguousarray(nla.inv(mtx)) self.rhs = nm.ones((n_v,), nm.float64) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def _define_nodes(self): # Factorial. fac = lambda n : reduce(lambda a, b : a * (b + 1), range(n), 1) geometry = self.geometry n_v, dim = geometry.n_vertex, geometry.dim order = self.order n_nod = fac(order + dim) // (fac(order) * fac(dim)) ## print n_nod, gd nodes = nm.zeros((n_nod, n_v), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_v,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange(n_v, dtype = nm.int32) aux = order * nm.identity(n_v, dtype = nm.int32) nodes[iseq:iseq+n_v,:] = aux iseq += n_v if dim == 1: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 3, [[0, 1, 2]], order) elif dim == 3: iseq = LagrangeNodes.append_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError ## print nm.concatenate((nts, nodes), 1) # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order): raise AssertionError('wrong orders! (%d == all of %s)' % (order, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: node_coors = nm.dot(nodes, geometry.coors) / order return nodes, nts, node_coors def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ def get_bc(coor): rhs = nm.concatenate((coor, [1])) bc = nm.dot(self.mtx_i, rhs) return bc def get_val(bc, node, omit=[]): val = nm.ones(1, nm.float64) for i1 in range(bc.shape[0]): if i1 in omit: continue for i2 in range(node[i1]): val *= (self.order * bc[i1] - i2) / (i2 + 1.0) return val def get_der(bc1, node1, omit=[]): val = nm.zeros(1, nm.float64) for i1 in range(node1): if i1 in omit: continue aux = nm.ones(1, nm.float64) for i2 in range(node1): if (i1 == i2) or (i2 in omit): continue aux *= (self.order * bc1 - i2) / (i2 + 1.0) val += aux * self.order / (i1 + 1.0) return val n_v = self.mtx_i.shape[0] dim = n_v - 1 mi = self.mtx_i[:, :dim] bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) for ic, coor in enumerate(coors): bc = get_bc(coor) for ii, node in enumerate(self.nodes): for ig1, bc1 in enumerate(bc): # 1. derivative w.r.t. bc1. for ig2, bc2 in enumerate(bc): # 2. derivative w.r.t. bc2. if ig1 == ig2: val = get_val(bc, node, omit=[ig1]) vv = 0.0 for i1 in range(node[ig1]): aux = get_der(bc2, node[ig2], omit=[i1]) vv += aux * self.order / (i1 + 1.0) val *= vv else: val = get_val(bc, node, omit=[ig1, ig2]) val *= get_der(bc1, node[ig1]) val *= get_der(bc2, node[ig2]) bfgg[ic, :, :, ii] += val * mi[ig1] * mi[ig2][:, None] return bfgg class LagrangeSimplexBPolySpace(LagrangeSimplexPolySpace): """Lagrange polynomial space with forced bubble function on a simplex domain.""" name = 'lagrange_simplex_bubble' def __init__(self, name, geometry, order, init_context=True): LagrangeSimplexPolySpace.__init__(self, name, geometry, order, init_context=False) nodes, nts, node_coors = self.nodes, self.nts, self.node_coors shape = [nts.shape[0] + 1, 2] nts = nm.resize(nts, shape) nts[-1,:] = [3, 0] shape = [nodes.shape[0] + 1, nodes.shape[1]] nodes = nm.resize(nodes, shape) # Make a 'hypercubic' (cubic in 2D) node. nodes[-1,:] = 1 n_v = self.geometry.n_vertex tmp = nm.ones((n_v,), nm.int32) node_coors = nm.vstack((node_coors, nm.dot(tmp, self.geometry.coors) / n_v)) self.nodes, self.nts = nodes, nts self.node_coors = nm.ascontiguousarray(node_coors) self.bnode = nodes[-1:,:] self.n_nod = self.nodes.shape[0] if init_context: self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=n_v - 1) else: self.eval_ctx = None def create_context(self, *args, **kwargs): ctx = LagrangePolySpace.create_context(self, *args, **kwargs) ctx.is_bubble = 1 return ctx class LagrangeTensorProductPolySpace(LagrangePolySpace): """Lagrange polynomial space on a tensor product domain.""" name = 'lagrange_tensor_product' def __init__(self, name, geometry, order, init_context=True): PolySpace.__init__(self, name, geometry, order) g1d = Struct(n_vertex = 2, dim = 1, coors = self.bbox[:,0:1].copy()) self.ps1d = LagrangeSimplexPolySpace('P_aux', g1d, order, init_context=False) self.nodes, self.nts, node_coors = self._define_nodes() self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] if init_context: tdim = int(nm.sqrt(geometry.n_vertex)) self.eval_ctx = self.create_context(None, 0, 1e-15, 100, 1e-8, tdim=tdim) else: self.eval_ctx = None def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim vertex_map = order * nm.array(vertex_maps[dim], dtype=nm.int32) n_nod = (order + 1) ** dim nodes = nm.zeros((n_nod, 2 * dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) if order == 0: nts[0,:] = [3, 0] nodes[0,:] = nm.zeros((n_nod,), nm.int32) else: iseq = 0 # Vertex