prompt
stringlengths 174
59.5k
| completion
stringlengths 7
228
| api
stringlengths 12
64
|
---|---|---|
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
pb.set_ics(Conditions([ic]))
state0 = pb.get_initial_state()
init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
nls=nls, context=pb, verbose=True)
pb.set_solver(tss)
if options.probe:
# Prepare probe data.
probes, labels = gen_probes(pb)
ev = pb.evaluate
order = 2 * (options.order - 1)
gfield = Field.from_args('gu', nm.float64, 'vector', omega,
approx_order=options.order - 1)
dvel = FieldVariable('dvel', 'parameter', gfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
nls_options = {'eps_a' : 1e-16, 'i_max' : 1}
suffix = tss.ts.suffix
def poststep_fun(ts, vec):
_poststep_fun(ts, vec)
# Probe the solution.
dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
% order, copy_materials=False, mode='qp')
project_by_component(dvel, dvel_qp, component, order,
nls_options=nls_options)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(ii, T, dvel, probe, labels[ii])
all_results.append(results)
plt.tight_layout()
fig.savefig('time_poisson_interactive_probe_%s.png'
% (suffix % ts.step), bbox_inches='tight')
for ii, results in enumerate(all_results):
output('probe %d (%s):' % (ii, probes[ii].name))
output.level += 2
for key, res in ordered_iteritems(results):
output(key + ':')
val = res[1]
output(' min: %+.2e, mean: %+.2e, max: %+.2e'
% (val.min(), val.mean(), val.max()))
output.level -= 2
else:
poststep_fun = _poststep_fun
pb.time_update(tss.ts)
state0.apply_ebc()
# This is required if {'is_linear' : True} is passed to Newton.
mtx = prepare_matrix(pb, state0)
pb.try_presolve(mtx)
tss_status = IndexedStruct()
tss(state0.get_vec(pb.active_only),
init_fun=init_fun, prestep_fun=prestep_fun, poststep_fun=poststep_fun,
status=tss_status)
| output(tss_status) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
pb.set_ics( | Conditions([ic]) | sfepy.discrete.conditions.Conditions |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
| output('refine %d...' % ii) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs= | Conditions([ebc1, ebc2]) | sfepy.discrete.conditions.Conditions |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
pb.set_ics(Conditions([ic]))
state0 = pb.get_initial_state()
init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
nls=nls, context=pb, verbose=True)
pb.set_solver(tss)
if options.probe:
# Prepare probe data.
probes, labels = gen_probes(pb)
ev = pb.evaluate
order = 2 * (options.order - 1)
gfield = Field.from_args('gu', nm.float64, 'vector', omega,
approx_order=options.order - 1)
dvel = FieldVariable('dvel', 'parameter', gfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
nls_options = {'eps_a' : 1e-16, 'i_max' : 1}
suffix = tss.ts.suffix
def poststep_fun(ts, vec):
_poststep_fun(ts, vec)
# Probe the solution.
dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
% order, copy_materials=False, mode='qp')
project_by_component(dvel, dvel_qp, component, order,
nls_options=nls_options)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(ii, T, dvel, probe, labels[ii])
all_results.append(results)
plt.tight_layout()
fig.savefig('time_poisson_interactive_probe_%s.png'
% (suffix % ts.step), bbox_inches='tight')
for ii, results in enumerate(all_results):
| output('probe %d (%s):' % (ii, probes[ii].name)) | sfepy.base.base.output |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
pb.set_ics(Conditions([ic]))
state0 = pb.get_initial_state()
init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
nls=nls, context=pb, verbose=True)
pb.set_solver(tss)
if options.probe:
# Prepare probe data.
probes, labels = gen_probes(pb)
ev = pb.evaluate
order = 2 * (options.order - 1)
gfield = Field.from_args('gu', nm.float64, 'vector', omega,
approx_order=options.order - 1)
dvel = FieldVariable('dvel', 'parameter', gfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
nls_options = {'eps_a' : 1e-16, 'i_max' : 1}
suffix = tss.ts.suffix
def poststep_fun(ts, vec):
_poststep_fun(ts, vec)
# Probe the solution.
dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
% order, copy_materials=False, mode='qp')
project_by_component(dvel, dvel_qp, component, order,
nls_options=nls_options)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(ii, T, dvel, probe, labels[ii])
all_results.append(results)
plt.tight_layout()
fig.savefig('time_poisson_interactive_probe_%s.png'
% (suffix % ts.step), bbox_inches='tight')
for ii, results in enumerate(all_results):
output('probe %d (%s):' % (ii, probes[ii].name))
output.level += 2
for key, res in | ordered_iteritems(results) | sfepy.base.base.ordered_iteritems |
#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.
The script allows setting various simulation parameters, namely:
- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement
The example shows also how to probe the results.
In the SfePy top-level directory the following command can be used to get usage
information::
python examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import numpy as nm
import matplotlib.pyplot as plt
from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component
def gen_probes(problem):
"""
Define a line probe and a circle probe.
"""
# Use enough points for higher order approximations.
n_point = 1000
p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
line = LineProbe(p0, p1, n_point, share_geometry=True)
# Workaround current probe code shortcoming.
line.set_options(close_limit=0.5)
centre = 0.5 * (p0 + p1)
normal = [0.0, 1.0, 0.0]
r = 0.019
circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
circle.set_options(close_limit=0.0)
probes = [line, circle]
labels = ['%s -> %s' % (p0, p1),
'circle(%s, %s, %s' % (centre, normal, r)]
return probes, labels
def probe_results(ax_num, T, dvel, probe, label):
"""
Probe the results using the given probe and plot the probed values.
"""
results = {}
pars, vals = probe(T)
results['T'] = (pars, vals)
pars, vals = probe(dvel)
results['dvel'] = (pars, vals)
fig = plt.figure(1)
ax = plt.subplot(2, 2, 2 * ax_num + 1)
ax.cla()
pars, vals = results['T']
ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('temperature')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
ax = plt.subplot(2, 2, 2 * ax_num + 2)
ax.cla()
pars, vals = results['dvel']
for ic in range(vals.shape[1]):
ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
lw=1, ls='-', marker='+', ms=3)
dx = 0.05 * (pars[-1] - pars[0])
ax.set_xlim(pars[0] - dx, pars[-1] + dx)
ax.set_ylabel('diffusion velocity')
ax.set_xlabel('probe %s' % label, fontsize=8)
ax.legend(loc='best', fontsize=10)
return fig, results
helps = {
'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
'ic_max' : 'the max. initial condition value [default: %(default)s]',
'order' : 'temperature field approximation order [default: %(default)s]',
'refine' : 'uniform mesh refinement level [default: %(default)s]',
'probe' : 'probe the results',
'show' : 'show the probing results figure, if --probe is used',
}
def main():
from sfepy import data_dir
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--diffusivity', metavar='float', type=float,
action='store', dest='diffusivity',
default=1e-5, help=helps['diffusivity'])
parser.add_argument('--ic-max', metavar='float', type=float,
action='store', dest='ic_max',
default=2.0, help=helps['ic_max'])
parser.add_argument('--order', metavar='int', type=int,
action='store', dest='order',
default=2, help=helps['order'])
parser.add_argument('-r', '--refine', metavar='int', type=int,
action='store', dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-p', '--probe',
action="store_true", dest='probe',
default=False, help=helps['probe'])
parser.add_argument('-s', '--show',
action="store_true", dest='show',
default=False, help=helps['show'])
options = parser.parse_args()
assert_((0 < options.order),
'temperature approximation order must be at least 1!')
output('using values:')
output(' diffusivity:', options.diffusivity)
output(' max. IC value:', options.ic_max)
output('uniform mesh refinement level:', options.refine)
mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
domain = FEDomain('domain', mesh)
if options.refine > 0:
for ii in range(options.refine):
output('refine %d...' % ii)
domain = domain.refine()
output('... %d nodes %d elements'
% (domain.shape.n_nod, domain.shape.n_el))
omega = domain.create_region('Omega', 'all')
left = domain.create_region('Left',
'vertices in x < 0.00001', 'facet')
right = domain.create_region('Right',
'vertices in x > 0.099999', 'facet')
field = Field.from_args('fu', nm.float64, 'scalar', omega,
approx_order=options.order)
T = FieldVariable('T', 'unknown', field, history=1)
s = FieldVariable('s', 'test', field, primary_var_name='T')
m = Material('m', diffusivity=options.diffusivity * nm.eye(3))
integral = Integral('i', order=2*options.order)
t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
integral, omega, m=m, s=s, T=T)
t2 = Term.new('dw_volume_dot(s, dT/dt)',
integral, omega, s=s, T=T)
eq = Equation('balance', t1 + t2)
eqs = Equations([eq])
# Boundary conditions.
ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})
# Initial conditions.
def get_ic(coors, ic):
x, y, z = coors.T
return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
ic_fun = Function('ic_fun', get_ic)
ic = InitialCondition('ic', omega, {'T.0' : ic_fun})
pb = Problem('heat', equations=eqs)
pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
pb.set_ics(Conditions([ic]))
state0 = pb.get_initial_state()
init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0)
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
nls=nls, context=pb, verbose=True)
pb.set_solver(tss)
if options.probe:
# Prepare probe data.
probes, labels = gen_probes(pb)
ev = pb.evaluate
order = 2 * (options.order - 1)
gfield = Field.from_args('gu', nm.float64, 'vector', omega,
approx_order=options.order - 1)
dvel = FieldVariable('dvel', 'parameter', gfield,
primary_var_name='(set-to-None)')
cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
approx_order=options.order - 1)
component = FieldVariable('component', 'parameter', cfield,
primary_var_name='(set-to-None)')
nls_options = {'eps_a' : 1e-16, 'i_max' : 1}
suffix = tss.ts.suffix
def poststep_fun(ts, vec):
_poststep_fun(ts, vec)
# Probe the solution.
dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
% order, copy_materials=False, mode='qp')
project_by_component(dvel, dvel_qp, component, order,
nls_options=nls_options)
all_results = []
for ii, probe in enumerate(probes):
fig, results = probe_results(ii, T, dvel, probe, labels[ii])
all_results.append(results)
plt.tight_layout()
fig.savefig('time_poisson_interactive_probe_%s.png'
% (suffix % ts.step), bbox_inches='tight')
for ii, results in enumerate(all_results):
output('probe %d (%s):' % (ii, probes[ii].name))
output.level += 2
for key, res in ordered_iteritems(results):
| output(key + ':') | sfepy.base.base.output |
import numpy as np
from sfepy.base.conf import ProblemConf
from sfepy.discrete.problem import Problem
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.postprocess.viewer import Viewer
from scipy.interpolate import interpn
import matplotlib.pyplot as plt
from matplotlib import ticker
class Block2d:
"""
Small wrapper for sfepy problem class.
