prompt
stringlengths
174
59.5k
completion
stringlengths
7
228
api
stringlengths
12
64
from __future__ import absolute_import import os.path as op import numpy as nm from sfepy import data_dir from sfepy.base.testing import TestCommon import six def init_vec(variables): return nm.random.rand(variables.di.ptr[-1]) def check_vec(self, vec, ii, ok, conds, variables): from sfepy.discrete.common.dof_info import expand_nodes_to_equations for var_name, var_conds in six.iteritems(conds.group_by_variables()): var = variables[var_name] for cond in var_conds: cond.canonize_dof_names(var.dofs) self.report('%d: %s %s: %s %s' % (ii, var.name, cond.name, cond.region.name, cond.dofs[0])) nods = var.field.get_dofs_in_region(cond.region) eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs) off = variables.di.indx[var_name].start n_nod = len(nods) for cdof, dof_name in enumerate(cond.dofs[0]): idof = var.dofs.index(dof_name) eqs = eq[n_nod * cdof : n_nod * (cdof + 1)] _ok = nm.allclose(vec[off + eqs], idof, atol=1e-14, rtol=0.0) if not _ok: self.report(' %s: failed! (all of %s == %f)' % (dof_name, vec[off + eqs], idof)) ok = ok and _ok return ok class Test(TestCommon): @staticmethod def from_conf(conf, options): from sfepy.discrete import FieldVariable, Variables, Problem from sfepy.discrete.fem import Mesh, FEDomain, Field mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh') domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') domain.create_region('Left', 'vertices in (x < -0.499)', 'facet') domain.create_region('LeftStrip', 'vertices in (x < -0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet') domain.create_region('Right', 'vertices in (x > 0.499)', 'facet') domain.create_region('RightStrip', 'vertices in (x > 0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet') fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', fu) fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2) p = FieldVariable('p', 'unknown', fp) pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False, auto_solvers=False) test = Test(problem=pb, variables=Variables([u, p]), conf=conf, options=options) return test def test_ics(self): from sfepy.discrete.conditions import Conditions, InitialCondition variables = self.variables omega = self.problem.domain.regions['Omega'] all_ics = [] all_ics.append(InitialCondition('ic0', omega, {'p.all' : 0.0})) all_ics.append(InitialCondition('ic1', omega, {'u.1' : 1.0})) all_ics.append(InitialCondition('ic2', omega, {'u.all' : nm.array([0.0, 1.0])})) all_ics.append(InitialCondition('ic3', omega, {'p.0' : 0.0, 'u.0' : 0.0, 'u.1' : 1.0})) ok = True for ii, ics in enumerate(all_ics): if not isinstance(ics, list): ics = [ics] ics =
Conditions(ics)
sfepy.discrete.conditions.Conditions
from __future__ import absolute_import import os.path as op import numpy as nm from sfepy import data_dir from sfepy.base.testing import TestCommon import six def init_vec(variables): return nm.random.rand(variables.di.ptr[-1]) def check_vec(self, vec, ii, ok, conds, variables): from sfepy.discrete.common.dof_info import expand_nodes_to_equations for var_name, var_conds in six.iteritems(conds.group_by_variables()): var = variables[var_name] for cond in var_conds: cond.canonize_dof_names(var.dofs) self.report('%d: %s %s: %s %s' % (ii, var.name, cond.name, cond.region.name, cond.dofs[0])) nods = var.field.get_dofs_in_region(cond.region) eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs) off = variables.di.indx[var_name].start n_nod = len(nods) for cdof, dof_name in enumerate(cond.dofs[0]): idof = var.dofs.index(dof_name) eqs = eq[n_nod * cdof : n_nod * (cdof + 1)] _ok = nm.allclose(vec[off + eqs], idof, atol=1e-14, rtol=0.0) if not _ok: self.report(' %s: failed! (all of %s == %f)' % (dof_name, vec[off + eqs], idof)) ok = ok and _ok return ok class Test(TestCommon): @staticmethod def from_conf(conf, options): from sfepy.discrete import FieldVariable, Variables, Problem from sfepy.discrete.fem import Mesh, FEDomain, Field mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh') domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') domain.create_region('Left', 'vertices in (x < -0.499)', 'facet') domain.create_region('LeftStrip', 'vertices in (x < -0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet') domain.create_region('Right', 'vertices in (x > 0.499)', 'facet') domain.create_region('RightStrip', 'vertices in (x > 0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet') fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', fu) fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2) p = FieldVariable('p', 'unknown', fp) pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False, auto_solvers=False) test = Test(problem=pb, variables=Variables([u, p]), conf=conf, options=options) return test def test_ics(self): from sfepy.discrete.conditions import Conditions, InitialCondition variables = self.variables omega = self.problem.domain.regions['Omega'] all_ics = [] all_ics.append(InitialCondition('ic0', omega, {'p.all' : 0.0})) all_ics.append(InitialCondition('ic1', omega, {'u.1' : 1.0})) all_ics.append(InitialCondition('ic2', omega, {'u.all' : nm.array([0.0, 1.0])})) all_ics.append(InitialCondition('ic3', omega, {'p.0' : 0.0, 'u.0' : 0.0, 'u.1' : 1.0})) ok = True for ii, ics in enumerate(all_ics): if not isinstance(ics, list): ics = [ics] ics = Conditions(ics) variables.setup_initial_conditions(ics, functions=None) vec = init_vec(variables) variables.apply_ic(vec) ok = check_vec(self, vec, ii, ok, ics, variables) return ok def test_ebcs(self): from sfepy.discrete.conditions import Conditions, EssentialBC variables = self.variables regions = self.problem.domain.regions all_ebcs = [] all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'], {'u.all' : nm.array([0.0, 1.0])})) all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'], {'u.0' : 0.0, 'u.1' : 1.0})) all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'], {'p.all' : 0.0})) all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'], {'p.0' : 0.0})) all_ebcs.append([EssentialBC('fix_p3', regions['Right'], {'p.0' : 0.0}), EssentialBC('fix_u3', regions['Left'], {'u.0' : 0.0, 'u.1' : 1.0})]) ok = True for ii, bcs in enumerate(all_ebcs): if not isinstance(bcs, list): bcs = [bcs] ebcs =
Conditions(bcs)
sfepy.discrete.conditions.Conditions
from __future__ import absolute_import import os.path as op import numpy as nm from sfepy import data_dir from sfepy.base.testing import TestCommon import six def init_vec(variables): return nm.random.rand(variables.di.ptr[-1]) def check_vec(self, vec, ii, ok, conds, variables): from sfepy.discrete.common.dof_info import expand_nodes_to_equations for var_name, var_conds in six.iteritems(conds.group_by_variables()): var = variables[var_name] for cond in var_conds: cond.canonize_dof_names(var.dofs) self.report('%d: %s %s: %s %s' % (ii, var.name, cond.name, cond.region.name, cond.dofs[0])) nods = var.field.get_dofs_in_region(cond.region) eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs) off = variables.di.indx[var_name].start n_nod = len(nods) for cdof, dof_name in enumerate(cond.dofs[0]): idof = var.dofs.index(dof_name) eqs = eq[n_nod * cdof : n_nod * (cdof + 1)] _ok = nm.allclose(vec[off + eqs], idof, atol=1e-14, rtol=0.0) if not _ok: self.report(' %s: failed! (all of %s == %f)' % (dof_name, vec[off + eqs], idof)) ok = ok and _ok return ok class Test(TestCommon): @staticmethod def from_conf(conf, options): from sfepy.discrete import FieldVariable, Variables, Problem from sfepy.discrete.fem import Mesh, FEDomain, Field mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh') domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') domain.create_region('Left', 'vertices in (x < -0.499)', 'facet') domain.create_region('LeftStrip', 'vertices in (x < -0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet') domain.create_region('Right', 'vertices in (x > 0.499)', 'facet') domain.create_region('RightStrip', 'vertices in (x > 0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet') fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', fu) fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2) p = FieldVariable('p', 'unknown', fp) pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False, auto_solvers=False) test = Test(problem=pb, variables=
Variables([u, p])
sfepy.discrete.Variables
import numpy as nm from sfepy.base.conf import transform_functions from sfepy.base.testing import TestCommon def get_nodes(coors, domain=None): x, z = coors[:,0], coors[:,2] return nm.where((z < 0.1) & (x < 0.1))[0] def get_elements(coors, domain=None): return {0 : [1, 4, 5]} class Test(TestCommon): @staticmethod def from_conf( conf, options ): from sfepy import data_dir from sfepy.fem import Mesh, Domain, Functions mesh = Mesh('test mesh', data_dir + '/meshes/various_formats/abaqus_tet.inp') domain =
Domain('test domain', mesh)
sfepy.fem.Domain
import numpy as nm from sfepy.base.conf import transform_functions from sfepy.base.testing import TestCommon def get_nodes(coors, domain=None): x, z = coors[:,0], coors[:,2] return nm.where((z < 0.1) & (x < 0.1))[0] def get_elements(coors, domain=None): return {0 : [1, 4, 5]} class Test(TestCommon): @staticmethod def from_conf( conf, options ): from sfepy import data_dir from sfepy.fem import Mesh, Domain, Functions mesh = Mesh('test mesh', data_dir + '/meshes/various_formats/abaqus_tet.inp') domain = Domain('test domain', mesh) conf_functions = { 'get_nodes' : (get_nodes,), 'get_elements' : (get_elements,), } functions = Functions.from_conf(
transform_functions(conf_functions)
sfepy.base.conf.transform_functions
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer
output('smoothing...')