nodes. nts[0:n_v,0] = 0 nts[0:n_v,1] = nm.arange( n_v, dtype = nm.int32 ) order * nm.identity( n_v, dtype = nm.int32 ) if dim == 3: for ii in range(n_v): i1, i2, i3 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2, order - i3, i3] iseq += 1 elif dim == 2: for ii in range(n_v): i1, i2 = vertex_map[ii] nodes[iseq,:] = [order - i1, i1, order - i2, i2] iseq += 1 else: for ii in range(n_v): i1 = vertex_map[ii][0] nodes[iseq,:] = [order - i1, i1] iseq += 1 if dim == 1: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 3, [[0, 1]], order) elif dim == 2: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 3, [[0, 1, 2, 3]], order) elif dim == 3: iseq = LagrangeNodes.append_tp_edges(nodes, nts, iseq, 1, geometry.edges, order) iseq = LagrangeNodes.append_tp_faces(nodes, nts, iseq, 2, geometry.faces, order) iseq = LagrangeNodes.append_tp_bubbles(nodes, nts, iseq, 3, order) else: raise NotImplementedError # Check orders. orders = nm.sum(nodes, 1) if not nm.all(orders == order * dim): raise AssertionError('wrong orders! (%d == all of %s)' % (order * dim, orders)) # Coordinates of the nodes. if order == 0: tmp = nm.ones((n_nod, n_v), nm.int32) node_coors = nm.dot(tmp, geometry.coors) / n_v else: c_min, c_max = self.bbox[:,0] cr = nm.arange(2 * dim) node_coors = (nodes[:,cr[::2]] * c_min + nodes[:,cr[1::2]] * c_max) / order return nodes, nts, node_coors def _eval_base_debug(self, coors, diff=False, ori=None, suppress_errors=False, eps=1e-15): """Python version of eval_base().""" dim = self.geometry.dim ev = self.ps1d.eval_base if diff: base = nm.ones((coors.shape[0], dim, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod for iv in range(dim): if ii == iv: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=True, suppress_errors=suppress_errors, eps=eps) else: base[:,iv:iv+1,:] *= ev(coors[:,ii:ii+1].copy(), diff=False, suppress_errors=suppress_errors, eps=eps) else: base = nm.ones((coors.shape[0], 1, self.n_nod), dtype=nm.float64) for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod base *= ev(coors[:,ii:ii+1].copy(), diff=diff, suppress_errors=suppress_errors, eps=eps) return base def _eval_hessian(self, coors): """ Evaluate the second derivatives of the basis. """ evh = self.ps1d.eval_base dim = self.geometry.dim bfgg = nm.zeros((coors.shape[0], dim, dim, self.n_nod), dtype=nm.float64) v0s = [] v1s = [] v2s = [] for ii in range(dim): self.ps1d.nodes = self.nodes[:,2*ii:2*ii+2].copy() self.ps1d.n_nod = self.n_nod ev = self.ps1d.create_context(None, 0, 1e-15, 100, 1e-8, tdim=1).evaluate v0s.append(ev(coors[:, ii:ii+1].copy())[:, 0, :]) v1s.append(ev(coors[:, ii:ii+1].copy(), diff=1)[:, 0, :]) v2s.append(evh(coors[:, ii:ii+1], diff=2)[:, 0, 0, :]) for ir in range(dim): vv = v2s[ir] # Destroys v2s! for ik in range(dim): if ik == ir: continue vv *= v0s[ik] bfgg[:, ir, ir, :] = vv for ic in range(dim): if ic == ir: continue val = v1s[ir] * v1s[ic] for ik in range(dim): if (ik == ir) or (ik == ic): continue val *= v0s[ik] bfgg[:, ir, ic, :] += val return bfgg def get_mtx_i(self): return self.ps1d.mtx_i class LobattoTensorProductPolySpace(PolySpace): """ Hierarchical polynomial space using Lobatto functions. Each row of the `nodes` attribute defines indices of Lobatto functions that need to be multiplied together to evaluate the corresponding shape function. This defines the ordering of basis functions on the reference element. """ name = 'lobatto_tensor_product' def __init__(self, name, geometry, order): PolySpace.__init__(self, name, geometry, order) aux = self._define_nodes() self.nodes, self.nts, node_coors, self.face_axes, self.sfnodes = aux self.node_coors = nm.ascontiguousarray(node_coors) self.n_nod = self.nodes.shape[0] aux = nm.where(self.nodes > 0, self.nodes, 1) self.node_orders = nm.prod(aux, axis=1) self.edge_indx = nm.where(self.nts[:, 0] == 1)[0] self.face_indx = nm.where(self.nts[:, 0] == 2)[0] self.face_axes_nodes = self._get_face_axes_nodes(self.face_axes) def _get_counts(self): order = self.order dim = self.geometry.dim n_nod = (order + 1) ** dim n_per_edge = (order - 1) n_per_face = (order - 1) ** (dim - 1) n_bubble = (order - 1) ** dim return n_nod, n_per_edge, n_per_face, n_bubble def _define_nodes(self): geometry = self.geometry order = self.order n_v, dim = geometry.n_vertex, geometry.dim n_nod, n_per_edge, n_per_face, n_bubble = self._get_counts() nodes = nm.zeros((n_nod, dim), nm.int32) nts = nm.zeros((n_nod, 2), nm.int32) # Vertex nodes. nts[0:n_v, 0] = 0 nts[0:n_v, 1] = nm.arange(n_v, dtype=nm.int32) nodes[0:n_v] = nm.array(vertex_maps[dim], dtype=nm.int32) ii = n_v # Edge nodes. if (dim > 1) and (n_per_edge > 0): ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_edge, 2), dtype=nm.int32) zo[:, 1] = 1 for ie, edge in enumerate(geometry.edges): n1, n2 = nodes[edge] ifix = nm.where(n1 == n2)[0] irun = nm.where(n1 != n2)[0][0] ic = n1[ifix] nodes[ii:ii + n_per_edge, ifix] = zo[:, ic] nodes[ii:ii + n_per_edge, irun] = ik nts[ii:ii + n_per_edge] = [[1, ie]] ii += n_per_edge # 3D face nodes. face_axes = [] sfnodes = None if (dim == 3) and (n_per_face > 0): n_face = len(geometry.faces) sfnodes = nm.zeros((n_per_face * n_face, dim), nm.int32) ii0 = ii ik = nm.arange(2, order + 1, dtype=nm.int32) zo = nm.zeros((n_per_face, 2), dtype=nm.int32) zo[:, 1] = 1 for ifa, face in enumerate(geometry.faces): ns = nodes[face] diff = nm.diff(ns, axis=0) asum = nm.abs(diff).sum(axis=0) ifix = nm.where(asum == 0)[0][0] ic = ns[0, ifix] irun1 = nm.where(asum == 2)[0][0] irun2 = nm.where(asum == 1)[0][0] iy, ix = nm.meshgrid(ik, ik) nodes[ii:ii + n_per_face, ifix] = zo[:, ic] nodes[ii:ii + n_per_face, irun1] = ix.ravel() nodes[ii:ii + n_per_face, irun2] = iy.ravel() nts[ii:ii + n_per_face] = [[2, ifa]] ij = ii - ii0 sfnodes[ij:ij + n_per_face, ifix] = zo[:, ic] sfnodes[ij:ij + n_per_face, irun1] = iy.ravel() sfnodes[ij:ij + n_per_face, irun2] = ix.ravel() face_axes.append([irun1, irun2]) ii += n_per_face face_axes = nm.array(face_axes) # Bubble nodes. if n_bubble > 0: ik = nm.arange(2, order + 1, dtype=nm.int32) nodes[ii:] = nm.array([aux for aux in
combine([ik] * dim)
sfepy.linalg.combine
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts =
TimeStepper.from_conf(self.conf)
sfepy.solvers.ts.TimeStepper.from_conf
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res)
output('initial residual: %e' % err, verbose=self.verbose)
sfepy.base.base.output
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls =
get_default(nls, self.nls)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a =
get_default(ls_eps_a, 1.0)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r =
get_default(ls_eps_r, 1.0)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) ls_status = {} vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.name + ' linear system sol error {}'.format(lerr)) output(self.name + ' mtx max {}, min {}, trace {}' .format(mtx_a.max(), mtx_a.min(), nm.sum(mtx_a.diagonal()))) vec_x = vec_x - ts.dt * (vec_dx - vec_x) vec_x = self.post_stage_hook(vec_x) return vec_x class TVDRK3StepSolver(DGMultiStageTSS): r"""3rd order Total Variation Diminishing Runge-Kutta method based on [1]_ .. math:: \begin{aligned} \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t \bar{\mathcal{L}}(\mathbf{p}^n),\\ \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\ \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(2)}). \end{aligned} .. [1] <NAME>., & <NAME>. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2 """ name = 'ts.tvd_runge_kutta_3' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a =
get_default(ls_eps_a, 1.0)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) ls_status = {} vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.name + ' linear system sol error {}'.format(lerr)) output(self.name + ' mtx max {}, min {}, trace {}' .format(mtx_a.max(), mtx_a.min(), nm.sum(mtx_a.diagonal()))) vec_x = vec_x - ts.dt * (vec_dx - vec_x) vec_x = self.post_stage_hook(vec_x) return vec_x class TVDRK3StepSolver(DGMultiStageTSS): r"""3rd order Total Variation Diminishing Runge-Kutta method based on [1]_ .. math:: \begin{aligned} \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t \bar{\mathcal{L}}(\mathbf{p}^n),\\ \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\ \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(2)}). \end{aligned} .. [1] <NAME>., & <NAME>. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2 """ name = 'ts.tvd_runge_kutta_3' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r =
get_default(ls_eps_r, 1.0)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) ls_status = {} vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.name + ' linear system sol error {}'.format(lerr)) output(self.name + ' mtx max {}, min {}, trace {}' .format(mtx_a.max(), mtx_a.min(), nm.sum(mtx_a.diagonal()))) vec_x = vec_x - ts.dt * (vec_dx - vec_x) vec_x = self.post_stage_hook(vec_x) return vec_x class TVDRK3StepSolver(DGMultiStageTSS): r"""3rd order Total Variation Diminishing Runge-Kutta method based on [1]_ .. math:: \begin{aligned} \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t \bar{\mathcal{L}}(\mathbf{p}^n),\\ \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\ \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(2)}). \end{aligned} .. [1] <NAME>., & <NAME>. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2 """ name = 'ts.tvd_runge_kutta_3' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) ls_status = {} # ----1st stage---- vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x1 = vec_x - ts.dt * (vec_dx - vec_x) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(1, lerr)) vec_x1 = self.post_stage_hook(vec_x1) # ----2nd stage---- vec_r = fun(vec_x1) mtx_a = fun_grad(vec_x1) vec_dx = lin_solver(vec_r, x0=vec_x1, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x2 = (3 * vec_x + vec_x1 - ts.dt * (vec_dx - vec_x1)) / 4 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(2, lerr)) vec_x2 = self.post_stage_hook(vec_x2) # ----3rd stage----- ts.set_substep_time(1. / 2. * ts.dt) prestep_fun(ts, vec_x2) vec_r = fun(vec_x2) mtx_a = fun_grad(vec_x2) vec_dx = lin_solver(vec_r, x0=vec_x2, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x3 = (vec_x + 2 * vec_x2 - 2 * ts.dt * (vec_dx - vec_x2)) / 3 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(3, lerr)) vec_x3 = self.post_stage_hook(vec_x3) return vec_x3 class RK4StepSolver(DGMultiStageTSS): """Classical 4th order Runge-Kutta method, implemetantions is based on [1]_ .. [1] <NAME>., & <NAME>. (2008). Nodal Discontinuous Galerkin Methods. Journal of Physics A: Mathematical and Theoretical (Vol. 54). New York, NY: Springer New York. http://doi.org/10.1007/978-0-387-72067-8, p. 63 """ name = 'ts.runge_kutta_4' __metaclass__ = SolverMeta stage_updates = ( lambda u, k_, dt: u, lambda u, k1, dt: u + 1. / 2. * dt * k1, lambda u, k2, dt: u + 1. / 2. * dt * k2, lambda u, k3, dt: u + dt * k3 ) def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a =
get_default(ls_eps_a, 1.0)
sfepy.base.base.get_default
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) ls_status = {} vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.name + ' linear system sol error {}'.format(lerr)) output(self.name + ' mtx max {}, min {}, trace {}' .format(mtx_a.max(), mtx_a.min(), nm.sum(mtx_a.diagonal()))) vec_x = vec_x - ts.dt * (vec_dx - vec_x) vec_x = self.post_stage_hook(vec_x) return vec_x class TVDRK3StepSolver(DGMultiStageTSS): r"""3rd order Total Variation Diminishing Runge-Kutta method based on [1]_ .. math:: \begin{aligned} \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t \bar{\mathcal{L}}(\mathbf{p}^n),\\ \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\ \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(2)}). \end{aligned} .. [1] <NAME>., & <NAME>. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2 """ name = 'ts.tvd_runge_kutta_3' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) ls_status = {} # ----1st stage---- vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x1 = vec_x - ts.dt * (vec_dx - vec_x) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(1, lerr)) vec_x1 = self.post_stage_hook(vec_x1) # ----2nd stage---- vec_r = fun(vec_x1) mtx_a = fun_grad(vec_x1) vec_dx = lin_solver(vec_r, x0=vec_x1, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x2 = (3 * vec_x + vec_x1 - ts.dt * (vec_dx - vec_x1)) / 4 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(2, lerr)) vec_x2 = self.post_stage_hook(vec_x2) # ----3rd stage----- ts.set_substep_time(1. / 2. * ts.dt) prestep_fun(ts, vec_x2) vec_r = fun(vec_x2) mtx_a = fun_grad(vec_x2) vec_dx = lin_solver(vec_r, x0=vec_x2, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x3 = (vec_x + 2 * vec_x2 - 2 * ts.dt * (vec_dx - vec_x2)) / 3 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(3, lerr)) vec_x3 = self.post_stage_hook(vec_x3) return vec_x3 class RK4StepSolver(DGMultiStageTSS): """Classical 4th order Runge-Kutta method, implemetantions is based on [1]_ .. [1] <NAME>., & <NAME>. (2008). Nodal Discontinuous Galerkin Methods. Journal of Physics A: Mathematical and Theoretical (Vol. 54). New York, NY: Springer New York. http://doi.org/10.1007/978-0-387-72067-8, p. 63 """ name = 'ts.runge_kutta_4' __metaclass__ = SolverMeta stage_updates = ( lambda u, k_, dt: u, lambda u, k1, dt: u + 1. / 2. * dt * k1, lambda u, k2, dt: u + 1. / 2. * dt * k2, lambda u, k3, dt: u + dt * k3 ) def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r =
get_default(ls_eps_r, 1.0)
sfepy.base.base.get_default