Constructs a rectangle of specificed dimensions with a rectangular FEM mesh.
Rectangle is gripped at one end and pulled away at the other end, by a specified
distance. FEM mesh sixe can be specified. Centre of rectangle can be specified.
Having done this, this class exposes the stretch amount and the distribution
of the stiffness tensor D as paramters that can be set, and allows querying
of the displacement at a set of points in the domain.
rectangle is stretched parallel to the y-axis. short side of rectangle is x-axis.
Also drawing. """
def __init__(self, dims, center_location, cell_sizes=np.array([2,2]),
prob_file="C:\\Users\\wbald\\sfepythings\\blocks\\fem\\prob_desc_2d.py",
put_mesh="C:\\Users\\wbald\\sfepythings"):
"""
dims: array, dimensions of rectangle [x,y]
center_location: array, centre of rectangle [x,y]
cell sizes: array, x and y side length of FEM rectangular elements
stretch: default distance by which to displace the upper y axis edge.
prob_file: problem description file
put_mesh: where to save the mesh file
"""
assert(dims.shape[0] == 2)
assert(cell_sizes.shape[0] == 2)
# assume linear elasticity. Fix strain of rectangle to 0.001 and query
# at different strains by scaling linearly
self.dims = dims
self.prob_file = prob_file
self.FEM_model_strain = 0.001
self.elongation= self.FEM_model_strain * self.dims[1]
nums = np.divide(dims, cell_sizes)
nums = np.around(nums).astype(int) + np.array([1,1])
blockmesh = | gen_block_mesh(dims, nums, center_location) | sfepy.mesh.mesh_generators.gen_block_mesh |
import numpy as np
from sfepy.base.conf import ProblemConf
from sfepy.discrete.problem import Problem
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.postprocess.viewer import Viewer
from scipy.interpolate import interpn
import matplotlib.pyplot as plt
from matplotlib import ticker
class Block2d:
"""
Small wrapper for sfepy problem class.
Constructs a rectangle of specificed dimensions with a rectangular FEM mesh.
Rectangle is gripped at one end and pulled away at the other end, by a specified
distance. FEM mesh sixe can be specified. Centre of rectangle can be specified.
Having done this, this class exposes the stretch amount and the distribution
of the stiffness tensor D as paramters that can be set, and allows querying
of the displacement at a set of points in the domain.
rectangle is stretched parallel to the y-axis. short side of rectangle is x-axis.
Also drawing. """
def __init__(self, dims, center_location, cell_sizes=np.array([2,2]),
prob_file="C:\\Users\\wbald\\sfepythings\\blocks\\fem\\prob_desc_2d.py",
put_mesh="C:\\Users\\wbald\\sfepythings"):
"""
dims: array, dimensions of rectangle [x,y]
center_location: array, centre of rectangle [x,y]
cell sizes: array, x and y side length of FEM rectangular elements
stretch: default distance by which to displace the upper y axis edge.
prob_file: problem description file
put_mesh: where to save the mesh file
"""
assert(dims.shape[0] == 2)
assert(cell_sizes.shape[0] == 2)
# assume linear elasticity. Fix strain of rectangle to 0.001 and query
# at different strains by scaling linearly
self.dims = dims
self.prob_file = prob_file
self.FEM_model_strain = 0.001
self.elongation= self.FEM_model_strain * self.dims[1]
nums = np.divide(dims, cell_sizes)
nums = np.around(nums).astype(int) + np.array([1,1])
blockmesh = gen_block_mesh(dims, nums, center_location)
blockmesh.write(put_mesh + '\\mesh.vtk')
conf = | ProblemConf.from_file(prob_file) | sfepy.base.conf.ProblemConf.from_file |
import numpy as np
from sfepy.base.conf import ProblemConf
from sfepy.discrete.problem import Problem
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.postprocess.viewer import Viewer
from scipy.interpolate import interpn
import matplotlib.pyplot as plt
from matplotlib import ticker
class Block2d:
"""
Small wrapper for sfepy problem class.
Constructs a rectangle of specificed dimensions with a rectangular FEM mesh.
Rectangle is gripped at one end and pulled away at the other end, by a specified
distance. FEM mesh sixe can be specified. Centre of rectangle can be specified.
Having done this, this class exposes the stretch amount and the distribution
of the stiffness tensor D as paramters that can be set, and allows querying
of the displacement at a set of points in the domain.
rectangle is stretched parallel to the y-axis. short side of rectangle is x-axis.
Also drawing. """
def __init__(self, dims, center_location, cell_sizes=np.array([2,2]),
prob_file="C:\\Users\\wbald\\sfepythings\\blocks\\fem\\prob_desc_2d.py",
put_mesh="C:\\Users\\wbald\\sfepythings"):
"""
dims: array, dimensions of rectangle [x,y]
center_location: array, centre of rectangle [x,y]
cell sizes: array, x and y side length of FEM rectangular elements
stretch: default distance by which to displace the upper y axis edge.
prob_file: problem description file
put_mesh: where to save the mesh file
"""
assert(dims.shape[0] == 2)
assert(cell_sizes.shape[0] == 2)
# assume linear elasticity. Fix strain of rectangle to 0.001 and query
# at different strains by scaling linearly
self.dims = dims
self.prob_file = prob_file
self.FEM_model_strain = 0.001
self.elongation= self.FEM_model_strain * self.dims[1]
nums = np.divide(dims, cell_sizes)
nums = np.around(nums).astype(int) + np.array([1,1])
blockmesh = gen_block_mesh(dims, nums, center_location)
blockmesh.write(put_mesh + '\\mesh.vtk')
conf = ProblemConf.from_file(prob_file)
# 'region_ylower__1' holds the edge to be fixed
# 'region_yupper__2' holds the edge to be displaced
conf.regions['region_ylower__1'].select = 'vertices in (y < ' + str(0.01) + ')'
conf.regions['region_yupper__2'].select = 'vertices in (y > ' + str(dims[1] - 0.01) + ')'
conf.ebcs['ebc_Displaced__1'].dofs['u.1'] = self.elongation
self.prob = | Problem.from_conf(conf) | sfepy.discrete.problem.Problem.from_conf |
import numpy as np
from sfepy.base.conf import ProblemConf
from sfepy.discrete.problem import Problem
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.postprocess.viewer import Viewer
from scipy.interpolate import interpn
import matplotlib.pyplot as plt
from matplotlib import ticker
class Block2d:
"""
Small wrapper for sfepy problem class.
Constructs a rectangle of specificed dimensions with a rectangular FEM mesh.
Rectangle is gripped at one end and pulled away at the other end, by a specified
distance. FEM mesh sixe can be specified. Centre of rectangle can be specified.
Having done this, this class exposes the stretch amount and the distribution
of the stiffness tensor D as paramters that can be set, and allows querying
of the displacement at a set of points in the domain.
rectangle is stretched parallel to the y-axis. short side of rectangle is x-axis.
Also drawing. """
def __init__(self, dims, center_location, cell_sizes=np.array([2,2]),
prob_file="C:\\Users\\wbald\\sfepythings\\blocks\\fem\\prob_desc_2d.py",
put_mesh="C:\\Users\\wbald\\sfepythings"):
"""
dims: array, dimensions of rectangle [x,y]
center_location: array, centre of rectangle [x,y]
cell sizes: array, x and y side length of FEM rectangular elements
stretch: default distance by which to displace the upper y axis edge.
prob_file: problem description file
put_mesh: where to save the mesh file
"""
assert(dims.shape[0] == 2)
assert(cell_sizes.shape[0] == 2)
# assume linear elasticity. Fix strain of rectangle to 0.001 and query
# at different strains by scaling linearly
self.dims = dims
self.prob_file = prob_file
self.FEM_model_strain = 0.001
self.elongation= self.FEM_model_strain * self.dims[1]
nums = np.divide(dims, cell_sizes)
nums = np.around(nums).astype(int) + np.array([1,1])
blockmesh = gen_block_mesh(dims, nums, center_location)
blockmesh.write(put_mesh + '\\mesh.vtk')
conf = ProblemConf.from_file(prob_file)
# 'region_ylower__1' holds the edge to be fixed
# 'region_yupper__2' holds the edge to be displaced
conf.regions['region_ylower__1'].select = 'vertices in (y < ' + str(0.01) + ')'
conf.regions['region_yupper__2'].select = 'vertices in (y > ' + str(dims[1] - 0.01) + ')'
conf.ebcs['ebc_Displaced__1'].dofs['u.1'] = self.elongation
self.prob = Problem.from_conf(conf)
# for reshaping sfepy output into xyz displacements
self.reshape_tuple = ((self.prob.fields['displacement'].n_nod, self.prob.fields['displacement'].n_components))
def _set_param_field(self, query):
# the stiffness is specified by the voigt notation tensor D, which is
# passed to the problem class as a queryable function of position
def fun(ts, coors, mode=None, **kwargs):
if mode=='qp':
return {'D' : query(coors)}
self.prob.functions._objs[0].function = fun
def get_disp_at_coords(self, D_query_function, strain, coords):
# get the displacement given a stiffness field D and displacement strain.
self._set_param_field(D_query_function)
state = self.prob.solve()
displacement = self.prob.fields['displacement'].evaluate_at(coords, state.vec.reshape(self.reshape_tuple))
displacement *= strain / self.FEM_model_strain
return displacement
def drawstate(self, state):
# draw the object with sfepy's viewer
# state can be obtained from prob.solve()
self.prob.save_state('curr_run_demo.vtk', state)
view = | Viewer('curr_run_demo.vtk') | sfepy.postprocess.viewer.Viewer |
# 04.08.2009
#!