sfepy.base.base.output
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer output('smoothing...') timer =
Timer(start=True)
sfepy.base.timing.Timer
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0]
output('initial mesh: %d elements' % nelo, verbose=verbose)
sfepy.base.base.output
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn)
output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose)
sfepy.base.base.output
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer output('smoothing...') timer = Timer(start=True) if weights is None: n_nod = mesh.n_nod domain =
FEDomain('mesh', mesh)
sfepy.discrete.fem.FEDomain
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer output('smoothing...') timer = Timer(start=True) if weights is None: n_nod = mesh.n_nod domain = FEDomain('mesh', mesh) cmesh = domain.cmesh # initiate all vertices as inner - hierarchy = 2 node_group = nm.ones((n_nod,), dtype=nm.int16) * 2 # boundary vertices - set hierarchy = 4 if bconstr: # get "vertices of surface" facets = cmesh.get_surface_facets() f_verts = cmesh.get_incident(0, facets, cmesh.dim - 1) node_group[f_verts] = 4 # generate costs matrix e_verts = cmesh.get_conn(1, 0).indices fc1, fc2 = e_verts[0::2], e_verts[1::2] idxs = nm.where(node_group[fc2] >= node_group[fc1]) rows1 = fc1[idxs] cols1 = fc2[idxs] idxs = nm.where(node_group[fc1] >= node_group[fc2]) rows2 = fc2[idxs] cols2 = fc1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) # generate weights matrix idxs = list(range(n_nod)) aux = sps.coo_matrix((1.0 / nm.asarray(costs.sum(1)).squeeze(), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) #aux.setdiag(1.0 / costs.sum(1)) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.coors, weights, lam, mu, n_iter) output('...done in %.2f s' % timer.stop()) if volume_corr:
output('rescaling...')
sfepy.base.base.output
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer output('smoothing...') timer = Timer(start=True) if weights is None: n_nod = mesh.n_nod domain = FEDomain('mesh', mesh) cmesh = domain.cmesh # initiate all vertices as inner - hierarchy = 2 node_group = nm.ones((n_nod,), dtype=nm.int16) * 2 # boundary vertices - set hierarchy = 4 if bconstr: # get "vertices of surface" facets = cmesh.get_surface_facets() f_verts = cmesh.get_incident(0, facets, cmesh.dim - 1) node_group[f_verts] = 4 # generate costs matrix e_verts = cmesh.get_conn(1, 0).indices fc1, fc2 = e_verts[0::2], e_verts[1::2] idxs = nm.where(node_group[fc2] >= node_group[fc1]) rows1 = fc1[idxs] cols1 = fc2[idxs] idxs = nm.where(node_group[fc1] >= node_group[fc2]) rows2 = fc2[idxs] cols2 = fc1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) # generate weights matrix idxs = list(range(n_nod)) aux = sps.coo_matrix((1.0 / nm.asarray(costs.sum(1)).squeeze(), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) #aux.setdiag(1.0 / costs.sum(1)) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.coors, weights, lam, mu, n_iter) output('...done in %.2f s' % timer.stop()) if volume_corr: output('rescaling...') timer.start() volume0, bc = get_volume(mesh.conns[0], mesh.coors) volume, _ = get_volume(mesh.conns[0], coors) scale = volume0 / volume
output('scale factor: %.2f' % scale)
sfepy.base.base.output
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 /
factorial(dim)
sfepy.base.compat.factorial
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul *
dets_fast(mtx)
sfepy.linalg.utils.dets_fast
import numpy as nm from sfepy.base.base import assert_, Struct from sfepy.terms.terms import terms from sfepy.terms.terms_hyperelastic_base import HyperElasticBase class HyperElasticTLBase(HyperElasticBase): """ Base class for all hyperelastic terms in TL formulation family. The subclasses should have the following static method attributes: - `stress_function()` (the stress) - `tan_mod_function()` (the tangent modulus) The common (family) data are cached in the evaluate cache of state variable. """ family_function = staticmethod(terms.dq_finite_strain_tl) weak_function = staticmethod(terms.dw_he_rtm) fd_cache_name = 'tl_common' hyperelastic_mode = 0 def compute_family_data(self, state): ap, vg = self.get_approximation(state) vec = self.get_vector(state) n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 shapes = { 'mtx_f' : (n_el, n_qp, dim, dim), 'det_f' : (n_el, n_qp, 1, 1), 'sym_c' : (n_el, n_qp, sym, 1), 'tr_c' : (n_el, n_qp, 1, 1), 'in2_c' : (n_el, n_qp, 1, 1), 'sym_inv_c' : (n_el, n_qp, sym, 1), 'green_strain' : (n_el, n_qp, sym, 1), } data =
Struct(name='tl_family_data')
sfepy.base.base.Struct
import numpy as nm from sfepy.base.base import assert_, Struct from sfepy.terms.terms import terms from sfepy.terms.terms_hyperelastic_base import HyperElasticBase class HyperElasticTLBase(HyperElasticBase): """ Base class for all hyperelastic terms in TL formulation family. The subclasses should have the following static method attributes: - `stress_function()` (the stress) - `tan_mod_function()` (the tangent modulus) The common (family) data are cached in the evaluate cache of state variable. """ family_function = staticmethod(terms.dq_finite_strain_tl) weak_function = staticmethod(terms.dw_he_rtm) fd_cache_name = 'tl_common' hyperelastic_mode = 0 def compute_family_data(self, state): ap, vg = self.get_approximation(state) vec = self.get_vector(state) n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 shapes = { 'mtx_f' : (n_el, n_qp, dim, dim), 'det_f' : (n_el, n_qp, 1, 1), 'sym_c' : (n_el, n_qp, sym, 1), 'tr_c' : (n_el, n_qp, 1, 1), 'in2_c' : (n_el, n_qp, 1, 1), 'sym_inv_c' : (n_el, n_qp, sym, 1), 'green_strain' : (n_el, n_qp, sym, 1), } data = Struct(name='tl_family_data') for key, shape in shapes.iteritems(): setattr(data, key, nm.zeros(shape, dtype=nm.float64)) self.family_function(data.mtx_f, data.det_f, data.sym_c, data.tr_c, data.in2_c, data.sym_inv_c, data.green_strain, vec, vg, ap.econn) return data class NeoHookeanTLTerm(HyperElasticTLBase): r""" Hyperelastic neo-Hookean term. Effective stress :math:`S_{ij} = \mu J^{-\frac{2}{3}}(\delta_{ij} - \frac{1}{3}C_{kk}C_{ij}^{-1})`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`\mu` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_he_neohook' family_data_names = ['det_f', 'tr_c', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_neohook) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_neohook) class MooneyRivlinTLTerm(HyperElasticTLBase): r""" Hyperelastic Mooney-Rivlin term. Effective stress :math:`S_{ij} = \kappa J^{-\frac{4}{3}} (C_{kk} \delta_{ij} - C_{ij} - \frac{2}{3 } I_2 C_{ij}^{-1})`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`\kappa` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_he_mooney_rivlin' family_data_names = ['det_f', 'tr_c', 'sym_inv_c', 'sym_c', 'in2_c'] stress_function = staticmethod(terms.dq_tl_he_stress_mooney_rivlin) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_mooney_rivlin) class BulkPenaltyTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk penalty term. Stress :math:`S_{ij} = K(J-1)\; J C_{ij}^{-1}`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`K` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_bulk_penalty' family_data_names = ['det_f', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_bulk) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_bulk) class BulkActiveTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk active term. Stress :math:`S_{ij} = A J C_{ij}^{-1}`, where :math:`A` is the activation in :math:`[0, F_{\rm max}]`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`A` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_bulk_active' family_data_names = ['det_f', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_bulk_active) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_bulk_active) class BulkPressureTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk pressure term. Stress :math:`S_{ij} = -p J C_{ij}^{-1}`. :Definition: .. math:: \int_{\Omega} S_{ij}(p) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` - state_p : :math:`p` """ name = 'dw_tl_bulk_pressure' arg_types = ('virtual', 'state', 'state_p') arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'state_p' : 1} family_data_names = ['det_f', 'sym_inv_c'] family_function = staticmethod(terms.dq_finite_strain_tl) weak_function = staticmethod(terms.dw_he_rtm) weak_dp_function = staticmethod(terms.dw_tl_volume) stress_function = staticmethod(terms.dq_tl_stress_bulk_pressure) tan_mod_u_function = staticmethod(terms.dq_tl_tan_mod_bulk_pressure_u) def compute_data(self, family_data, mode, **kwargs): det_f, sym_inv_c = family_data.det_f, family_data.sym_inv_c p_qp = family_data.p_qp if mode == 0: out = nm.empty_like(sym_inv_c) fun = self.stress_function elif mode == 1: shape = list(sym_inv_c.shape) shape[-1] = shape[-2] out = nm.empty(shape, dtype=nm.float64) fun = self.tan_mod_u_function else: raise ValueError('bad mode! (%d)' % mode) fun(out, p_qp, det_f, sym_inv_c) return out def get_fargs(self, virtual, state, state_p, mode=None, term_mode=None, diff_var=None, **kwargs): vgv, _ = self.get_mapping(state) fd = self.get_family_data(state, 'tl_common', self.family_data_names) fd.p_qp = self.get(state_p, 'val') if mode == 'weak': if diff_var != state_p.name: if diff_var is None: stress = self.compute_data(fd, 0, **kwargs) self.stress_cache = stress tan_mod = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 0 else: stress = self.stress_cache if stress is None: stress = self.compute_data(fd, 0, **kwargs) tan_mod = self.compute_data(fd, 1, **kwargs) fmode = 1 fargs = (self.weak_function, stress, tan_mod, fd.mtx_f, fd.det_f, vgv, fmode, 0) else: vgs, _ = self.get_mapping(state_p) fargs = (self.weak_dp_function, fd.mtx_f, fd.sym_inv_c, fd.det_f, vgs, vgv, 1, -1) return fargs elif mode == 'el_avg': if term_mode == 'strain': out_qp = fd.green_strain elif term_mode == 'stress': out_qp = self.compute_data(fd, 0, **kwargs) else: raise ValueError('unsupported term mode in %s! (%s)' % (self.name, term_mode)) return