import numpy as nm from sfepy.terms.terms import Term, terms _msg_missing_data = 'missing family data!' class HyperElasticBase(Term): """ Base class for all hyperelastic terms in TL/UL formulation. `HyperElasticBase.__call__()` computes element contributions given either stress (-> rezidual) or tangent modulus (-> tangent sitffnes matrix), i.e. constitutive relation type (CRT) related data. The CRT data are computed in subclasses implementing particular CRT (e.g. neo-Hookean material), in self.compute_crt_data(). Modes: - 0: total formulation - 1: updated formulation Notes ----- This is not a proper Term! """ arg_types = ('material', 'virtual', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D'} @staticmethod def integrate(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status @staticmethod def function(out, fun, *args): return fun(out, *args) def __init__(self, *args, **kwargs):
Term.__init__(self, *args, **kwargs)
sfepy.terms.terms.Term.__init__
import numpy as nm from sfepy.terms.terms import Term, terms _msg_missing_data = 'missing family data!' class HyperElasticBase(Term): """ Base class for all hyperelastic terms in TL/UL formulation. `HyperElasticBase.__call__()` computes element contributions given either stress (-> rezidual) or tangent modulus (-> tangent sitffnes matrix), i.e. constitutive relation type (CRT) related data. The CRT data are computed in subclasses implementing particular CRT (e.g. neo-Hookean material), in self.compute_crt_data(). Modes: - 0: total formulation - 1: updated formulation Notes ----- This is not a proper Term! """ arg_types = ('material', 'virtual', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D'} @staticmethod def integrate(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status @staticmethod def function(out, fun, *args): return fun(out, *args) def __init__(self, *args, **kwargs): Term.__init__(self, *args, **kwargs) self.stress_cache = None def get_family_data(self, state, cache_name, data_names): """ Notes ----- `data_names` argument is ignored for now. """ name = state.name step_cache = state.evaluate_cache.setdefault(cache_name, {}) cache = step_cache.setdefault(self.arg_steps[name], {}) vg, _, key = self.get_mapping(state, return_key=True) data_key = key + (self.arg_derivatives[name],) if data_key in cache: out = cache[data_key] else: out = self.compute_family_data(state) cache[data_key] = out return out def compute_stress(self, mat, family_data, **kwargs): out = nm.empty_like(family_data.green_strain) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.stress_function(out, mat, *fargs, **kwargs) return out def compute_tan_mod(self, mat, family_data, **kwargs): shape = list(family_data.green_strain.shape) shape[-1] = shape[-2] out = nm.empty(shape, dtype=nm.float64) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.tan_mod_function(out, mat, *fargs, **kwargs) return out def get_fargs(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) fd = self.get_family_data(state, self.fd_cache_name, self.family_data_names) if mode == 'weak': if diff_var is None: stress = self.compute_stress(mat, fd, **kwargs) self.stress_cache = stress tan_mod = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 0 else: stress = self.stress_cache if stress is None: stress = self.compute_stress(mat, fd, **kwargs) tan_mod = self.compute_tan_mod(mat, fd, **kwargs) fmode = 1 return (self.weak_function, stress, tan_mod, fd.mtx_f, fd.det_f, vg, fmode, self.hyperelastic_mode) elif mode in ('el_avg', 'qp'): if term_mode == 'strain': out_qp = fd.green_strain elif term_mode == 'stress': out_qp = self.compute_stress(mat, fd, **kwargs) else: raise ValueError('unsupported term mode in %s! (%s)' % (self.name, term_mode)) fmode = {'el_avg' : 1, 'qp' : 2}[mode] return self.integrate, out_qp, vg, fmode else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 if mode != 'qp': n_qp = 1 return (n_el, n_qp, sym, 1), state.dtype class DeformationGradientTerm(Term): r""" Deformation gradient :math:`\ull{F}` in quadrature points for `term_mode='def_grad'` (default) or the jacobian :math:`J` if `term_mode='jacobian'`. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})} :Arguments: - parameter : :math:`\ul{u}` """ name = 'ev_def_grad' arg_types = ('parameter',) arg_shapes = {'parameter' : 'D'} @staticmethod def function(out, vec, vg, econn, term_mode, fmode): d = 1 if term_mode == 'jacobian' else vg.dim out_qp = nm.empty((out.shape[0], vg.n_qp, d, d), dtype=out.dtype) mode = 1 if term_mode == 'jacobian' else 0
terms.dq_def_grad(out_qp, vec, vg, econn, mode)
sfepy.terms.terms.terms.dq_def_grad