#! Homogenization: Linear Elasticity
#! =================================
#$ \centerline{Example input file, \today}
#! Homogenization of heterogeneous linear elastic material
import sfepy.discrete.fem.periodic as per
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.homogenization.utils import define_box_regions
import sfepy.homogenization.coefs_base as cb
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part
def recovery_le( pb, corrs, macro ):
out = {}
dim = corrs['corrs_le']['u_00'].shape[1]
mic_u = - compute_micro_u( corrs['corrs_le'], macro['strain'], 'u', dim )
out['u_mic'] = Struct( name = 'output_data',
mode = 'vertex', data = mic_u,
var_name = 'u', dofs = None )
stress_Y, strain_Y = compute_stress_strain_u( pb, 'i', 'Y', 'mat.D', 'u', mic_u )
stress_Y += compute_mac_stress_part( pb, 'i', 'Y', 'mat.D', 'u', macro['strain'] )
strain = macro['strain'] + strain_Y
out['cauchy_strain'] = Struct( name = 'output_data',
mode = 'cell', data = strain,
dofs = None )
out['cauchy_stress'] = Struct( name = 'output_data',
mode = 'cell', data = stress_Y,
dofs = None )
return out
#! Mesh
#! ----
filename_mesh = data_dir + '/meshes/3d/matrix_fiber.mesh'
dim = 3
region_lbn = (0, 0, 0)
region_rtf = (1, 1, 1)
#! Regions
#! -------
#! Regions, edges, ...
regions = {
'Y' : 'all',
'Ym' : 'cells of group 1',
'Yc' : 'cells of group 2',
}
regions.update( define_box_regions( dim, region_lbn, region_rtf ) )
#! Materials
#! ---------
materials = {
'mat' : ({'D' : {'Ym': | stiffness_from_youngpoisson(dim, 7.0e9, 0.4) | sfepy.mechanics.matcoefs.stiffness_from_youngpoisson |
from sfepy.base.testing import TestCommon, assert_, debug
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
return Test(conf=conf, options=options)
def test_tensors(self):
import numpy as nm
from sfepy.mechanics.matcoefs import ElasticConstants
ok = True
names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave']
ec = | ElasticConstants(lam=1.0, mu=1.5) | sfepy.mechanics.matcoefs.ElasticConstants |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
| output('dumping to VTK...') | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = | MeshIO.any_from_filename(filename) | sfepy.discrete.fem.meshio.MeshIO.any_from_filename |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = | Mesh.from_file(filename, io=io) | sfepy.discrete.fem.mesh.Mesh.from_file |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
| output('...done') | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = | MeshIO.any_from_filename(filename) | sfepy.discrete.fem.meshio.MeshIO.any_from_filename |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
| output('extracting selected data...', verbose=verbose) | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
| output('selection:', extract, verbose=verbose) | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = | OneTypeList(Struct) | sfepy.base.base.OneTypeList |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = OneTypeList(Struct)
for chunk in extract.split(','):
aux = chunk.strip().split()
pes.append(Struct(var=aux[0],
mode=aux[1],
indx=map(int, aux[2:])))
##
# Verify array limits.
mesh = | Mesh.from_file(filename) | sfepy.discrete.fem.mesh.Mesh.from_file |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = OneTypeList(Struct)
for chunk in extract.split(','):
aux = chunk.strip().split()
pes.append(Struct(var=aux[0],
mode=aux[1],
indx=map(int, aux[2:])))
##
# Verify array limits.
mesh = Mesh.from_file(filename)
for pe in pes:
if pe.mode == 'n':
for ii in pe.indx:
if (ii < 0) or (ii >= mesh.n_nod):
raise ValueError('node index 0 <= %d < %d!'
% (ii, mesh.n_nod))
if pe.mode == 'e':
for ii, ie in enumerate(pe.indx[:]):
if (ie < 0) or (ie >= mesh.n_el):
raise ValueError('element index 0 <= %d < %d!'
% (ie, mesh.n_el))
pe.indx[ii] = ie
##
# Extract data.
io = | MeshIO.any_from_filename(filename) | sfepy.discrete.fem.meshio.MeshIO.any_from_filename |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = OneTypeList(Struct)
for chunk in extract.split(','):
aux = chunk.strip().split()
pes.append(Struct(var=aux[0],
mode=aux[1],
indx=map(int, aux[2:])))
##
# Verify array limits.
mesh = Mesh.from_file(filename)
for pe in pes:
if pe.mode == 'n':
for ii in pe.indx:
if (ii < 0) or (ii >= mesh.n_nod):
raise ValueError('node index 0 <= %d < %d!'
% (ii, mesh.n_nod))
if pe.mode == 'e':
for ii, ie in enumerate(pe.indx[:]):
if (ie < 0) or (ie >= mesh.n_el):
raise ValueError('element index 0 <= %d < %d!'
% (ie, mesh.n_el))
pe.indx[ii] = ie
##
# Extract data.
io = MeshIO.any_from_filename(filename)
ths = {}
for pe in pes:
mode, nname = io.read_data_header(pe.var)
output(mode, nname, verbose=verbose)
if ((pe.mode == 'n' and mode == 'vertex') or
(pe.mode == 'e' and mode == 'cell')):
th = io.read_time_history(nname, pe.indx)
elif pe.mode == 'e' and mode == 'vertex':
conn = mesh.conns[0]
th = {}
for iel in pe.indx:
ips = conn[iel]
th[iel] = io.read_time_history(nname, ips)
else:
raise ValueError('cannot extract cell data %s in nodes!' % pe.var)
ths[pe.var] = th
| output('...done', verbose=verbose) | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = OneTypeList(Struct)
for chunk in extract.split(','):
aux = chunk.strip().split()
pes.append(Struct(var=aux[0],
mode=aux[1],
indx=map(int, aux[2:])))
##
# Verify array limits.
mesh = Mesh.from_file(filename)
for pe in pes:
if pe.mode == 'n':
for ii in pe.indx:
if (ii < 0) or (ii >= mesh.n_nod):
raise ValueError('node index 0 <= %d < %d!'
% (ii, mesh.n_nod))
if pe.mode == 'e':
for ii, ie in enumerate(pe.indx[:]):
if (ie < 0) or (ie >= mesh.n_el):
raise ValueError('element index 0 <= %d < %d!'
% (ie, mesh.n_el))
pe.indx[ii] = ie
##
# Extract data.
io = MeshIO.any_from_filename(filename)
ths = {}
for pe in pes:
mode, nname = io.read_data_header(pe.var)
output(mode, nname, verbose=verbose)
if ((pe.mode == 'n' and mode == 'vertex') or
(pe.mode == 'e' and mode == 'cell')):
th = io.read_time_history(nname, pe.indx)
elif pe.mode == 'e' and mode == 'vertex':
conn = mesh.conns[0]
th = {}
for iel in pe.indx:
ips = conn[iel]
th[iel] = io.read_time_history(nname, ips)
else:
raise ValueError('cannot extract cell data %s in nodes!' % pe.var)
ths[pe.var] = th
output('...done', verbose=verbose)
ts = TimeStepper(*io.read_time_stepper())
return ths, ts
def average_vertex_var_in_cells(ths_in):
"""Average histories in the element nodes for each nodal variable
originally requested in elements."""
ths = dict.fromkeys(list(ths_in.keys()))
for var, th in six.iteritems(ths_in):
aux = dict.fromkeys(list(th.keys()))
for ir, data in six.iteritems(th):
if isinstance(data, dict):
for ic, ndata in six.iteritems(data):
if aux[ir] is None:
aux[ir] = ndata
else:
aux[ir] += ndata
aux[ir] /= float(len(data))
else:
aux[ir] = data
ths[var] = aux
return ths
def save_time_history(ths, ts, filename_out):
"""Save time history and time-stepping information in a HDF5 file."""
ths.update({'times' : ts.times, 'dt' : ts.dt})
| write_dict_hdf5(filename_out, ths) | sfepy.base.ioutils.write_dict_hdf5 |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = | get_trunk(filename) | sfepy.base.ioutils.get_trunk |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
output(ts.format % (step, max_step))
out = io.read_data(step)
if out is None: break
_save_step('.' + ts.suffix % step + '.vtk', out, mesh)
ret = ts.suffix
output('...done')
return ret
def extract_times(filename):
"""
Read true time step data from individual time steps.
Returns
-------
steps : array
The time steps.
times : array
The times of the time steps.
nts : array
The normalized times of the time steps, in [0, 1].
dts : array
The true time deltas.
"""
io = MeshIO.any_from_filename(filename)
steps, times, nts = io.read_times()
dts = nm.ediff1d(times, to_end=0)
return steps, times, nts, dts
def extract_time_history(filename, extract, verbose=True):
"""Extract time history of a variable from a multi-time-step results file.
Parameters
----------
filename : str
The name of file to extract from.
extract : str
The description of what to extract in a string of comma-separated
description items. A description item consists of: name of the variable
to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or
elements (given by the mode). Example: 'u n 10 15, p e 0' means
variable 'u' in nodes 10, 15 and variable 'p' in element 0.
verbose : bool
Verbosity control.