self.integrate, out_qp, vgv, 1 else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, virtual, state, state_p, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 return (n_el, 1, sym, 1), state.dtype class VolumeTLTerm(HyperElasticTLBase): r""" Volume term (weak form) in the total Lagrangian formulation. :Definition: .. math:: \begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} :Arguments: - virtual : :math:`q` - state : :math:`\ul{u}` """ name = 'dw_tl_volume' arg_types = ('virtual', 'state') arg_shapes = {'virtual' : (1, None), 'state' : 'D'} family_data_names = ['mtx_f', 'det_f', 'sym_inv_c'] function = staticmethod(terms.dw_tl_volume) def get_fargs(self, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vgs, _ = self.get_mapping(virtual) vgv, _ = self.get_mapping(state) fd = self.get_family_data(state, 'tl_common', self.family_data_names) if mode == 'weak': if diff_var is None: fmode = 0 else: fmode = 1 elif (mode == 'eval') or (mode == 'el_avg'): if term_mode == 'volume': fmode = 2 elif term_mode == 'rel_volume': fmode = 3 else: raise ValueError('unsupported term evaluation mode in %s! (%s)' % (self.name, term_mode)) else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) return fd.mtx_f, fd.sym_inv_c, fd.det_f, vgs, vgv, 0, fmode def get_eval_shape(self, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) return (n_el, 1, 1, 1), state.dtype class DiffusionTLTerm(HyperElasticTLBase): r""" Diffusion term in the total Lagrangian formulation with linearized deformation-dependent permeability :math:`\ull{K}(\ul{u}) = J \ull{F}^{-1} \ull{k} f(J) \ull{F}^{-T}`, where :math:`\ul{u}` relates to the previous time step :math:`(n-1)` and :math:`f(J) = \max\left(0, \left(1 + \frac{(J - 1)}{N_f}\right)\right)^2` expresses the dependence on volume compression/expansion. :Definition: .. math:: \int_{\Omega} \ull{K}(\ul{u}^{(n-1)}) : \pdiff{q}{\ul{X}} \pdiff{p}{\ul{X}} :Arguments: - material_1 : :math:`\ull{k}` - material_2 : :math:`N_f` - virtual : :math:`q` - state : :math:`p` - parameter : :math:`\ul{u}^{(n-1)}` """ name = 'dw_tl_diffusion' arg_types = ('material_1', 'material_2', 'virtual', 'state', 'parameter') arg_shapes = {'material_1' : 'D, D', 'material_2' : '1, 1', 'virtual' : (1, 'state'), 'state' : 1, 'parameter' : 'D'} family_data_names = ['mtx_f', 'det_f'] function = staticmethod(terms.dw_tl_diffusion) def get_fargs(self, perm, ref_porosity, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vgv, _ = self.get_mapping(parameter) fd = self.get_family_data(parameter, 'tl_common', self.family_data_names) grad = self.get(state, 'grad') if mode == 'weak': if diff_var is None: fmode = 0 else: fmode = 1 elif mode == 'el_avg': if term_mode == 'diffusion_velocity': fmode = 2 else: raise ValueError('unsupported term evaluation mode in %s! (%s)' % (self.name, term_mode)) else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) return grad, perm, ref_porosity, fd.mtx_f, fd.det_f, vgv, fmode def get_eval_shape(self, perm, ref_porosity, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) return (n_el, 1, dim, 1), state.dtype class HyperElasticSurfaceTLBase(HyperElasticBase): """ Base class for all hyperelastic surface terms in TL formulation family. """ family_function = staticmethod(terms.dq_tl_finite_strain_surface) fd_cache_name = 'tl_surface_common' def compute_family_data(self, state): ap, sg = self.get_approximation(state) sd = ap.surface_data[self.region.name] vec = self.get_vector(state) n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) shapes = { 'mtx_f' : (n_el, n_qp, dim, dim), 'det_f' : (n_el, n_qp, 1, 1), 'inv_f' : (n_el, n_qp, dim, dim), } data =
Struct(name='tl_surface_family_data')
sfepy.base.base.Struct
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 9 19:16:05 2021 @author: shrohanmohapatra """ r""" Navier-Stokes equations for incompressible fluid flow in 2D. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} + \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v} - \int_{\Omega} p\ \nabla \cdot \ul{v} = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \nabla \cdot \ul{u} = 0 \;, \quad \forall q \;. The mesh is created by ``gen_block_mesh()`` function. View the results using:: $ ./postproc.py user_block.vtk -b """ #from __future__ import absolute_import from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh import numpy as nm # Mesh dimensions. dims = [0.1, 0.1] # Mesh resolution: increase to improve accuracy. shape = [75, 75] def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh(dims, shape, [0, 0], name='user_block', verbose=False) return mesh elif mode == 'write': pass filename_mesh =
UserMeshIO(mesh_hook)
sfepy.discrete.fem.meshio.UserMeshIO
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other =
get_standard_keywords()
sfepy.base.conf.get_standard_keywords
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf =
ProblemConf.from_file(micro_filename, required, other, verbose=False)
sfepy.base.conf.ProblemConf.from_file
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf = ProblemConf.from_file(micro_filename, required, other, verbose=False) if coefs_filename is None: coefs_filename = conf.options.get('coefs_filename', 'coefs') coefs_filename = op.join(conf.options.get('output_dir', '.'), coefs_filename) + '.h5' if not regenerate: if op.exists( coefs_filename ): if not pt.is_hdf5_file( coefs_filename ): regenerate = True else: regenerate = True if regenerate: options = Struct( output_filename_trunk = None ) app = HomogenizationApp( conf, options, 'micro:' ) coefs = app() if type(coefs) is tuple: coefs = coefs[0] coefs.to_file_hdf5( coefs_filename ) else: coefs = Coefficients.from_file_hdf5( coefs_filename ) out = {} if mode == None: for key, val in six.iteritems(coefs.__dict__): out[key] = val elif mode == 'qp': for key, val in six.iteritems(coefs.__dict__): if type( val ) == nm.ndarray or type(val) == nm.float64: out[key] = nm.tile( val, (coor.shape[0], 1, 1) ) elif type(val) == dict: for key2, val2 in six.iteritems(val): if type(val2) == nm.ndarray or type(val2) == nm.float64: out[key+'_'+key2] = \ nm.tile(val2, (coor.shape[0], 1, 1)) else: out = None output.prefix = oprefix return out def get_homog_coefs_nonlinear(ts, coor, mode, mtx_f=None, term=None, problem=None, iteration=None, **kwargs): if not (mode == 'qp'): return oprefix = output.prefix output.prefix = 'micro:' if not hasattr(problem, 'homogen_app'): required, other =
get_standard_keywords()
sfepy.base.conf.get_standard_keywords
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf = ProblemConf.from_file(micro_filename, required, other, verbose=False) if coefs_filename is None: coefs_filename = conf.options.get('coefs_filename', 'coefs') coefs_filename = op.join(conf.options.get('output_dir', '.'), coefs_filename) + '.h5' if not regenerate: if op.exists( coefs_filename ): if not pt.is_hdf5_file( coefs_filename ): regenerate = True else: regenerate = True if regenerate: options = Struct( output_filename_trunk = None ) app = HomogenizationApp( conf, options, 'micro:' ) coefs = app() if type(coefs) is tuple: coefs = coefs[0] coefs.to_file_hdf5( coefs_filename ) else: coefs = Coefficients.from_file_hdf5( coefs_filename ) out = {} if mode == None: for key, val in six.iteritems(coefs.__dict__): out[key] = val elif mode == 'qp': for key, val in six.iteritems(coefs.__dict__): if type( val ) == nm.ndarray or type(val) == nm.float64: out[key] = nm.tile( val, (coor.shape[0], 1, 1) ) elif type(val) == dict: for key2, val2 in six.iteritems(val): if type(val2) == nm.ndarray or type(val2) == nm.float64: out[key+'_'+key2] = \ nm.tile(val2, (coor.shape[0], 1, 1)) else: out = None output.prefix = oprefix return out def get_homog_coefs_nonlinear(ts, coor, mode, mtx_f=None, term=None, problem=None, iteration=None, **kwargs): if not (mode == 'qp'): return oprefix = output.prefix output.prefix = 'micro:' if not hasattr(problem, 'homogen_app'): required, other = get_standard_keywords() required.remove('equations') micro_file = problem.conf.options.micro_filename conf = ProblemConf.from_file(micro_file, required, other, verbose=False) options =
Struct(output_filename_trunk=None)
sfepy.base.base.Struct
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf = ProblemConf.from_file(micro_filename, required, other, verbose=False) if coefs_filename is None: coefs_filename = conf.options.get('coefs_filename', 'coefs') coefs_filename = op.join(conf.options.get('output_dir', '.'), coefs_filename) + '.h5' if not regenerate: if op.exists( coefs_filename ): if not pt.is_hdf5_file( coefs_filename ): regenerate = True else: regenerate = True if regenerate: options = Struct( output_filename_trunk = None ) app = HomogenizationApp( conf, options, 'micro:' ) coefs = app() if type(coefs) is tuple: coefs = coefs[0] coefs.to_file_hdf5( coefs_filename ) else: coefs = Coefficients.from_file_hdf5( coefs_filename ) out = {} if mode == None: for key, val in six.iteritems(coefs.__dict__): out[key] = val elif mode == 'qp': for key, val in six.iteritems(coefs.__dict__): if type( val ) == nm.ndarray or type(val) == nm.float64: out[key] = nm.tile( val, (coor.shape[0], 1, 1) ) elif type(val) == dict: for key2, val2 in six.iteritems(val): if type(val2) == nm.ndarray or type(val2) == nm.float64: out[key+'_'+key2] = \ nm.tile(val2, (coor.shape[0], 1, 1)) else: out = None output.prefix = oprefix return out def get_homog_coefs_nonlinear(ts, coor, mode, mtx_f=None, term=None, problem=None, iteration=None, **kwargs): if not (mode == 'qp'): return oprefix = output.prefix output.prefix = 'micro:' if not hasattr(problem, 'homogen_app'): required, other = get_standard_keywords() required.remove('equations') micro_file = problem.conf.options.micro_filename conf = ProblemConf.from_file(micro_file, required, other, verbose=False) options = Struct(output_filename_trunk=None) app = HomogenizationApp(conf, options, 'micro:', n_micro=coor.shape[0], update_micro_coors=True) problem.homogen_app = app if hasattr(app.app_options, 'use_mpi') and app.app_options.use_mpi: multiproc, multiproc_mode = multi.get_multiproc(mpi=True) multi_mpi = multiproc if multiproc_mode == 'mpi' else None else: multi_mpi = None app.multi_mpi = multi_mpi if multi_mpi is not None: multi_mpi.master_send_task('init', (micro_file, coor.shape[0])) else: app = problem.homogen_app multi_mpi = app.multi_mpi def_grad = mtx_f(problem, term) if callable(mtx_f) else mtx_f if hasattr(problem, 'def_grad_prev'): rel_def_grad = la.dot_sequences(def_grad, nm.linalg.inv(problem.def_grad_prev), 'AB') else: rel_def_grad = def_grad.copy() problem.def_grad_prev = def_grad.copy() app.setup_macro_deformation(rel_def_grad) if multi_mpi is not None: multi_mpi.master_send_task('calculate', (rel_def_grad, ts, iteration)) coefs, deps = app(ret_all=True, itime=ts.step, iiter=iteration) if type(coefs) is tuple: coefs = coefs[0] out = {} for key, val in six.iteritems(coefs.