#!/usr/bin/env python """ Plot logs of variables saved in a text file by sfepy.base.log.Log class. The plot should be almost the same as the plot that would be generated by the Log directly. """ from __future__ import absolute_import import sys sys.path.append('.') from argparse import ArgumentParser, Action, RawDescriptionHelpFormatter import matplotlib.pyplot as plt from sfepy.base.log import read_log, plot_log class ParseRc(Action): def __call__(self, parser, namespace, values, option_string=None): pars = eval('{' + values + '}') setattr(namespace, self.dest, pars) helps = { 'groups' : 'list of log data groups subplots (from 0) to plot - all groups are' ' plotted if not given', 'output_filename' : 'save the figure using the given file name', 'rc' : 'matplotlib resources', 'no_legends' : 'do not show legends in the log plots', 'nbins' : 'the numbers of bins in x, y axes for all groups [default: %(default)s]', 'swap_axes' : 'swap the axes of the plots', 'no_show' : 'do not show the figure', } def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-g', '--groups', metavar='int[,int,...]', action='store', dest='groups', default=None, help=helps['groups']) parser.add_argument('-o', '--output', metavar='filename', action='store', dest='output_filename', default=None, help=helps['output_filename']) parser.add_argument('--rc', type=str, metavar='key:val,...', action=ParseRc, dest='rc', default={}, help=helps['rc']) parser.add_argument('--no-legends', action='store_false', dest='show_legends', default=True, help=helps['no_legends']) parser.add_argument('--nbins', metavar='nx1,ny1,...', action='store', dest='nbins', default=None, help=helps['nbins']) parser.add_argument('--swap-axes', action='store_true', dest='swap_axes', default=False, help=helps['swap_axes']) parser.add_argument('-n', '--no-show', action='store_true', dest='no_show', default=False, help=helps['no_show']) parser.add_argument('filename') options = parser.parse_args() filename = options.filename if options.groups is not None: options.groups = [int(ii) for ii in options.groups.split(',')] if options.nbins is not None: aux = [int(ii) if ii != 'None' else None for ii in options.nbins.split(',')] xnbins, ynbins = aux[::2], aux[1::2] else: xnbins = ynbins = None log, info =
read_log(filename)
sfepy.base.log.read_log
""" Acoustic band gaps in a strongly heterogeneous elastic body, detected using homogenization techniques. A reference periodic cell contains two domains: the stiff matrix :math:`Y_m` and the soft (but heavy) inclusion :math:`Y_c`. """ from sfepy import data_dir from sfepy.base.base import Struct from sfepy.base.ioutils import InDir from sfepy.homogenization.coefficients import Coefficients from band_gaps_conf import BandGapsConf, get_pars, clip_sqrt, normalize clip_sqrt, normalize # Make pyflakes happy... incwd =
InDir(__file__)
sfepy.base.ioutils.InDir
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf =
get_default(conf, self.conf)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx =
get_default(mtx, self.mtx)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status =
get_default(status, self.status)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status)
assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0])
sfepy.base.base.assert_
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common =
LinearSolver.process_conf(conf)
sfepy.solvers.solvers.LinearSolver.process_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs):
LinearSolver.__init__(self, conf, **kwargs)
sfepy.solvers.solvers.LinearSolver.__init__
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common =
LinearSolver.process_conf(conf)
sfepy.solvers.solvers.LinearSolver.process_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la
LinearSolver.__init__(self, conf, **kwargs)
sfepy.solvers.solvers.LinearSolver.__init__
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r =
get_default(eps_r, self.conf.eps_r)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max =
get_default(i_max, self.conf.i_max)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common =
LinearSolver.process_conf(conf)
sfepy.solvers.solvers.LinearSolver.process_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg )
LinearSolver.__init__(self, conf, mg=None, **kwargs)
sfepy.solvers.solvers.LinearSolver.__init__
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r =
get_default(eps_r, self.conf.eps_r)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common =
LinearSolver.process_conf(conf)
sfepy.solvers.solvers.LinearSolver.process_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg )
LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs)
sfepy.solvers.solvers.LinearSolver.__init__
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a =
get_default(eps_a, self.conf.eps_a)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r =