Returns
-------
ths : dict
The time histories in a dict with variable names as keys. If a nodal
variable is requested in elements, its value is a dict of histories in
the element nodes.
ts : TimeStepper instance
The time stepping information.
"""
output('extracting selected data...', verbose=verbose)
output('selection:', extract, verbose=verbose)
##
# Parse extractions.
pes = OneTypeList(Struct)
for chunk in extract.split(','):
aux = chunk.strip().split()
pes.append(Struct(var=aux[0],
mode=aux[1],
indx=map(int, aux[2:])))
##
# Verify array limits.
mesh = Mesh.from_file(filename)
for pe in pes:
if pe.mode == 'n':
for ii in pe.indx:
if (ii < 0) or (ii >= mesh.n_nod):
raise ValueError('node index 0 <= %d < %d!'
% (ii, mesh.n_nod))
if pe.mode == 'e':
for ii, ie in enumerate(pe.indx[:]):
if (ie < 0) or (ie >= mesh.n_el):
raise ValueError('element index 0 <= %d < %d!'
% (ie, mesh.n_el))
pe.indx[ii] = ie
##
# Extract data.
io = MeshIO.any_from_filename(filename)
ths = {}
for pe in pes:
mode, nname = io.read_data_header(pe.var)
| output(mode, nname, verbose=verbose) | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
| output('linearizing...') | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
| output('...done') | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
| output('no time stepping info found, assuming single step') | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
output('max. refinement per group:', val.levels)
else:
mesh.write(output_filename_trunk + suffix, io='auto', out=out)
output('dumping to VTK...')
io = MeshIO.any_from_filename(filename)
mesh = Mesh.from_file(filename, io=io)
if output_filename_trunk is None:
output_filename_trunk = get_trunk(filename)
try:
ts = TimeStepper(*io.read_time_stepper())
all_steps, times, nts, dts = extract_times(filename)
except ValueError:
output('no time stepping info found, assuming single step')
out = io.read_data(0)
if out is not None:
_save_step('.vtk', out, mesh)
ret = None
else:
ts.times = times
ts.n_step = times.shape[0]
if steps is None:
ii0 = nm.searchsorted(all_steps, step0)
iterator = ((all_steps[ii], times[ii])
for ii in range(ii0, len(times)))
else:
iterator = [(step, ts.times[step]) for step in steps]
max_step = all_steps.max()
for step, time in iterator:
| output(ts.format % (step, max_step)) | sfepy.base.base.output |
from __future__ import absolute_import
import numpy as nm
from sfepy.base.base import output, OneTypeList, Struct
from sfepy.discrete.fem.mesh import Mesh
from sfepy.discrete.fem.meshio import MeshIO
from sfepy.solvers.ts import TimeStepper
from sfepy.base.ioutils import get_trunk, write_dict_hdf5
import six
from six.moves import range
def _linearize(out, fields, linearization):
new = {}
for key, val in six.iteritems(out):
field = fields[val.field_name]
new.update(field.create_output(val.data, var_name=key,
dof_names=val.dofs, key=key,
linearization=linearization))
return new
def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None,
fields=None, linearization=None):
"""Dump a multi-time-step results file into a sequence of VTK files."""
def _save_step(suffix, out, mesh):
if linearization is not None:
output('linearizing...')
out = _linearize(out, fields, linearization)
output('...done')
for key, val in six.iteritems(out):
lmesh = val.get('mesh', mesh)
lmesh.write(output_filename_trunk + '_' + key + suffix,
io='auto', out={key : val})
if hasattr(val, 'levels'):
| output('max. refinement per group:', val.levels) | sfepy.base.base.output |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = la.norm_l2_along_axis(points - self.centre, squared=True)
radius2 = self.radius**2
mask = dist2 <= ((1 + eps)**2) * radius2
return mask
def get_distance(self, points):
"""
Get the penetration distance and normals of points w.r.t. the sphere
surface.
Returns
-------
d : array
The penetration distance.
normals : array
The normals from the points to the sphere centre.
"""
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Prevent zero division.
ii = dist > 1e-8
normals = nm.where(ii[:, None], vecs[ii] / dist[ii][:, None],
vecs[ii])
return self.radius - dist, normals
def _get_derivatives(self, points):
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Distance derivative w.r.t. point coordinates.
dd = vecs / dist[:, None]
normals = dd
# Unit normal derivative w.r.t. point coordinates.
dim = points.shape[1]
ee = nm.eye(dim)[None, ...]
nnt = normals[..., None] * normals[..., None, :]
dn = - (ee - nnt) / dist[:, None, None]
return dd, dn
def plot_polygon(ax, polygon):
from sfepy.postprocess.plot_dofs import _get_axes
dim = polygon.shape[1]
ax = | _get_axes(ax, dim) | sfepy.postprocess.plot_dofs._get_axes |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = la.norm_l2_along_axis(points - self.centre, squared=True)
radius2 = self.radius**2
mask = dist2 <= ((1 + eps)**2) * radius2
return mask
def get_distance(self, points):
"""
Get the penetration distance and normals of points w.r.t. the sphere
surface.
Returns
-------
d : array
The penetration distance.
normals : array
The normals from the points to the sphere centre.
"""
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Prevent zero division.
ii = dist > 1e-8
normals = nm.where(ii[:, None], vecs[ii] / dist[ii][:, None],
vecs[ii])
return self.radius - dist, normals
def _get_derivatives(self, points):
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Distance derivative w.r.t. point coordinates.
dd = vecs / dist[:, None]
normals = dd
# Unit normal derivative w.r.t. point coordinates.
dim = points.shape[1]
ee = nm.eye(dim)[None, ...]
nnt = normals[..., None] * normals[..., None, :]
dn = - (ee - nnt) / dist[:, None, None]
return dd, dn
def plot_polygon(ax, polygon):
from sfepy.postprocess.plot_dofs import _get_axes
dim = polygon.shape[1]
ax = _get_axes(ax, dim)
pp = nm.r_[polygon, polygon[:1]]
px, py = pp[:, 0], pp[:, 1]
if dim == 2:
ax.plot(px, py)
else:
pz = pp[:, 2]
ax.plot(px, py, pz)
return ax
def plot_points(ax, points, marker, **kwargs):
from sfepy.postprocess.plot_dofs import _get_axes
dim = points.shape[1]
ax = | _get_axes(ax, dim) | sfepy.postprocess.plot_dofs._get_axes |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = la.norm_l2_along_axis(points - self.centre, squared=True)
radius2 = self.radius**2
mask = dist2 <= ((1 + eps)**2) * radius2
return mask
def get_distance(self, points):
"""
Get the penetration distance and normals of points w.r.t. the sphere
surface.
Returns
-------
d : array
The penetration distance.
normals : array
The normals from the points to the sphere centre.
"""
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Prevent zero division.
ii = dist > 1e-8
normals = nm.where(ii[:, None], vecs[ii] / dist[ii][:, None],
vecs[ii])
return self.radius - dist, normals
def _get_derivatives(self, points):
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Distance derivative w.r.t. point coordinates.
dd = vecs / dist[:, None]
normals = dd
# Unit normal derivative w.r.t. point coordinates.
dim = points.shape[1]
ee = nm.eye(dim)[None, ...]
nnt = normals[..., None] * normals[..., None, :]
dn = - (ee - nnt) / dist[:, None, None]
return dd, dn
def plot_polygon(ax, polygon):
from sfepy.postprocess.plot_dofs import _get_axes
dim = polygon.shape[1]
ax = _get_axes(ax, dim)
pp = nm.r_[polygon, polygon[:1]]
px, py = pp[:, 0], pp[:, 1]
if dim == 2:
ax.plot(px, py)
else:
pz = pp[:, 2]
ax.plot(px, py, pz)
return ax
def plot_points(ax, points, marker, **kwargs):
from sfepy.postprocess.plot_dofs import _get_axes
dim = points.shape[1]
ax = _get_axes(ax, dim)
px, py = points[:, 0], points[:, 1]
if dim == 2:
ax.plot(px, py, marker, **kwargs)
else:
pz = points[:, 2]
ax.plot(px, py, pz, marker, **kwargs)
return ax
if __name__ == '__main__':
import matplotlib.pyplot as plt
# Test and draw the plane.
anchor = [1, 1, 1]
normal = [2, -1, 1]
bounds = [[-2, 0, 0],
[2, 1, 0],
[4, 3, 1],
[1, 3, 1],
[2, 2, 1]]
cp = ContactPlane(anchor, normal, bounds)
pps = 2 * nm.random.rand(20, 3)
mask = cp.mask_points(pps)
dist = cp.get_distance(pps)
v1, v2 = | la.get_perpendiculars(cp.normal) | sfepy.linalg.get_perpendiculars |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = | la.insert_strided_axis(self.mtx, 0, points.shape[0]) | sfepy.linalg.insert_strided_axis |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return | la.flag_points_in_polygon2d(self.bounds2d, points2d) | sfepy.linalg.flag_points_in_polygon2d |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = | la.norm_l2_along_axis(points - self.centre, squared=True) | sfepy.linalg.norm_l2_along_axis |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = la.norm_l2_along_axis(points - self.centre, squared=True)
radius2 = self.radius**2
mask = dist2 <= ((1 + eps)**2) * radius2
return mask
def get_distance(self, points):
"""
Get the penetration distance and normals of points w.r.t. the sphere
surface.
Returns
-------
d : array
The penetration distance.
normals : array
The normals from the points to the sphere centre.
"""
vecs = self.centre - points
dist = | la.norm_l2_along_axis(vecs) | sfepy.linalg.norm_l2_along_axis |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = la.dot_sequences(points, self.normal) - self.adotn
return dist
class ContactSphere(Struct):
def __init__(self, centre, radius):
self.centre = nm.asarray(centre)
self.radius = radius
def mask_points(self, points, eps):
dist2 = la.norm_l2_along_axis(points - self.centre, squared=True)
radius2 = self.radius**2
mask = dist2 <= ((1 + eps)**2) * radius2
return mask
def get_distance(self, points):
"""
Get the penetration distance and normals of points w.r.t. the sphere
surface.