__dict__): if isinstance(val, list): out[key] = nm.array(val) elif isinstance(val, dict): for key2, val2 in six.iteritems(val): out[key+'_'+key2] = nm.array(val2) for key in six.iterkeys(out): shape = out[key].shape if len(shape) == 1: out[key] = out[key].reshape(shape + (1, 1)) elif len(shape) == 2: out[key] = out[key].reshape(shape + (1,)) output.prefix = oprefix return out def get_correctors_from_file( coefs_filename = 'coefs.h5', dump_names = None ): if dump_names == None: coefs = Coefficients.from_file_hdf5( coefs_filename ) if hasattr( coefs, 'dump_names' ): dump_names = coefs.dump_names else: raise ValueError( ' "filenames" coefficient must be used!' ) out = {} for key, val in six.iteritems(dump_names): corr_name = op.split( val )[-1] io =
HDF5MeshIO( val+'.h5' )
sfepy.discrete.fem.meshio.HDF5MeshIO
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import sfepy.linalg as la import sfepy.base.multiproc as multi import os.path as op import six def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf = ProblemConf.from_file(micro_filename, required, other, verbose=False) if coefs_filename is None: coefs_filename = conf.options.get('coefs_filename', 'coefs') coefs_filename = op.join(conf.options.get('output_dir', '.'), coefs_filename) + '.h5' if not regenerate: if op.exists( coefs_filename ): if not pt.is_hdf5_file( coefs_filename ): regenerate = True else: regenerate = True if regenerate: options = Struct( output_filename_trunk = None ) app = HomogenizationApp( conf, options, 'micro:' ) coefs = app() if type(coefs) is tuple: coefs = coefs[0] coefs.to_file_hdf5( coefs_filename ) else: coefs = Coefficients.from_file_hdf5( coefs_filename ) out = {} if mode == None: for key, val in six.iteritems(coefs.__dict__): out[key] = val elif mode == 'qp': for key, val in six.iteritems(coefs.__dict__): if type( val ) == nm.ndarray or type(val) == nm.float64: out[key] = nm.tile( val, (coor.shape[0], 1, 1) ) elif type(val) == dict: for key2, val2 in six.iteritems(val): if type(val2) == nm.ndarray or type(val2) == nm.float64: out[key+'_'+key2] = \ nm.tile(val2, (coor.shape[0], 1, 1)) else: out = None output.prefix = oprefix return out def get_homog_coefs_nonlinear(ts, coor, mode, mtx_f=None, term=None, problem=None, iteration=None, **kwargs): if not (mode == 'qp'): return oprefix = output.prefix output.prefix = 'micro:' if not hasattr(problem, 'homogen_app'): required, other = get_standard_keywords() required.remove('equations') micro_file = problem.conf.options.micro_filename conf = ProblemConf.from_file(micro_file, required, other, verbose=False) options = Struct(output_filename_trunk=None) app = HomogenizationApp(conf, options, 'micro:', n_micro=coor.shape[0], update_micro_coors=True) problem.homogen_app = app if hasattr(app.app_options, 'use_mpi') and app.app_options.use_mpi: multiproc, multiproc_mode =
multi.get_multiproc(mpi=True)
sfepy.base.multiproc.get_multiproc
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec =
ElasticConstants(lam=1.0, mu=1.5)
sfepy.mechanics.matcoefs.ElasticConstants
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec =
mc.ElasticConstants(lam=lam, mu=mu)
sfepy.mechanics.matcoefs.ElasticConstants
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu =
mc.lame_from_youngpoisson(young, poisson)
sfepy.mechanics.matcoefs.lame_from_youngpoisson
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk =
mc.bulk_from_youngpoisson(young, poisson)
sfepy.mechanics.matcoefs.bulk_from_youngpoisson
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk =
mc.bulk_from_lame(lam, mu)
sfepy.mechanics.matcoefs.bulk_from_lame
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds =
mc.stiffness_from_lame(3, lam, mu)
sfepy.mechanics.matcoefs.stiffness_from_lame
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu)
assert_(_ds.shape == (3, 6, 6))
sfepy.base.base.assert_
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame():', _ok) ok = ok and _ok d = 4.0 / 3.0 * nm.array([[ 4., -2., -2., 0., 0., 0.], [-2., 4., -2., 0., 0., 0.], [-2., -2., 4., 0., 0., 0.], [ 0., 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 3.]]) _ds =
mc.stiffness_from_lame_mixed(3, lam, mu)
sfepy.mechanics.matcoefs.stiffness_from_lame_mixed
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame():', _ok) ok = ok and _ok d = 4.0 / 3.0 * nm.array([[ 4., -2., -2., 0., 0., 0.], [-2., 4., -2., 0., 0., 0.], [-2., -2., 4., 0., 0., 0.], [ 0., 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 3.]]) _ds = mc.stiffness_from_lame_mixed(3, lam, mu)
assert_(_ds.shape == (3, 6, 6))
sfepy.base.base.assert_
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame():', _ok) ok = ok and _ok d = 4.0 / 3.0 * nm.array([[ 4., -2., -2., 0., 0., 0.], [-2., 4., -2., 0., 0., 0.], [-2., -2., 4., 0., 0., 0.], [ 0., 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 3.]]) _ds = mc.stiffness_from_lame_mixed(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame_mixed():', _ok) ok = ok and _ok blam = - mu * 2.0 / 3.0 _ds =
mc.stiffness_from_lame(3, blam, mu)
sfepy.mechanics.matcoefs.stiffness_from_lame
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame():', _ok) ok = ok and _ok d = 4.0 / 3.0 * nm.array([[ 4., -2., -2., 0., 0., 0.], [-2., 4., -2., 0., 0., 0.], [-2., -2., 4., 0., 0., 0.], [ 0., 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 3.]]) _ds = mc.stiffness_from_lame_mixed(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame_mixed():', _ok) ok = ok and _ok blam = - mu * 2.0 / 3.0 _ds = mc.stiffness_from_lame(3, blam, mu)
assert_(_ds.shape == (3, 6, 6))
sfepy.base.base.assert_
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key):
assert_(key[0] == 's')
sfepy.base.base.assert_
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping = mm.create_mapping(coors_loc, field.gel, 1) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) vg.mtx_t = mtx_t out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'): assert_(field.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[self.ig][region.name] esd = self.surface_data[region.name] qp = self.get_qp(sd.face_type, integral) geo_ps = self.interp.get_geom_poly_space(sd.face_type) ps = self.interp.poly_spaces[esd.face_type] bf = self.get_base(esd.face_type, 0, integral) conn = sd.get_connectivity() mapping = SurfaceMapping(coors, conn, poly_space=geo_ps) sg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, mode=gtype) if gtype == 'surface_extra': sg.alloc_extra_data(self.n_ep['v']) self.create_bqp(region.name, integral) qp = self.qp_coors[(integral.name, esd.bkey)] v_geo_ps = self.interp.get_geom_poly_space('v') bf_bg = v_geo_ps.eval_base(qp.vals, diff=True) ebf_bg = self.get_base(esd.bkey, 1, integral) sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, group.conn) out = sg elif gtype == 'point': out = mapping = None else: raise ValueError('unknown geometry type: %s' % gtype) if out is not None: # Store the integral used. out.integral = integral out.qp = qp out.ps = ps # Update base. out.bf[:] = bf if return_mapping: out = (out, mapping) return out def _create_bqp(self, skey, bf_s, weights, integral_name): interp = self.interp gel = interp.gel bkey = 'b%s' % skey[1:] bqpkey = (integral_name, bkey) coors, faces = gel.coors, gel.get_surface_entities() vals = _interp_to_faces(coors, bf_s, faces) self.qp_coors[bqpkey] = Struct(name = 'BQP_%s' % bkey, vals = vals, weights = weights) interp.poly_spaces[bkey] = interp.poly_spaces['v'] return bkey def create_bqp(self, region_name, integral): sd = self.surface_data[region_name] bqpkey = (integral.name, sd.bkey) if not bqpkey in self.qp_coors: bf_s = self.get_base(sd.face_type, 0, integral, from_geometry=True) qp = self.get_qp(sd.face_type, integral) bkey = self._create_bqp(sd.face_type, bf_s, qp.weights, integral.name) assert_(bkey == sd.bkey) class DiscontinuousApproximation(Approximation): def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. For discontinuous approximations, all nodes are treated as extra. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig, only_extra=False) class SurfaceApproximation(Approximation): def __init__(self, name, interp, region, ig): Approximation.__init__(self, name, interp, region, ig, is_surface=True) def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 's#', where # is the number of face vertices. """
assert_(key[0] == 's')
sfepy.base.base.assert_
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] =
Struct(vals=vals, weights=weights)
sfepy.base.base.Struct
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping =
VolumeMapping(coors, conn, poly_space=geo_ps)
sfepy.discrete.fem.mappings.VolumeMapping