get_default(eps_r, self.conf.eps_r)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max =
get_default(i_max, self.conf.i_max)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a =
get_default(eps_a, self.conf.eps_a)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r =
get_default(eps_r, self.conf.eps_r)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max =
get_default(i_max, self.conf.i_max)
sfepy.base.base.get_default
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log')
ensure_path(log_filename)
sfepy.base.ioutils.ensure_path
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename)
output('storing system to %s...' % output_dir)
sfepy.base.base.output
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command))
assert_(out == 0)
sfepy.base.base.assert_
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0)
output('reading solution...')
sfepy.base.base.output
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason]))
output('elapsed: %.2f [s]' % elapsed)
sfepy.base.base.output
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state =
State(equations.variables)
sfepy.discrete.state.State
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get =
make_get_conf(conf, kwargs)
sfepy.solvers.solvers.make_get_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other =
get_standard_keywords()
sfepy.base.conf.get_standard_keywords
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix =
output.get_output_prefix()
sfepy.base.base.output.get_output_prefix
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None:
assert_(x0.shape[0] == rhs.shape[0])
sfepy.base.base.assert_
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix = output.get_output_prefix() for ii, ifname in enumerate(conf.others): sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1)
output.set_output_prefix(sub_prefix)
sfepy.base.base.output.set_output_prefix
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix = output.get_output_prefix() for ii, ifname in enumerate(conf.others): sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1) output.set_output_prefix(sub_prefix) kwargs['master_problem'] = problem confi = ProblemConf.from_file(ifname, required, other, define_args=kwargs) pbi =
Problem.from_conf(confi, init_equations=True)
sfepy.discrete.Problem.from_conf
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix = output.get_output_prefix() for ii, ifname in enumerate(conf.others): sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1) output.set_output_prefix(sub_prefix) kwargs['master_problem'] = problem confi = ProblemConf.from_file(ifname, required, other, define_args=kwargs) pbi = Problem.from_conf(confi, init_equations=True) sti =
State(pbi.equations.variables)
sfepy.discrete.state.State
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix = output.get_output_prefix() for ii, ifname in enumerate(conf.others): sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1) output.set_output_prefix(sub_prefix) kwargs['master_problem'] = problem confi = ProblemConf.from_file(ifname, required, other, define_args=kwargs) pbi = Problem.from_conf(confi, init_equations=True) sti = State(pbi.equations.variables) pbi.equations.set_data(None, ignore_unknown=True) pbi.time_update() pbi.update_materials() sti.apply_ebc() pbi_vars = pbi.get_variables()
output.set_output_prefix(master_prefix)
sfepy.base.base.output.set_output_prefix
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn:
output('umfpack not available, using superlu!')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other =
get_standard_keywords()
sfepy.base.conf.get_standard_keywords
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in
locate_files('*.py', pdf_dir)
sfepy.base.ioutils.locate_files
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok')
output('...done')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(
term_table.keys()
sfepy.terms.term_table.keys
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep)
output('trying "%s"...' % base)
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base)
output('...ok')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused:
output('unused terms:')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused: output('unused terms:') unused = [name for name in terms_use.keys() if len(terms_use[name]) == 0] for name in sorted(unused): output(' ' + name) output('total: %d' % len(unused)) else:
output('terms use:')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused: output('unused terms:') unused = [name for name in terms_use.keys() if len(terms_use[name]) == 0] for name in sorted(unused): output(' ' + name) output('total: %d' % len(unused)) else: output('terms use:') for name, ex_names in