Returns
-------
d : array
The penetration distance.
normals : array
The normals from the points to the sphere centre.
"""
vecs = self.centre - points
dist = la.norm_l2_along_axis(vecs)
# Prevent zero division.
ii = dist > 1e-8
normals = nm.where(ii[:, None], vecs[ii] / dist[ii][:, None],
vecs[ii])
return self.radius - dist, normals
def _get_derivatives(self, points):
vecs = self.centre - points
dist = | la.norm_l2_along_axis(vecs) | sfepy.linalg.norm_l2_along_axis |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = | la.make_axis_rotation_matrix(rot_axis, rot_angle) | sfepy.linalg.make_axis_rotation_matrix |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = | la.insert_strided_axis(mtx, 0, self.bounds.shape[0]) | sfepy.linalg.insert_strided_axis |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = | la.dot_sequences(mm, self.bounds) | sfepy.linalg.dot_sequences |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = | la.dot_sequences(mm, points) | sfepy.linalg.dot_sequences |
import numpy as nm
from sfepy.base.base import assert_, Struct
import sfepy.linalg as la
class ContactPlane(Struct):
def __init__(self, anchor, normal, bounds):
Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
bounds=nm.asarray(bounds, dtype=nm.float64))
self.normal = nm.asarray(normal, dtype=nm.float64)
norm = nm.linalg.norm
self.normal /= norm(self.normal)
e3 = [0.0, 0.0, 1.0]
dd = nm.dot(e3, self.normal)
rot_angle = nm.arccos(dd)
if nm.abs(rot_angle) < 1e-14:
mtx = nm.eye(3, dtype=nm.float64)
bounds2d = self.bounds[:, :2]
else:
rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)
mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
rbounds = la.dot_sequences(mm, self.bounds)
bounds2d = rbounds[:, :2]
assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
rtol=0.0, atol=1e-12))
self.adotn = nm.dot(self.anchor, self.normal)
self.rot_angle = rot_angle
self.mtx = mtx
self.bounds2d = bounds2d
def mask_points(self, points):
mm = la.insert_strided_axis(self.mtx, 0, points.shape[0])
points2d = la.dot_sequences(mm, points)[:, :2]
return la.flag_points_in_polygon2d(self.bounds2d, points2d)
def get_distance(self, points):
dist = | la.dot_sequences(points, self.normal) | sfepy.linalg.dot_sequences |
#!/usr/bin/env python
# 12.01.2007, c
import os.path as op
import shutil
from optparse import OptionParser
import sfepy
from sfepy.base.base import *
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.fem.evaluate import assemble_by_blocks
from sfepy.homogenization.phono import transform_plot_data, plot_logs, \
plot_gaps, detect_band_gaps, compute_cat, compute_polarization_angles
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.applications import SimpleApp
from sfepy.solvers import Solver, eig
from sfepy.base.plotutils import plt
def make_save_hook( base_name, post_process_hook = None, file_per_var = None ):
def save_phono_correctors( state, problem, ir, ic ):
problem.save_state( (base_name % (ir, ic)) + '.vtk', state,
post_process_hook = post_process_hook,
file_per_var = file_per_var )
return save_phono_correctors
def try_set_defaults( obj, attr, defaults ):
try:
values = getattr( obj, attr )
set_defaults( values, defaults )
except:
values = defaults
return values
def report_iw_cat( iw_dir, christoffel ):
output( 'incident wave direction:' )
output( iw_dir )
output( 'Christoffel acoustic tensor:' )
output( christoffel )
class AcousticBandGapsApp( SimpleApp ):
def process_options( options ):
"""Application options setup. Sets default values for missing
non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
eig_problem = get( 'eig_problem', 'simple' )
schur = get( 'schur', None )
elasticity_contrast = get( 'elasticity_contrast', 1.0 )
scale_epsilon = get( 'scale_epsilon', 1.0 )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
save = get( 'save_eig_vectors', (0, 0) )
eig_range = get( 'eig_range', None )
freq_margins = get( 'freq_margins', (5, 5) )
# Given in per cent.
freq_margins = 0.01 * nm.array( freq_margins, dtype = nm.float64 )
fixed_eig_range = get( 'fixed_eig_range', None )
# Given in per cent.
freq_step = 0.01 * get( 'freq_step', 5 )
feps = get( 'feps', 1e-8 )
zeps = get( 'zeps', 1e-8 )
teps = get( 'teps', 1e-4 )
teps_rel = get( 'teps_rel', True )
eig_vector_transform = get( 'eig_vector_transform', None )
plot_transform = get( 'plot_transform', None )
plot_transform_wave = get( 'plot_transform_wave', None )
plot_transform_angle = get( 'plot_transform_angle', None )
plot_options = get( 'plot_options', {'show' : True,'legend' : False,} )
fig_name = get( 'fig_name', None )
fig_name_wave = get( 'fig_name_wave', None )
fig_name_angle = get( 'fig_name_angle', None )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : 'min eig($M^*$)',
'eig_mid' : 'mid eig($M^*$)',
'eig_max' : 'max eig($M^*$)',
'y_axis' : 'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults( options, 'plot_labels', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults( options, 'plot_labels_angle', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults( options, 'plot_labels_wave', aux )
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-' },
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':' },
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--' },
'eig_min' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '--' },
'eig_mid' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-.' },
'eig_max' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 0.5) },
'weak_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 1) },
'propagation' : {'linewidth' : 0, 'facecolor' : (0.5, 1, 0.5) },
'params' : {'axes.labelsize': 'large',
'text.fontsize': 'large',
'legend.fontsize': 'large',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': False},
}
plot_rsc = try_set_defaults( options, 'plot_rsc', plot_rsc )
eigenmomentum = get( 'eigenmomentum', None,
'missing "eigenmomentum" in options!' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
if eig_problem == 'simple_liquid':
liquid_region = get('liquid_region', None,
'missing "liquid_region" in options!')
else:
liquid_region = None
return Struct( **locals() )
process_options = staticmethod( process_options )
def process_options_pv( options ):
"""Application options setup for phase velocity computation. Sets
default values for missing non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
fig_suffix = get( 'fig_suffix', '.pdf' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
return Struct( **locals() )
process_options_pv = staticmethod( process_options_pv )
def __init__( self, conf, options, output_prefix, **kwargs ):
SimpleApp.__init__( self, conf, options, output_prefix,
init_equations = False )
self.setup_options()
self.cached_coefs = None
self.cached_iw_dir = None
self.cached_christoffel = None
self.cached_evp = None
output_dir = self.problem.output_dir
shutil.copyfile( conf._filename,
op.join( output_dir, op.basename( conf._filename ) ) )
def setup_options( self ):
SimpleApp.setup_options( self )
if self.options.phase_velocity:
process_options = AcousticBandGapsApp.process_options_pv
else:
process_options = AcousticBandGapsApp.process_options
self.app_options += process_options( self.conf.options )
def call( self ):
"""In parametric runs, cached data (homogenized coefficients,
Christoffel acoustic tensor and eigenvalue problem solution) are
cleared according to 'clear_cache' aplication options.
Example:
clear_cache = {'cached_christoffel' : True, 'cached_evp' : True}
"""
options = self.options
for key, val in self.app_options.clear_cache.iteritems():
if val and key.startswith('cached_'):
setattr(self, key, None)
if options.phase_velocity:
# No band gaps in this case.
return self.compute_phase_velocity()
evp = self.solve_eigen_problem()
self.fix_eig_range( evp.eigs.shape[0] )
if options.detect_band_gaps:
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod )
if options.plot:
plot_range, teigs = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform,
self.conf.funmod )
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plot_labels = bg.opts.plot_labels
plt.rcParams.update( plot_rsc['params'] )
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
plt.show()
elif options.analyze_dispersion:
christoffel, iw_dir = self.compute_cat(ret_iw_dir=True)
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod,
christoffel = christoffel )
output( 'computing polarization angles...' )
pas = compute_polarization_angles( iw_dir, bg.logs.eig_vectors )
output( '...done' )
bg.polarization_angles = pas
output( 'computing phase velocity...' )
bg.phase_velocity = self.compute_phase_velocity()
output( '...done' )
if options.plot:
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plt.rcParams.update( plot_rsc['params'] )
aux = transform_plot_data( pas,
bg.opts.plot_transform_angle,
self.conf.funmod )
plot_range, pas = aux
plot_labels = bg.opts.plot_labels_angle
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, pas,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_angle
if fig_name is not None:
fig.savefig( fig_name )
aux = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform_wave,
self.conf.funmod )
plot_range, teigs = aux
plot_labels = bg.opts.plot_labels_wave
fig = plot_gaps( 2, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 2, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_wave
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
plt.show()
else:
bg = None
return evp, bg
def fix_eig_range( self, n_eigs ):
eig_range = get_default( self.app_options.eig_range, (0, n_eigs) )
if eig_range[-1] < 0:
eig_range[-1] += n_eigs + 1
assert_( eig_range[0] < (eig_range[1] - 1) )
assert_( eig_range[1] <= n_eigs )
self.app_options.eig_range = eig_range
def solve_eigen_problem( self, ofn_trunk = None, post_process_hook = None ):
if self.cached_evp is not None:
return self.cached_evp
problem = self.problem
ofn_trunk = get_default( ofn_trunk, problem.ofn_trunk,
'output file name trunk missing!' )
post_process_hook = get_default( post_process_hook,
self.post_process_hook )
conf = self.conf
eig_problem = self.app_options.eig_problem
if eig_problem in ['simple', 'simple_liquid']:
problem.set_equations( conf.equations )
problem.time_update()
mtx_a = problem.evaluate(conf.equations['lhs'], mode='weak',
auto_init=True, dw_mode='matrix')
mtx_m = problem.evaluate(conf.equations['rhs'], mode='weak',
dw_mode='matrix')
elif eig_problem == 'schur':