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping = mm.create_mapping(coors_loc, field.gel, 1) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) vg.mtx_t = mtx_t out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'): assert_(field.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[self.ig][region.name] esd = self.surface_data[region.name] qp = self.get_qp(sd.face_type, integral) geo_ps = self.interp.get_geom_poly_space(sd.face_type) ps = self.interp.poly_spaces[esd.face_type] bf = self.get_base(esd.face_type, 0, integral) conn = sd.get_connectivity() mapping = SurfaceMapping(coors, conn, poly_space=geo_ps) sg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, mode=gtype) if gtype == 'surface_extra': sg.alloc_extra_data(self.n_ep['v']) self.create_bqp(region.name, integral) qp = self.qp_coors[(integral.name, esd.bkey)] v_geo_ps = self.interp.get_geom_poly_space('v') bf_bg = v_geo_ps.eval_base(qp.vals, diff=True) ebf_bg = self.get_base(esd.bkey, 1, integral) sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, group.conn) out = sg elif gtype == 'point': out = mapping = None else: raise ValueError('unknown geometry type: %s' % gtype) if out is not None: # Store the integral used. out.integral = integral out.qp = qp out.ps = ps # Update base. out.bf[:] = bf if return_mapping: out = (out, mapping) return out def _create_bqp(self, skey, bf_s, weights, integral_name): interp = self.interp gel = interp.gel bkey = 'b%s' % skey[1:] bqpkey = (integral_name, bkey) coors, faces = gel.coors, gel.get_surface_entities() vals = _interp_to_faces(coors, bf_s, faces) self.qp_coors[bqpkey] = Struct(name = 'BQP_%s' % bkey, vals = vals, weights = weights) interp.poly_spaces[bkey] = interp.poly_spaces['v'] return bkey def create_bqp(self, region_name, integral): sd = self.surface_data[region_name] bqpkey = (integral.name, sd.bkey) if not bqpkey in self.qp_coors: bf_s = self.get_base(sd.face_type, 0, integral, from_geometry=True) qp = self.get_qp(sd.face_type, integral) bkey = self._create_bqp(sd.face_type, bf_s, qp.weights, integral.name)
assert_(bkey == sd.bkey)
sfepy.base.base.assert_
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping = mm.create_mapping(coors_loc, field.gel, 1) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) vg.mtx_t = mtx_t out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'): assert_(field.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[self.ig][region.name] esd = self.surface_data[region.name] qp = self.get_qp(sd.face_type, integral) geo_ps = self.interp.get_geom_poly_space(sd.face_type) ps = self.interp.poly_spaces[esd.face_type] bf = self.get_base(esd.face_type, 0, integral) conn = sd.get_connectivity() mapping = SurfaceMapping(coors, conn, poly_space=geo_ps) sg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, mode=gtype) if gtype == 'surface_extra': sg.alloc_extra_data(self.n_ep['v']) self.create_bqp(region.name, integral) qp = self.qp_coors[(integral.name, esd.bkey)] v_geo_ps = self.interp.get_geom_poly_space('v') bf_bg = v_geo_ps.eval_base(qp.vals, diff=True) ebf_bg = self.get_base(esd.bkey, 1, integral) sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, group.conn) out = sg elif gtype == 'point': out = mapping = None else: raise ValueError('unknown geometry type: %s' % gtype) if out is not None: # Store the integral used. out.integral = integral out.qp = qp out.ps = ps # Update base. out.bf[:] = bf if return_mapping: out = (out, mapping) return out def _create_bqp(self, skey, bf_s, weights, integral_name): interp = self.interp gel = interp.gel bkey = 'b%s' % skey[1:] bqpkey = (integral_name, bkey) coors, faces = gel.coors, gel.get_surface_entities() vals = _interp_to_faces(coors, bf_s, faces) self.qp_coors[bqpkey] = Struct(name = 'BQP_%s' % bkey, vals = vals, weights = weights) interp.poly_spaces[bkey] = interp.poly_spaces['v'] return bkey def create_bqp(self, region_name, integral): sd = self.surface_data[region_name] bqpkey = (integral.name, sd.bkey) if not bqpkey in self.qp_coors: bf_s = self.get_base(sd.face_type, 0, integral, from_geometry=True) qp = self.get_qp(sd.face_type, integral) bkey = self._create_bqp(sd.face_type, bf_s, qp.weights, integral.name) assert_(bkey == sd.bkey) class DiscontinuousApproximation(Approximation): def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. For discontinuous approximations, all nodes are treated as extra. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig, only_extra=False) class SurfaceApproximation(Approximation): def __init__(self, name, interp, region, ig): Approximation.__init__(self, name, interp, region, ig, is_surface=True) def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 's#', where # is the number of face vertices. """ assert_(key[0] == 's') qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] =
Struct(vals=vals, weights=weights)
sfepy.base.base.Struct
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t =
mm.create_transformation_matrix(ccoors)
sfepy.mechanics.membranes.create_transformation_matrix
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping =
mm.create_mapping(coors_loc, field.gel, 1)
sfepy.mechanics.membranes.create_mapping
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping = mm.create_mapping(coors_loc, field.gel, 1) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) vg.mtx_t = mtx_t out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'):
assert_(field.approx_order > 0)
sfepy.base.base.assert_
import numpy as nm from sfepy.base.base import Struct, assert_ from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from poly_spaces import PolySpace from fe_surface import FESurface def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True): if actual: domain.mesh.coors_act = coors.copy() else: domain.mesh.coors = coors.copy() if update_fields: for field in fields.itervalues(): field.setup_coors(coors) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, ig, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. group = region.domain.groups[ig] cells = region.get_cells(ig) ecoors = nm.dot(bf, mesh_coors[group.conn[cells]]) coors[econn] = nm.swapaxes(ecoors, 0, 1) ## # 04.08.2005, c def _interp_to_faces( vertex_vals, bfs, faces ): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros( (n_face, n_qp, dim), nm.float64 ) for ii, face in enumerate( faces ): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot( bfs[:,0,:], vals ) return( faces_vals ) class Interpolant( Struct ): """A simple wrapper around PolySpace.""" def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): self.name = name self.gel = gel self.poly_spaces = poly_spaces = {} poly_spaces['v'] = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=force_bubble) gel = gel.surface_facet if gel is not None: ps = PolySpace.any_from_args(name, gel, approx_order, base=base, force_bubble=False) skey = 's%d' % ps.n_nod poly_spaces[skey] = ps def describe_nodes( self ): ps = self.poly_spaces['v'] node_desc = ps.describe_nodes() return node_desc ## # 16.11.2007, c def get_n_nodes( self ): nn = {} for key, ps in self.poly_spaces.iteritems(): nn[key] = ps.nodes.shape[0] return nn def get_geom_poly_space(self, key): if key == 'v': ps = self.gel.interp.poly_spaces['v'] elif key[0] == 's': n_v = self.gel.surface_facet.n_vertex ps = self.gel.interp.poly_spaces['s%d' % n_v] else: raise ValueError('bad polynomial space key! (%s)' % key) return ps class SurfaceInterpolant(Interpolant): """ Like Interpolant, but for use with SurfaceField and SurfaceApproximation. """ def __init__(self, name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False): Interpolant.__init__(self, name, gel, space=space, base=base, approx_order=approx_order, force_bubble=force_bubble) # Make alias 'v' <-> 's#'. ps = self.poly_spaces['v'] self.poly_spaces['s%d' % ps.n_nod] = ps def get_geom_poly_space(self, key): assert_(key[0] == 's') ps = self.gel.interp.poly_spaces['v'] return ps ## # 18.07.2006, c class Approximation( Struct ): ## # 18.07.2006, c # 10.10.2006 # 11.07.2007 # 17.07.2007 def __init__(self, name, interp, region, ig, is_surface=False): """interp, region are borrowed.""" self.name = name self.interp = interp self.region = region self.ig = ig self.is_surface = is_surface self.surface_data = {} self.edge_data = {} self.point_data = {} self.n_ep = self.interp.get_n_nodes() self.ori = None self.clear_qp_base() def eval_extra_coor(self, coors, mesh_coors): """ Compute coordinates of extra nodes. """ gps = self.interp.gel.interp.poly_spaces['v'] ps = self.interp.poly_spaces['v'] eval_nodal_coors(coors, mesh_coors, self.region, ps, gps, self.econn, self.ig) ## # c: 05.09.2006, r: 09.05.2008 def setup_surface_data( self, region ): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.ig) self.surface_data[region.name] = sd return sd ## # 11.07.2007, c def setup_point_data( self, field, region ): conn = field.get_dofs_in_region(region, merge=True, igs=region.igs) ## conn = [nods]\ ## + [nm.empty( (0,), dtype = nm.int32 )]\ ## * (len( region.igs ) - 1) conn.shape += (1,) self.point_data[region.name] = conn def get_connectivity(self, region, integration, is_trace=False): """ Return the DOF connectivity for the given geometry type. Parameters ---------- region : Region instance The region, used to index surface and volume connectivities. integration : one of ('volume', 'plate', 'surface', 'surface_extra') The term integration type. """ if integration == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(self.is_surface, is_trace=is_trace) elif integration in ('volume', 'plate', 'surface_extra'): if region.name == self.region.name: conn = self.econn else: aux = integration in ('volume', 'plate') cells = region.get_cells(self.ig, true_cells_only=aux) conn = nm.take(self.econn, cells.astype(nm.int32), axis=0) else: raise ValueError('unsupported term integration! (%s)' % integration) return conn def get_poly_space(self, key, from_geometry=False): """ Get the polynomial space. Parameters ---------- key : 'v' or 's?' The key denoting volume or surface. from_geometry : bool If True, return the polynomial space for affine geometrical interpolation. Returns ------- ps : PolySpace instance The polynomial space. """ if from_geometry: ps = self.interp.get_geom_poly_space(key) else: ps = self.interp.poly_spaces[key] return ps def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.name, key) if not self.qp_coors.has_key(qpkey): interp = self.interp if (key[0] == 's'): dim = interp.gel.dim - 1 n_fp = interp.