ordered_iteritems(terms_use)
sfepy.base.base.ordered_iteritems
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs =
parse_definition(eq_conf)
sfepy.discrete.equations.parse_definition
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused: output('unused terms:') unused = [name for name in terms_use.keys() if len(terms_use[name]) == 0] for name in sorted(unused):
output(' ' + name)
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except:
output('...failed')
sfepy.base.base.output
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused: output('unused terms:') unused = [name for name in terms_use.keys() if len(terms_use[name]) == 0] for name in sorted(unused): output(' ' + name) output('total: %d' % len(unused)) else: output('terms use:') for name, ex_names in ordered_iteritems(terms_use): output('%s: %d' % (name, len(ex_names))) if not options.counts: for ex_name in sorted(ex_names):
output(' ' + ex_name)
sfepy.base.base.output
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line =
LineProbe(p0, p1, n_point, share_geometry=True)
sfepy.discrete.probes.LineProbe
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle =
CircleProbe(centre, normal, r, n_point, share_geometry=True)
sfepy.discrete.probes.CircleProbe
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!')
output('using values:')
sfepy.base.base.output
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:')
output(' diffusivity:', options.diffusivity)
sfepy.base.base.output
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
sfepy.base.base.output
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
sfepy.base.base.output
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh =
Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
sfepy.discrete.fem.Mesh.from_file
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain =
FEDomain('domain', mesh)
sfepy.discrete.fem.FEDomain
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T =
FieldVariable('T', 'unknown', field, history=1)
sfepy.discrete.FieldVariable
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s =
FieldVariable('s', 'test', field, primary_var_name='T')
sfepy.discrete.FieldVariable
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral =
Integral('i', order=2*options.order)
sfepy.discrete.Integral
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq =
Equation('balance', t1 + t2)
sfepy.discrete.Equation
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs =
Equations([eq])
sfepy.discrete.Equations
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun =
Function('ic_fun', get_ic)
sfepy.discrete.Function
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb =
Problem('heat', equations=eqs)
sfepy.discrete.Problem
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls =
ScipyDirect({})
sfepy.solvers.ls.ScipyDirect
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls = ScipyDirect({}) nls_status =
IndexedStruct()
sfepy.base.base.IndexedStruct
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status) tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11}, nls=nls, context=pb, verbose=True) pb.set_solver(tss) if options.probe: # Prepare probe data. probes, labels = gen_probes(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a' : 1e-16, 'i_max' : 1} suffix = tss.ts.suffix def poststep_fun(ts, vec): _poststep_fun(ts, vec) # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % ts.step), bbox_inches='tight') for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 else: poststep_fun = _poststep_fun pb.time_update(tss.ts) state0.apply_ebc() # This is required if {'is_linear' : True} is passed to Newton. mtx =
prepare_matrix(pb, state0)
sfepy.discrete.problem.prepare_matrix
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status) tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11}, nls=nls, context=pb, verbose=True) pb.set_solver(tss) if options.probe: # Prepare probe data. probes, labels = gen_probes(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a' : 1e-16, 'i_max' : 1} suffix = tss.ts.suffix def poststep_fun(ts, vec): _poststep_fun(ts, vec) # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % ts.step), bbox_inches='tight') for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 else: poststep_fun = _poststep_fun pb.time_update(tss.ts) state0.apply_ebc() # This is required if {'is_linear' : True} is passed to Newton. mtx = prepare_matrix(pb, state0) pb.try_presolve(mtx) tss_status =
IndexedStruct()
sfepy.base.base.IndexedStruct