# A = K + B^T D^{-1} B.
mtx = assemble_by_blocks( conf.equations, self.problem,
ebcs = conf.ebcs,
epbcs = conf.epbcs )
problem.set_equations( conf.equations )
problem.time_update()
ls = Solver.any_from_conf( problem.ls_conf,
presolve = True, mtx = mtx['D'] )
mtx_b, mtx_m = mtx['B'], mtx['M']
mtx_dib = nm.empty( mtx_b.shape, dtype = mtx_b.dtype )
for ic in xrange( mtx_b.shape[1] ):
mtx_dib[:,ic] = ls( mtx_b[:,ic].toarray().squeeze() )
mtx_a = mtx['K'] + mtx_b.T * mtx_dib
else:
raise NotImplementedError
## from sfepy.base.plotutils import spy, plt
## spy( mtx_b, eps = 1e-12 )
## plt.show()
## mtx_a.save( 'a.txt', format='%d %d %.12f\n' )
## mtx_b.save( 'b.txt', format='%d %d %.12f\n' )
## pause()
output( 'computing resonance frequencies...' )
tt = [0]
if isinstance( mtx_a, sc.sparse.spmatrix ):
mtx_a = mtx_a.toarray()
if isinstance( mtx_m, sc.sparse.spmatrix ):
mtx_m = mtx_m.toarray()
eigs, mtx_s_phi = eig(mtx_a, mtx_m, return_time=tt,
method=self.app_options.eigensolver)
eigs[eigs<0.0] = 0.0
output( '...done in %.2f s' % tt[0] )
output( 'original eigenfrequencies:' )
output( eigs )
opts = self.app_options
epsilon2 = opts.scale_epsilon * opts.scale_epsilon
eigs_rescaled = (opts.elasticity_contrast / epsilon2) * eigs
output( 'rescaled eigenfrequencies:' )
output( eigs_rescaled )
output( 'number of eigenfrequencies: %d' % eigs.shape[0] )
try:
assert_( nm.isfinite( eigs ).all() )
except ValueError:
debug()
# B-orthogonality check.
## print nm.dot( mtx_s_phi[:,5], nm.dot( mtx_m, mtx_s_phi[:,5] ) )
## print nm.dot( mtx_s_phi[:,5], nm.dot( mtx_m, mtx_s_phi[:,0] ) )
## debug()
n_eigs = eigs.shape[0]
variables = problem.get_variables()
mtx_phi = nm.empty( (variables.di.ptr[-1], mtx_s_phi.shape[1]),
dtype = nm.float64 )
make_full = variables.make_full_vec
if eig_problem in ['simple', 'simple_liquid']:
for ii in xrange( n_eigs ):
mtx_phi[:,ii] = make_full( mtx_s_phi[:,ii] )
eig_vectors = mtx_phi
elif eig_problem == 'schur':
# Update also eliminated variables.
schur = self.app_options.schur
primary_var = schur['primary_var']
eliminated_var = schur['eliminated_var']
mtx_s_phi_schur = - sc.dot( mtx_dib, mtx_s_phi )
aux = nm.empty( (variables.adi.ptr[-1],),
dtype = nm.float64 )
set = variables.set_state_part
for ii in xrange( n_eigs ):
set( aux, mtx_s_phi[:,ii], primary_var, stripped = True )
set( aux, mtx_s_phi_schur[:,ii], eliminated_var,
stripped = True )
mtx_phi[:,ii] = make_full( aux )
indx = variables.get_indx( primary_var )
eig_vectors = mtx_phi[indx,:]
save = self.app_options.save
out = {}
for ii in xrange( n_eigs ):
if (ii >= save[0]) and (ii < (n_eigs - save[1])): continue
aux = problem.state_to_output( mtx_phi[:,ii] )
for name, val in aux.iteritems():
out[name+'%03d' % ii] = val
if post_process_hook is not None:
out = post_process_hook( out, problem, mtx_phi )
problem.domain.mesh.write( ofn_trunk + '.vtk', io = 'auto', out = out )
fd = open( ofn_trunk + '_eigs.txt', 'w' )
eigs.tofile( fd, ' ' )
fd.close()
evp = Struct( kind = eig_problem,
eigs = eigs, eigs_rescaled = eigs_rescaled,
eig_vectors = eig_vectors )
self.cached_evp = evp
return evp
def eval_homogenized_coefs( self ):
if self.cached_coefs is not None:
return self.cached_coefs
opts = self.app_options
if opts.homogeneous:
rtm = opts.region_to_material
mat_region = rtm.keys()[0]
mat_name = rtm[mat_region]
self.problem.update_materials()
mat = self.problem.materials[mat_name]
coefs = mat.get_data( mat_region, 0, opts.tensor_names )
else:
dc = opts.dispersion_conf
dconf = ProblemConf.from_dict( dc['input'], dc['module'] )
dconf.materials = self.conf.materials
dconf.fe = self.conf.fe
dconf.regions.update( self.conf.regions )
dconf.options['output_dir'] = self.problem.output_dir
volume = opts.volume(self.problem, 'Y')
problem = ProblemDefinition.from_conf(dconf, init_equations=False)
he = HomogenizationEngine( problem, self.options, volume = volume )
coefs = he()
## print coefs
## pause()
output.prefix = self.output_prefix
self.cached_coefs = coefs
return coefs
def compute_cat( self, ret_iw_dir=False ):
"""Compute the Christoffel acoustic tensor, given the incident wave
direction."""
opts = self.app_options
iw_dir = nm.array( opts.incident_wave_dir, dtype = nm.float64 )
dim = self.problem.get_dim()
assert_( dim == iw_dir.shape[0] )
iw_dir = iw_dir / nla.norm( iw_dir )
if self.cached_christoffel is not None:
christoffel = self.cached_christoffel
else:
coefs = self.eval_homogenized_coefs()
christoffel = compute_cat( coefs, iw_dir,
self.app_options.dispersion )
report_iw_cat( iw_dir, christoffel )
self.cached_christoffel = christoffel
if ret_iw_dir:
return christoffel, iw_dir
else:
return christoffel
def compute_phase_velocity( self ):
from sfepy.homogenization.phono import compute_density_volume_info
opts = self.app_options
dim = self.problem.domain.mesh.dim
christoffel = self.compute_cat()
self.problem.update_materials()
dv_info = compute_density_volume_info( self.problem, opts.volume,
opts.region_to_material )
output( 'average density:', dv_info.average_density )
eye = nm.eye( dim, dim, dtype = nm.float64 )
mtx_mass = eye * dv_info.average_density
meigs, mvecs = eig( mtx_mass, mtx_b = christoffel,
eigenvectors = True, method = opts.eigensolver )
phase_velocity = 1.0 / nm.sqrt( meigs )
return phase_velocity
usage = """%prog [options] filename_in"""
help = {
'filename' :
'basename of output file(s) [default: <basename of input file>]',
'detect_band_gaps' :
'detect frequency band gaps',
'analyze_dispersion' :
'analyze dispersion properties (low frequency domain)',
'plot' :
'plot frequency band gaps, assumes -b',
'phase_velocity' :
'compute phase velocity (frequency-independet mass only)'
}
def main():
parser = OptionParser(usage = usage, version = "%prog " + sfepy.__version__)
parser.add_option( "-o", "", metavar = 'filename',
action = "store", dest = "output_filename_trunk",
default = None, help = help['filename'] )
parser.add_option( "-b", "--band-gaps",
action = "store_true", dest = "detect_band_gaps",
default = False, help = help['detect_band_gaps'] )
parser.add_option( "-d", "--dispersion",
action = "store_true", dest = "analyze_dispersion",
default = False, help = help['analyze_dispersion'] )
parser.add_option( "-p", "--plot",
action = "store_true", dest = "plot",
default = False, help = help['plot'] )
parser.add_option( "--phase-velocity",
action = "store_true", dest = "phase_velocity",
default = False, help = help['phase_velocity'] )
options, args = parser.parse_args()
if options.plot:
if plt is None:
output( 'matplotlib.pyplot cannot be imported, ignoring option -p!' )
options.plot = False
elif options.analyze_dispersion == False:
options.detect_band_gaps = True
if (len( args ) == 1):
filename_in = args[0];
else:
parser.print_help(),
return
required, other = | get_standard_keywords() | sfepy.base.conf.get_standard_keywords |
#!/usr/bin/env python
# 12.01.2007, c
import os.path as op
import shutil
from optparse import OptionParser
import sfepy
from sfepy.base.base import *
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.fem.evaluate import assemble_by_blocks
from sfepy.homogenization.phono import transform_plot_data, plot_logs, \
plot_gaps, detect_band_gaps, compute_cat, compute_polarization_angles
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.applications import SimpleApp
from sfepy.solvers import Solver, eig
from sfepy.base.plotutils import plt
def make_save_hook( base_name, post_process_hook = None, file_per_var = None ):
def save_phono_correctors( state, problem, ir, ic ):
problem.save_state( (base_name % (ir, ic)) + '.vtk', state,
post_process_hook = post_process_hook,
file_per_var = file_per_var )
return save_phono_correctors
def try_set_defaults( obj, attr, defaults ):
try:
values = getattr( obj, attr )
set_defaults( values, defaults )
except:
values = defaults
return values
def report_iw_cat( iw_dir, christoffel ):
output( 'incident wave direction:' )
output( iw_dir )
output( 'Christoffel acoustic tensor:' )
output( christoffel )
class AcousticBandGapsApp( SimpleApp ):
def process_options( options ):
"""Application options setup. Sets default values for missing
non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
eig_problem = get( 'eig_problem', 'simple' )
schur = get( 'schur', None )
elasticity_contrast = get( 'elasticity_contrast', 1.0 )
scale_epsilon = get( 'scale_epsilon', 1.0 )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
save = get( 'save_eig_vectors', (0, 0) )
eig_range = get( 'eig_range', None )
freq_margins = get( 'freq_margins', (5, 5) )