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = interp.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) ps = self.get_poly_space(key, from_geometry=from_geometry) _key = key if not from_geometry else 'g' + key bf_key = (integral.name, _key, derivative) if not self.bf.has_key(bf_key): if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def describe_geometry(self, field, gtype, region, integral, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif gtype == 'plate': import sfepy.mechanics.membranes as mm from sfepy.linalg import dot_sequences qp = self.get_qp('v', integral) iels = region.get_cells(self.ig) ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, nm.int32(iels), axis=0) ccoors = coors[conn] # Coordinate transformation matrix (transposed!). mtx_t = mm.create_transformation_matrix(ccoors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((ccoors - ccoors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. mapping = mm.create_mapping(coors_loc, field.gel, 1) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) vg.mtx_t = mtx_t out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'): assert_(field.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[self.ig][region.name] esd = self.surface_data[region.name] qp = self.get_qp(sd.face_type, integral) geo_ps = self.interp.get_geom_poly_space(sd.face_type) ps = self.interp.poly_spaces[esd.face_type] bf = self.get_base(esd.face_type, 0, integral) conn = sd.get_connectivity() mapping =
SurfaceMapping(coors, conn, poly_space=geo_ps)
sfepy.discrete.fem.mappings.SurfaceMapping
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i =
Mesh.from_region(omega_gi, mesh, localize=True)
sfepy.discrete.fem.Mesh.from_region
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i =
FEDomain('domain_i', mesh_i)
sfepy.discrete.fem.FEDomain
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p)
output('field 1: number of local DOFs:', field1_i.n_nod)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod)
output('field 2: number of local DOFs:', field2_i.n_nod)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i =
FieldVariable('u_i', 'unknown', field1_i, order=0)
sfepy.discrete.FieldVariable
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i =
FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
sfepy.discrete.FieldVariable
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i =
FieldVariable('p_i', 'unknown', field2_i, order=1)
sfepy.discrete.FieldVariable
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i =
FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')
sfepy.discrete.FieldVariable
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 =
Equation('eq1', t11 - t12)
sfepy.discrete.Equation
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 =
Equation('eq1', t21 + t22)
sfepy.discrete.Equation
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs =
Equations([eq1, eq2])
sfepy.discrete.Equations
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun =
Function('bc_fun', bc_fun)
sfepy.discrete.Function
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb =
Problem('problem_i', equations=eqs, active_only=False)
sfepy.discrete.Problem
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size()
output('rank', rank, 'of', size)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh =
Mesh.from_file(mesh_filename)
sfepy.discrete.fem.Mesh.from_file
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None
output('creating global domain and fields...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain =
FEDomain('domain', mesh)
sfepy.discrete.fem.FEDomain
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt)
output('distributing fields...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt)
output('creating local problem...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi =
Region.from_cells(cells, domain)
sfepy.discrete.common.region.Region.from_cells
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state =
State(variables)
sfepy.discrete.State
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt)
output('allocating global system...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt)
output('creating solver...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls =
PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status)
sfepy.solvers.ls.PETScKrylovSolver
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt)
output('solving...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt)
output('saving solution...')
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero =
pl.create_gather_to_zero(psol)
sfepy.parallel.parallel.create_gather_to_zero
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank
output.set_output(filename=filename, combined=options.silent == False)
sfepy.base.base.output.set_output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False)
output('petsc options:', petsc_opts)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False) output('petsc options:', petsc_opts) mesh_filename = os.path.join(options.output_dir, 'para.h5') if comm.rank == 0: from sfepy.mesh.mesh_generators import gen_block_mesh if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.mesh', '*.txt'], ignores=['output_log_%02d.txt' % ii for ii in range(comm.size)], verbose=True) save_options(os.path.join(output_dir, 'options.txt'), [('options', vars(options))]) dim = 2 if options.is_2d else 3 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims) output('shape: ', shape) output('centre: ', centre) mesh = gen_block_mesh(dims, shape, centre, name='block-fem', verbose=True) mesh.write(mesh_filename, io='auto') comm.barrier()
output('field u order:', options.order_u)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False) output('petsc options:', petsc_opts) mesh_filename = os.path.join(options.output_dir, 'para.h5') if comm.rank == 0: from sfepy.mesh.mesh_generators import gen_block_mesh if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.mesh', '*.txt'], ignores=['output_log_%02d.txt' % ii for ii in range(comm.size)], verbose=True) save_options(os.path.join(output_dir, 'options.txt'), [('options', vars(options))]) dim = 2 if options.is_2d else 3 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims) output('shape: ', shape) output('centre: ', centre) mesh = gen_block_mesh(dims, shape, centre, name='block-fem', verbose=True) mesh.write(mesh_filename, io='auto') comm.barrier() output('field u order:', options.order_u)
output('field p order:', options.order_p)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0:
ensure_path(filename)
sfepy.base.ioutils.ensure_path
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False) output('petsc options:', petsc_opts) mesh_filename = os.path.join(options.output_dir, 'para.h5') if comm.rank == 0: from sfepy.mesh.mesh_generators import gen_block_mesh if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.mesh', '*.txt'], ignores=['output_log_%02d.txt' % ii for ii in range(comm.size)], verbose=True) save_options(os.path.join(output_dir, 'options.txt'), [('options', vars(options))]) dim = 2 if options.is_2d else 3 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
output('dimensions:', dims)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False) output('petsc options:', petsc_opts) mesh_filename = os.path.join(options.output_dir, 'para.h5') if comm.rank == 0: from sfepy.mesh.mesh_generators import gen_block_mesh if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.mesh', '*.txt'], ignores=['output_log_%02d.txt' % ii for ii in range(comm.size)], verbose=True) save_options(os.path.join(output_dir, 'options.txt'), [('options', vars(options))]) dim = 2 if options.is_2d else 3 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims)
output('shape: ', shape)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb def solve_problem(mesh_filename, options, comm): order_u = options.order_u order_p = options.order_p rank, size = comm.Get_rank(), comm.Get_size() output('rank', rank, 'of', size) mesh = Mesh.from_file(mesh_filename) if rank == 0: cell_tasks = pl.partition_mesh(mesh, size, use_metis=options.metis, verbose=True) else: cell_tasks = None output('creating global domain and fields...') tt = time.clock() domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field1 = Field.from_args('fu', nm.float64, mesh.dim, omega, approx_order=order_u) field2 = Field.from_args('fp', nm.float64, 1, omega, approx_order=order_p) fields = [field1, field2] output('...done in', time.clock() - tt) output('distributing fields...') tt = time.clock() distribute = pl.distribute_fields_dofs lfds, gfds = distribute(fields, cell_tasks, is_overlap=True, use_expand_dofs=True, save_inter_regions=options.save_inter_regions, output_dir=options.output_dir, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating local problem...') tt = time.clock() cells = lfds[0].cells omega_gi = Region.from_cells(cells, domain) omega_gi.finalize() omega_gi.update_shape() pb = create_local_problem(omega_gi, [order_u, order_p]) variables = pb.get_variables() state = State(variables) state.fill(0.0) state.apply_ebc() output('...done in', time.clock() - tt) output('allocating global system...') tt = time.clock() sizes, drange, pdofs = pl.setup_composite_dofs(lfds, fields, variables, verbose=True) pmtx, psol, prhs = pl.create_petsc_system(pb.mtx_a, sizes, pdofs, drange, is_overlap=True, comm=comm, verbose=True) output('...done in', time.clock() - tt) output('creating solver...') tt = time.clock() conf = Struct(method='bcgsl', precond='jacobi', sub_precond='none', i_max=10000, eps_a=1e-50, eps_r=1e-6, eps_d=1e4, verbose=True) status = {} ls = PETScKrylovSolver(conf, comm=comm, mtx=pmtx, status=status) field_ranges = {} for ii, variable in enumerate(variables.iter_state(ordered=True)): field_ranges[variable.name] = lfds[ii].petsc_dofs_range ls.set_field_split(field_ranges, comm=comm) ev = PETScParallelEvaluator(pb, pdofs, drange, True, psol, comm, verbose=True) nls_status = {} conf = Struct(method='newtonls', i_max=5, eps_a=0, eps_r=1e-5, eps_s=0.0, verbose=True) nls = PETScNonlinearSolver(conf, pmtx=pmtx, prhs=prhs, comm=comm, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix, lin_solver=ls, status=nls_status) output('...done in', time.clock() - tt) output('solving...') tt = time.clock() state = pb.create_state() state.apply_ebc() ev.psol_i[...] = state() ev.gather(psol, ev.psol_i) psol = nls(psol) ev.scatter(ev.psol_i, psol) sol0_i = ev.psol_i[...] output('...done in', time.clock() - tt) output('saving solution...') tt = time.clock() state.set_full(sol0_i) out = state.create_output_dict() filename = os.path.join(options.output_dir, 'sol_%02d.h5' % comm.rank) pb.domain.mesh.write(filename, io='auto', out=out) gather_to_zero = pl.create_gather_to_zero(psol) psol_full = gather_to_zero(psol) if comm.rank == 0: sol = psol_full[...].copy() u = FieldVariable('u', 'parameter', field1, primary_var_name='(set-to-None)') remap = gfds[0].id_map ug = sol[remap] p = FieldVariable('p', 'parameter', field2, primary_var_name='(set-to-None)') remap = gfds[1].id_map pg = sol[remap] if (((order_u == 1) and (order_p == 1)) or (options.linearization == 'strip')): out = u.create_output(ug) out.update(p.create_output(pg)) filename = os.path.join(options.output_dir, 'sol.h5') mesh.write(filename, io='auto', out=out) else: out = u.create_output(ug, linearization=Struct(kind='adaptive', min_level=0, max_level=order_u, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_u.h5') out['u'].mesh.write(filename, io='auto', out=out) out = p.create_output(pg, linearization=Struct(kind='adaptive', min_level=0, max_level=order_p, eps=1e-3)) filename = os.path.join(options.output_dir, 'sol_p.h5') out['p'].mesh.write(filename, io='auto', out=out) output('...done in', time.clock() - tt) helps = { 'output_dir' : 'output directory', 'dims' : 'dimensions of the block [default: %(default)s]', 'shape' : 'shape (counts of nodes in x, y, z) of the block [default: %(default)s]', 'centre' : 'centre of the block [default: %(default)s]', '2d' : 'generate a 2D rectangle, the third components of the above' ' options are ignored', 'u-order' : 'displacement field approximation order', 'p-order' : 'pressure field approximation order', 'linearization' : 'linearization used for storing the results with approximation order > 1' ' [default: %(default)s]', 'metis' : 'use metis for domain partitioning', 'save_inter_regions' : 'save inter-task regions for debugging partitioning problems', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory' ' (DANGEROUS - use with care!)', } def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='11,11,11', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-2', '--2d', action='store_true', dest='is_2d', default=False, help=helps['2d']) parser.add_argument('--u-order', metavar='int', type=int, action='store', dest='order_u', default=1, help=helps['u-order']) parser.add_argument('--p-order', metavar='int', type=int, action='store', dest='order_p', default=1, help=helps['p-order']) parser.add_argument('--linearization', choices=['strip', 'adaptive'], action='store', dest='linearization', default='strip', help=helps['linearization']) parser.add_argument('--metis', action='store_true', dest='metis', default=False, help=helps['metis']) parser.add_argument('--save-inter-regions', action='store_true', dest='save_inter_regions', default=False, help=helps['save_inter_regions']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('--clear', action='store_true', dest='clear', default=False, help=helps['clear']) options, petsc_opts = parser.parse_known_args() comm = pl.PETSc.COMM_WORLD output_dir = options.output_dir filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank) if comm.rank == 0: ensure_path(filename) comm.barrier() output.prefix = 'sfepy_%02d:' % comm.rank output.set_output(filename=filename, combined=options.silent == False) output('petsc options:', petsc_opts) mesh_filename = os.path.join(options.output_dir, 'para.h5') if comm.rank == 0: from sfepy.mesh.mesh_generators import gen_block_mesh if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.mesh', '*.txt'], ignores=['output_log_%02d.txt' % ii for ii in range(comm.size)], verbose=True) save_options(os.path.join(output_dir, 'options.txt'), [('options', vars(options))]) dim = 2 if options.is_2d else 3 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims) output('shape: ', shape)
output('centre: ', centre)
sfepy.base.base.output
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=
stiffness_from_lame(mesh.dim, lam=10, mu=5)
sfepy.mechanics.matcoefs.stiffness_from_lame
#!/usr/bin/env python r""" Parallel assembling and solving of a Biot problem (deformable porous medium), using commands for interactive use. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p = 0 \;, \quad \forall q \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. Important Notes --------------- - This example requires petsc4py, mpi4py and (optionally) pymetis with their dependencies installed! - This example generates a number of files - do not use an existing non-empty directory for the ``output_dir`` argument. - Use the ``--clear`` option with care! Notes ----- - Each task is responsible for a subdomain consisting of a set of cells (a cell region). - Each subdomain owns PETSc DOFs within a consecutive range. - When both global and task-local variables exist, the task-local variables have ``_i`` suffix. - This example shows how to use a nonlinear solver from PETSc. - This example can serve as a template for solving a (non)linear multi-field problem - just replace the equations in :func:`create_local_problem()`. - The material parameter :math:`\alpha_{ij}` is artificially high to be able to see the pressure influence on displacements. - The command line options are saved into <output_dir>/options.txt file. Usage Examples -------------- See all options:: $ python examples/multi_physics/biot_parallel_interactive.py -h See PETSc options:: $ python examples/multi_physics/biot_parallel_interactive.py -help Single process run useful for debugging with :func:`debug() <sfepy.base.base.debug>`:: $ python examples/multi_physics/biot_parallel_interactive.py output-parallel Parallel runs:: $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 $ mpiexec -n 3 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape=101,101 --metis $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel -2 --shape 101,101 --metis -snes_monitor -snes_view -snes_converged_reason -ksp_monitor Using FieldSplit preconditioner:: $ mpiexec -n 2 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=101,101 -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit $ mpiexec -n 8 python examples/multi_physics/biot_parallel_interactive.py output-parallel --shape=1001,1001 --metis -snes_monitor -snes_converged_reason -ksp_monitor -pc_type fieldsplit -pc_fieldsplit_type additive View the results using (strip linearization or approximation orders one):: $ python postproc.py output-parallel/sol.h5 --wireframe -b -d'p,plot_warp_scalar:u,plot_displacements' View the results using (adaptive linearization):: $ python postproc.py output-parallel/sol_u.h5 --wireframe -b -d'u,plot_displacements' $ python postproc.py output-parallel/sol_p.h5 --wireframe -b -d'p,plot_warp_scalar' """ from __future__ import absolute_import from argparse import RawDescriptionHelpFormatter, ArgumentParser import os import time import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.discrete.common.region import Region from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem, State) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import PETScKrylovSolver from sfepy.solvers.nls import PETScNonlinearSolver from sfepy.mechanics.matcoefs import stiffness_from_lame import sfepy.parallel.parallel as pl from sfepy.parallel.evaluate import PETScParallelEvaluator def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=
Conditions([ebc1, ebc2, ebc3])
sfepy.discrete.conditions.Conditions
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii =
tn.get_sym_indices(3)
sfepy.mechanics.tensors.get_sym_indices
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr =
tn.get_trace(a_full, sym_storage=False)
sfepy.mechanics.tensors.get_trace
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr =
tn.get_trace(a_sym, sym_storage=True)
sfepy.mechanics.tensors.get_trace
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt =
tn.get_volumetric_tensor(a_full, sym_storage=False)
sfepy.mechanics.tensors.get_volumetric_tensor
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt =
tn.get_volumetric_tensor(a_sym, sym_storage=True)
sfepy.mechanics.tensors.get_volumetric_tensor
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev =
tn.get_deviator(a_full, sym_storage=False)
sfepy.mechanics.tensors.get_deviator
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev =
tn.get_deviator(a_sym, sym_storage=True)
sfepy.mechanics.tensors.get_deviator
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms =
tn.get_von_mises_stress(a_full, sym_storage=False)
sfepy.mechanics.tensors.get_von_mises_stress
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms =
tn.get_von_mises_stress(a_sym, sym_storage=True)
sfepy.mechanics.tensors.get_von_mises_stress
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 =
tn.get_t4_from_t2s(t2s)
sfepy.mechanics.tensors.get_t4_from_t2s
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out =
transform_data(data, coors)
sfepy.mechanics.tensors.transform_data
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out =
transform_data(data, coors)
sfepy.mechanics.tensors.transform_data
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx =
tn.make_axis_rotation_matrix([0., 0., 1.], phi)
sfepy.mechanics.tensors.make_axis_rotation_matrix
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx = tn.make_axis_rotation_matrix([0., 0., 1.], phi) do =
tn.transform_data(dr[None, ...], mtx=mtx[None, ...])