# Given in per cent.
freq_margins = 0.01 * nm.array( freq_margins, dtype = nm.float64 )
fixed_eig_range = get( 'fixed_eig_range', None )
# Given in per cent.
freq_step = 0.01 * get( 'freq_step', 5 )
feps = get( 'feps', 1e-8 )
zeps = get( 'zeps', 1e-8 )
teps = get( 'teps', 1e-4 )
teps_rel = get( 'teps_rel', True )
eig_vector_transform = get( 'eig_vector_transform', None )
plot_transform = get( 'plot_transform', None )
plot_transform_wave = get( 'plot_transform_wave', None )
plot_transform_angle = get( 'plot_transform_angle', None )
plot_options = get( 'plot_options', {'show' : True,'legend' : False,} )
fig_name = get( 'fig_name', None )
fig_name_wave = get( 'fig_name_wave', None )
fig_name_angle = get( 'fig_name_angle', None )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : 'min eig($M^*$)',
'eig_mid' : 'mid eig($M^*$)',
'eig_max' : 'max eig($M^*$)',
'y_axis' : 'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults( options, 'plot_labels', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults( options, 'plot_labels_angle', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults( options, 'plot_labels_wave', aux )
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-' },
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':' },
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--' },
'eig_min' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '--' },
'eig_mid' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-.' },
'eig_max' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 0.5) },
'weak_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 1) },
'propagation' : {'linewidth' : 0, 'facecolor' : (0.5, 1, 0.5) },
'params' : {'axes.labelsize': 'large',
'text.fontsize': 'large',
'legend.fontsize': 'large',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': False},
}
plot_rsc = try_set_defaults( options, 'plot_rsc', plot_rsc )
eigenmomentum = get( 'eigenmomentum', None,
'missing "eigenmomentum" in options!' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
if eig_problem == 'simple_liquid':
liquid_region = get('liquid_region', None,
'missing "liquid_region" in options!')
else:
liquid_region = None
return Struct( **locals() )
process_options = staticmethod( process_options )
def process_options_pv( options ):
"""Application options setup for phase velocity computation. Sets
default values for missing non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
fig_suffix = get( 'fig_suffix', '.pdf' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
return Struct( **locals() )
process_options_pv = staticmethod( process_options_pv )
def __init__( self, conf, options, output_prefix, **kwargs ):
SimpleApp.__init__( self, conf, options, output_prefix,
init_equations = False )
self.setup_options()
self.cached_coefs = None
self.cached_iw_dir = None
self.cached_christoffel = None
self.cached_evp = None
output_dir = self.problem.output_dir
shutil.copyfile( conf._filename,
op.join( output_dir, op.basename( conf._filename ) ) )
def setup_options( self ):
SimpleApp.setup_options( self )
if self.options.phase_velocity:
process_options = AcousticBandGapsApp.process_options_pv
else:
process_options = AcousticBandGapsApp.process_options
self.app_options += process_options( self.conf.options )
def call( self ):
"""In parametric runs, cached data (homogenized coefficients,
Christoffel acoustic tensor and eigenvalue problem solution) are
cleared according to 'clear_cache' aplication options.
Example:
clear_cache = {'cached_christoffel' : True, 'cached_evp' : True}
"""
options = self.options
for key, val in self.app_options.clear_cache.iteritems():
if val and key.startswith('cached_'):
setattr(self, key, None)
if options.phase_velocity:
# No band gaps in this case.
return self.compute_phase_velocity()
evp = self.solve_eigen_problem()
self.fix_eig_range( evp.eigs.shape[0] )
if options.detect_band_gaps:
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod )
if options.plot:
plot_range, teigs = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform,
self.conf.funmod )
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plot_labels = bg.opts.plot_labels
plt.rcParams.update( plot_rsc['params'] )
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
plt.show()
elif options.analyze_dispersion:
christoffel, iw_dir = self.compute_cat(ret_iw_dir=True)
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod,
christoffel = christoffel )
output( 'computing polarization angles...' )
pas = compute_polarization_angles( iw_dir, bg.logs.eig_vectors )
output( '...done' )
bg.polarization_angles = pas
output( 'computing phase velocity...' )
bg.phase_velocity = self.compute_phase_velocity()
output( '...done' )
if options.plot:
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plt.rcParams.update( plot_rsc['params'] )
aux = transform_plot_data( pas,
bg.opts.plot_transform_angle,
self.conf.funmod )
plot_range, pas = aux
plot_labels = bg.opts.plot_labels_angle
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, pas,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_angle
if fig_name is not None:
fig.savefig( fig_name )
aux = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform_wave,
self.conf.funmod )
plot_range, teigs = aux
plot_labels = bg.opts.plot_labels_wave
fig = plot_gaps( 2, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 2, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_wave
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
plt.show()
else:
bg = None
return evp, bg
def fix_eig_range( self, n_eigs ):
eig_range = get_default( self.app_options.eig_range, (0, n_eigs) )
if eig_range[-1] < 0:
eig_range[-1] += n_eigs + 1
assert_( eig_range[0] < (eig_range[1] - 1) )
assert_( eig_range[1] <= n_eigs )
self.app_options.eig_range = eig_range
def solve_eigen_problem( self, ofn_trunk = None, post_process_hook = None ):
if self.cached_evp is not None:
return self.cached_evp
problem = self.problem
ofn_trunk = get_default( ofn_trunk, problem.ofn_trunk,
'output file name trunk missing!' )
post_process_hook = get_default( post_process_hook,
self.post_process_hook )
conf = self.conf
eig_problem = self.app_options.eig_problem
if eig_problem in ['simple', 'simple_liquid']:
problem.set_equations( conf.equations )
problem.time_update()
mtx_a = problem.evaluate(conf.equations['lhs'], mode='weak',
auto_init=True, dw_mode='matrix')
mtx_m = problem.evaluate(conf.equations['rhs'], mode='weak',
dw_mode='matrix')
elif eig_problem == 'schur':
# A = K + B^T D^{-1} B.
mtx = assemble_by_blocks( conf.equations, self.problem,
ebcs = conf.ebcs,
epbcs = conf.epbcs )
problem.set_equations( conf.equations )
problem.time_update()
ls = Solver.any_from_conf( problem.ls_conf,
presolve = True, mtx = mtx['D'] )
mtx_b, mtx_m = mtx['B'], mtx['M']
mtx_dib = nm.empty( mtx_b.shape, dtype = mtx_b.dtype )
for ic in xrange( mtx_b.shape[1] ):
mtx_dib[:,ic] = ls( mtx_b[:,ic].toarray().squeeze() )
mtx_a = mtx['K'] + mtx_b.T * mtx_dib
else:
raise NotImplementedError
## from sfepy.base.plotutils import spy, plt
## spy( mtx_b, eps = 1e-12 )
## plt.show()
## mtx_a.save( 'a.txt', format='%d %d %.12f\n' )
## mtx_b.save( 'b.txt', format='%d %d %.12f\n' )
## pause()
output( 'computing resonance frequencies...' )
tt = [0]
if isinstance( mtx_a, sc.sparse.spmatrix ):
mtx_a = mtx_a.toarray()
if isinstance( mtx_m, sc.sparse.spmatrix ):
mtx_m = mtx_m.toarray()
eigs, mtx_s_phi = eig(mtx_a, mtx_m, return_time=tt,
method=self.app_options.eigensolver)
eigs[eigs<0.0] = 0.0
output( '...done in %.2f s' % tt[0] )
output( 'original eigenfrequencies:' )
output( eigs )
opts = self.app_options
epsilon2 = opts.scale_epsilon * opts.scale_epsilon
eigs_rescaled = (opts.elasticity_contrast / epsilon2) * eigs
output( 'rescaled eigenfrequencies:' )
output( eigs_rescaled )
output( 'number of eigenfrequencies: %d' % eigs.shape[0] )
try:
assert_( nm.isfinite( eigs ).all() )
except ValueError:
debug()
# B-orthogonality check.
## print nm.dot( mtx_s_phi[:,5], nm.dot( mtx_m, mtx_s_phi[:,5] ) )
## print nm.dot( mtx_s_phi[:,5], nm.dot( mtx_m, mtx_s_phi[:,0] ) )
## debug()
n_eigs = eigs.shape[0]
variables = problem.get_variables()
mtx_phi = nm.empty( (variables.di.ptr[-1], mtx_s_phi.shape[1]),
dtype = nm.float64 )
make_full = variables.make_full_vec
if eig_problem in ['simple', 'simple_liquid']:
for ii in xrange( n_eigs ):
mtx_phi[:,ii] = make_full( mtx_s_phi[:,ii] )
eig_vectors = mtx_phi
elif eig_problem == 'schur':