sfepy.mechanics.tensors.transform_data
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx = tn.make_axis_rotation_matrix([0., 0., 1.], phi) do = tn.transform_data(dr[None, ...], mtx=mtx[None, ...]) _ok = nm.allclose(do, expected, rtol=0.0, atol=1e-14) self.report('sym. 4th-th order tensor rotation: %s' % _ok) ok = ok and _ok dt, vt1, vt2, omt1, omt2 = get_ortho_d(0, nm.deg2rad(90.)) expected1 = nm.zeros((3, 3), dtype=nm.float64) expected1[0, 0] = 1.0 expected2 = nm.zeros((3, 3), dtype=nm.float64) expected2[1, 1] = 1.0 omr1 = nm.einsum('pq,ip,jq->ij', om1, mtx, mtx) omr2 = nm.einsum('pq,ip,jq->ij', om2, mtx, mtx) ii =
tn.get_sym_indices(3)
sfepy.mechanics.tensors.get_sym_indices
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx = tn.make_axis_rotation_matrix([0., 0., 1.], phi) do = tn.transform_data(dr[None, ...], mtx=mtx[None, ...]) _ok = nm.allclose(do, expected, rtol=0.0, atol=1e-14) self.report('sym. 4th-th order tensor rotation: %s' % _ok) ok = ok and _ok dt, vt1, vt2, omt1, omt2 = get_ortho_d(0, nm.deg2rad(90.)) expected1 = nm.zeros((3, 3), dtype=nm.float64) expected1[0, 0] = 1.0 expected2 = nm.zeros((3, 3), dtype=nm.float64) expected2[1, 1] = 1.0 omr1 = nm.einsum('pq,ip,jq->ij', om1, mtx, mtx) omr2 = nm.einsum('pq,ip,jq->ij', om2, mtx, mtx) ii = tn.get_sym_indices(3) jj =
tn.get_full_indices(3)
sfepy.mechanics.tensors.get_full_indices
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx = tn.make_axis_rotation_matrix([0., 0., 1.], phi) do = tn.transform_data(dr[None, ...], mtx=mtx[None, ...]) _ok = nm.allclose(do, expected, rtol=0.0, atol=1e-14) self.report('sym. 4th-th order tensor rotation: %s' % _ok) ok = ok and _ok dt, vt1, vt2, omt1, omt2 = get_ortho_d(0, nm.deg2rad(90.)) expected1 = nm.zeros((3, 3), dtype=nm.float64) expected1[0, 0] = 1.0 expected2 = nm.zeros((3, 3), dtype=nm.float64) expected2[1, 1] = 1.0 omr1 = nm.einsum('pq,ip,jq->ij', om1, mtx, mtx) omr2 = nm.einsum('pq,ip,jq->ij', om2, mtx, mtx) ii = tn.get_sym_indices(3) jj = tn.get_full_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] omr12 =
tn.transform_data(o1[None,...], mtx=mtx[None, ...])
sfepy.mechanics.tensors.transform_data
from __future__ import absolute_import from sfepy.base.testing import TestCommon def get_ortho_d(phi1, phi2): import numpy as nm import sfepy.mechanics.tensors as tn v1 = nm.array([nm.cos(phi1), nm.sin(phi1), 0]) v2 = nm.array([nm.cos(phi2), nm.sin(phi2), 0]) om1 = nm.outer(v1, v1) om2 = nm.outer(v2, v2) ii = tn.get_sym_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] dr = nm.outer(o1, o1) + nm.outer(o2, o2) return dr, v1, v2, om1, om2 class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_tensors(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True a_full = 2.0 * nm.ones((5,3,3), dtype=nm.float64) a_sym = 2.0 * nm.ones((5,6), dtype=nm.float64) _tr = nm.array([6.0] * 5, dtype=nm.float64) _vt_full = 2.0 * nm.tile(nm.eye(3, dtype=nm.float64), (5,1,1)) _vt_sym = nm.tile(nm.array([2, 2, 2, 0, 0, 0], dtype=nm.float64), (5,1,1)) _dev_full = a_full - _vt_full _dev_sym = a_sym - _vt_sym _vms = 6.0 * nm.ones((5,1), dtype=nm.float64) tr = tn.get_trace(a_full, sym_storage=False) _ok = nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace full: %s' % _ok) ok = ok and _ok tr = tn.get_trace(a_sym, sym_storage=True) ok = ok and nm.allclose(tr, _tr, rtol=0.0, atol=1e-14) self.report('trace sym: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_full, sym_storage=False) _ok = nm.allclose(vt, _vt_full, rtol=0.0, atol=1e-14) self.report('volumetric tensor full: %s' % _ok) ok = ok and _ok vt = tn.get_volumetric_tensor(a_sym, sym_storage=True) _ok = nm.allclose(vt, _vt_sym, rtol=0.0, atol=1e-14) self.report('volumetric tensor sym: %s' % _ok) ok = ok and _ok dev = tn.get_deviator(a_full, sym_storage=False) _ok = nm.allclose(dev, _dev_full, rtol=0.0, atol=1e-14) self.report('deviator full: %s' % _ok) ok = ok and _ok aux = (dev * nm.transpose(dev, (0, 2, 1))).sum(axis=1).sum(axis=1) vms2 = nm.sqrt((3.0/2.0) * aux)[:,None] dev = tn.get_deviator(a_sym, sym_storage=True) _ok = nm.allclose(dev, _dev_sym, rtol=0.0, atol=1e-14) self.report('deviator sym: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_full, sym_storage=False) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress full: %s' % _ok) ok = ok and _ok vms = tn.get_von_mises_stress(a_sym, sym_storage=True) _ok = nm.allclose(vms, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress sym: %s' % _ok) ok = ok and _ok _ok = nm.allclose(vms2, _vms, rtol=0.0, atol=1e-14) self.report('von Mises stress via deviator: %s' % _ok) ok = ok and _ok t2s = nm.arange(9).reshape(3, 3) t2s = (t2s + t2s.T) / 2 t4 = tn.get_t4_from_t2s(t2s) expected = nm.array([[[[0, 4], [4, 2]], [[4, 8], [8, 6]]], [[[4, 8], [8, 6]], [[2, 6], [6, 4]]]]) _ok = nm.allclose(t4, expected, rtol=0.0, atol=1e-14) self.report('full 4D tensor from 2D matrix, 2D space: %s' % _ok) ok = ok and _ok return ok def test_transform_data(self): import numpy as nm from sfepy.mechanics.tensors import transform_data ok = True coors = nm.eye(3) data = nm.eye(3) expected = nm.zeros((3, 3)) expected[[0, 1, 2], [0, 0, 2]] = 1.0 out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('vectors in cylindrical coordinates: %s' % _ok) ok = ok and _ok data = nm.zeros((3, 6)) data[:, :3] = [[1, 2, 3]] expected = data.copy() expected[1, [0, 1]] = expected[1, [1, 0]] out = transform_data(data, coors) _ok = nm.allclose(out, expected, rtol=0.0, atol=1e-14) self.report('sym. tensors in cylindrical coordinates: %s' % _ok) ok = ok and _ok return ok def test_transform_data4(self): import numpy as nm import sfepy.mechanics.tensors as tn ok = True if not hasattr(nm, 'einsum'): self.report('no numpy.einsum(), skipping!') return ok expected = nm.zeros((6, 6), dtype=nm.float64) expected[0, 0] = expected[1, 1] = 1.0 phi = nm.deg2rad(30.) dr, v1, v2, om1, om2 = get_ortho_d(phi, phi + nm.deg2rad(90.)) # Rotate coordinate system by phi. mtx = tn.make_axis_rotation_matrix([0., 0., 1.], phi) do = tn.transform_data(dr[None, ...], mtx=mtx[None, ...]) _ok = nm.allclose(do, expected, rtol=0.0, atol=1e-14) self.report('sym. 4th-th order tensor rotation: %s' % _ok) ok = ok and _ok dt, vt1, vt2, omt1, omt2 = get_ortho_d(0, nm.deg2rad(90.)) expected1 = nm.zeros((3, 3), dtype=nm.float64) expected1[0, 0] = 1.0 expected2 = nm.zeros((3, 3), dtype=nm.float64) expected2[1, 1] = 1.0 omr1 = nm.einsum('pq,ip,jq->ij', om1, mtx, mtx) omr2 = nm.einsum('pq,ip,jq->ij', om2, mtx, mtx) ii = tn.get_sym_indices(3) jj = tn.get_full_indices(3) o1 = om1.flat[ii] o2 = om2.flat[ii] omr12 = tn.transform_data(o1[None,...], mtx=mtx[None, ...])[0, jj] omr22 =
tn.transform_data(o2[None,...], mtx=mtx[None, ...])
sfepy.mechanics.tensors.transform_data
# 28.05.2009, c from sfepy import data_dir filename_mesh = data_dir + '/meshes/3d/elbow.mesh' fields = { 'scalar' : ('real', 'scalar', 'Omega', 1), 'vector' : ('real', 'vector', 'Omega', 1), } integrals = { 'i1' : ('v', 'gauss_o2_d3'), 'i2' : ('s', 'gauss_o2_d2'), } regions = { 'Omega' : ('all', {}), 'Gamma' : ('nodes of surface', {'can_cells' : True}), } expressions = { 'volume_p' : 'd_volume.i1.Omega( p )', 'volume_u' : 'd_volume.i1.Omega( u )', 'surface_p' : 'd_volume_surface.i2.Gamma( p )', 'surface_u' : 'd_volume_surface.i2.Gamma( u )', } fe = { 'chunk_size' : 1000 } import numpy as nm from sfepy.base.testing import TestCommon from sfepy.base.base import debug, pause ## # 10.07.2007, c class Test( TestCommon ): tests = ['test_volume'] def from_conf( conf, options ): from sfepy.fem import ProblemDefinition problem =
ProblemDefinition.from_conf(conf, init_equations=False)
sfepy.fem.ProblemDefinition.from_conf