# Update also eliminated variables.
schur = self.app_options.schur
primary_var = schur['primary_var']
eliminated_var = schur['eliminated_var']
mtx_s_phi_schur = - sc.dot( mtx_dib, mtx_s_phi )
aux = nm.empty( (variables.adi.ptr[-1],),
dtype = nm.float64 )
set = variables.set_state_part
for ii in xrange( n_eigs ):
set( aux, mtx_s_phi[:,ii], primary_var, stripped = True )
set( aux, mtx_s_phi_schur[:,ii], eliminated_var,
stripped = True )
mtx_phi[:,ii] = make_full( aux )
indx = variables.get_indx( primary_var )
eig_vectors = mtx_phi[indx,:]
save = self.app_options.save
out = {}
for ii in xrange( n_eigs ):
if (ii >= save[0]) and (ii < (n_eigs - save[1])): continue
aux = problem.state_to_output( mtx_phi[:,ii] )
for name, val in aux.iteritems():
out[name+'%03d' % ii] = val
if post_process_hook is not None:
out = post_process_hook( out, problem, mtx_phi )
problem.domain.mesh.write( ofn_trunk + '.vtk', io = 'auto', out = out )
fd = open( ofn_trunk + '_eigs.txt', 'w' )
eigs.tofile( fd, ' ' )
fd.close()
evp = Struct( kind = eig_problem,
eigs = eigs, eigs_rescaled = eigs_rescaled,
eig_vectors = eig_vectors )
self.cached_evp = evp
return evp
def eval_homogenized_coefs( self ):
if self.cached_coefs is not None:
return self.cached_coefs
opts = self.app_options
if opts.homogeneous:
rtm = opts.region_to_material
mat_region = rtm.keys()[0]
mat_name = rtm[mat_region]
self.problem.update_materials()
mat = self.problem.materials[mat_name]
coefs = mat.get_data( mat_region, 0, opts.tensor_names )
else:
dc = opts.dispersion_conf
dconf = ProblemConf.from_dict( dc['input'], dc['module'] )
dconf.materials = self.conf.materials
dconf.fe = self.conf.fe
dconf.regions.update( self.conf.regions )
dconf.options['output_dir'] = self.problem.output_dir
volume = opts.volume(self.problem, 'Y')
problem = | ProblemDefinition.from_conf(dconf, init_equations=False) | sfepy.fem.ProblemDefinition.from_conf |
#!/usr/bin/env python
# 12.01.2007, c
import os.path as op
import shutil
from optparse import OptionParser
import sfepy
from sfepy.base.base import *
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.fem.evaluate import assemble_by_blocks
from sfepy.homogenization.phono import transform_plot_data, plot_logs, \
plot_gaps, detect_band_gaps, compute_cat, compute_polarization_angles
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.applications import SimpleApp
from sfepy.solvers import Solver, eig
from sfepy.base.plotutils import plt
def make_save_hook( base_name, post_process_hook = None, file_per_var = None ):
def save_phono_correctors( state, problem, ir, ic ):
problem.save_state( (base_name % (ir, ic)) + '.vtk', state,
post_process_hook = post_process_hook,
file_per_var = file_per_var )
return save_phono_correctors
def try_set_defaults( obj, attr, defaults ):
try:
values = getattr( obj, attr )
set_defaults( values, defaults )
except:
values = defaults
return values
def report_iw_cat( iw_dir, christoffel ):
output( 'incident wave direction:' )
output( iw_dir )
output( 'Christoffel acoustic tensor:' )
output( christoffel )
class AcousticBandGapsApp( SimpleApp ):
def process_options( options ):
"""Application options setup. Sets default values for missing
non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
eig_problem = get( 'eig_problem', 'simple' )
schur = get( 'schur', None )
elasticity_contrast = get( 'elasticity_contrast', 1.0 )
scale_epsilon = get( 'scale_epsilon', 1.0 )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
save = get( 'save_eig_vectors', (0, 0) )
eig_range = get( 'eig_range', None )
freq_margins = get( 'freq_margins', (5, 5) )
# Given in per cent.
freq_margins = 0.01 * nm.array( freq_margins, dtype = nm.float64 )
fixed_eig_range = get( 'fixed_eig_range', None )
# Given in per cent.
freq_step = 0.01 * get( 'freq_step', 5 )
feps = get( 'feps', 1e-8 )
zeps = get( 'zeps', 1e-8 )
teps = get( 'teps', 1e-4 )
teps_rel = get( 'teps_rel', True )
eig_vector_transform = get( 'eig_vector_transform', None )
plot_transform = get( 'plot_transform', None )
plot_transform_wave = get( 'plot_transform_wave', None )
plot_transform_angle = get( 'plot_transform_angle', None )
plot_options = get( 'plot_options', {'show' : True,'legend' : False,} )
fig_name = get( 'fig_name', None )
fig_name_wave = get( 'fig_name_wave', None )
fig_name_angle = get( 'fig_name_angle', None )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : 'min eig($M^*$)',
'eig_mid' : 'mid eig($M^*$)',
'eig_max' : 'max eig($M^*$)',
'y_axis' : 'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults( options, 'plot_labels', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults( options, 'plot_labels_angle', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults( options, 'plot_labels_wave', aux )
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-' },
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':' },
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--' },
'eig_min' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '--' },
'eig_mid' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-.' },
'eig_max' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 0.5) },
'weak_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 1) },
'propagation' : {'linewidth' : 0, 'facecolor' : (0.5, 1, 0.5) },
'params' : {'axes.labelsize': 'large',
'text.fontsize': 'large',
'legend.fontsize': 'large',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': False},
}
plot_rsc = try_set_defaults( options, 'plot_rsc', plot_rsc )
eigenmomentum = get( 'eigenmomentum', None,
'missing "eigenmomentum" in options!' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
if eig_problem == 'simple_liquid':
liquid_region = get('liquid_region', None,
'missing "liquid_region" in options!')
else:
liquid_region = None
return Struct( **locals() )
process_options = staticmethod( process_options )
def process_options_pv( options ):
"""Application options setup for phase velocity computation. Sets
default values for missing non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
fig_suffix = get( 'fig_suffix', '.pdf' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
return Struct( **locals() )
process_options_pv = staticmethod( process_options_pv )
def __init__( self, conf, options, output_prefix, **kwargs ):
SimpleApp.__init__( self, conf, options, output_prefix,
init_equations = False )
self.setup_options()
self.cached_coefs = None
self.cached_iw_dir = None
self.cached_christoffel = None
self.cached_evp = None
output_dir = self.problem.output_dir
shutil.copyfile( conf._filename,
op.join( output_dir, op.basename( conf._filename ) ) )
def setup_options( self ):
SimpleApp.setup_options( self )
if self.options.phase_velocity:
process_options = AcousticBandGapsApp.process_options_pv
else:
process_options = AcousticBandGapsApp.process_options
self.app_options += process_options( self.conf.options )
def call( self ):
"""In parametric runs, cached data (homogenized coefficients,
Christoffel acoustic tensor and eigenvalue problem solution) are
cleared according to 'clear_cache' aplication options.
Example:
clear_cache = {'cached_christoffel' : True, 'cached_evp' : True}
"""
options = self.options
for key, val in self.app_options.clear_cache.iteritems():
if val and key.startswith('cached_'):
setattr(self, key, None)
if options.phase_velocity:
# No band gaps in this case.
return self.compute_phase_velocity()
evp = self.solve_eigen_problem()
self.fix_eig_range( evp.eigs.shape[0] )
if options.detect_band_gaps:
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod )
if options.plot:
plot_range, teigs = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform,
self.conf.funmod )
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plot_labels = bg.opts.plot_labels
plt.rcParams.update( plot_rsc['params'] )
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
| plt.show() | sfepy.base.plotutils.plt.show |
#!/usr/bin/env python
# 12.01.2007, c
import os.path as op
import shutil
from optparse import OptionParser
import sfepy
from sfepy.base.base import *
from sfepy.base.conf import ProblemConf, get_standard_keywords
from sfepy.fem import ProblemDefinition
from sfepy.fem.evaluate import assemble_by_blocks
from sfepy.homogenization.phono import transform_plot_data, plot_logs, \
plot_gaps, detect_band_gaps, compute_cat, compute_polarization_angles
from sfepy.homogenization.engine import HomogenizationEngine
from sfepy.applications import SimpleApp
from sfepy.solvers import Solver, eig
from sfepy.base.plotutils import plt
def make_save_hook( base_name, post_process_hook = None, file_per_var = None ):
def save_phono_correctors( state, problem, ir, ic ):
problem.save_state( (base_name % (ir, ic)) + '.vtk', state,
post_process_hook = post_process_hook,
file_per_var = file_per_var )
return save_phono_correctors
def try_set_defaults( obj, attr, defaults ):
try:
values = getattr( obj, attr )
set_defaults( values, defaults )
except:
values = defaults
return values
def report_iw_cat( iw_dir, christoffel ):
output( 'incident wave direction:' )
output( iw_dir )
output( 'Christoffel acoustic tensor:' )
output( christoffel )
class AcousticBandGapsApp( SimpleApp ):
def process_options( options ):
"""Application options setup. Sets default values for missing
non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
eig_problem = get( 'eig_problem', 'simple' )
schur = get( 'schur', None )
elasticity_contrast = get( 'elasticity_contrast', 1.0 )
scale_epsilon = get( 'scale_epsilon', 1.0 )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
save = get( 'save_eig_vectors', (0, 0) )
eig_range = get( 'eig_range', None )
freq_margins = get( 'freq_margins', (5, 5) )
# Given in per cent.
freq_margins = 0.01 * nm.array( freq_margins, dtype = nm.float64 )
fixed_eig_range = get( 'fixed_eig_range', None )
# Given in per cent.
freq_step = 0.01 * get( 'freq_step', 5 )
feps = get( 'feps', 1e-8 )
zeps = get( 'zeps', 1e-8 )
teps = get( 'teps', 1e-4 )
teps_rel = get( 'teps_rel', True )
eig_vector_transform = get( 'eig_vector_transform', None )
plot_transform = get( 'plot_transform', None )
plot_transform_wave = get( 'plot_transform_wave', None )
plot_transform_angle = get( 'plot_transform_angle', None )
plot_options = get( 'plot_options', {'show' : True,'legend' : False,} )
fig_name = get( 'fig_name', None )
fig_name_wave = get( 'fig_name_wave', None )
fig_name_angle = get( 'fig_name_angle', None )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : 'min eig($M^*$)',
'eig_mid' : 'mid eig($M^*$)',
'eig_max' : 'max eig($M^*$)',
'y_axis' : 'eigenvalues of mass matrix $M^*$',
}
plot_labels = try_set_defaults( options, 'plot_labels', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'$\kappa$(min)',
'eig_mid' : r'$\kappa$(mid)',
'eig_max' : r'$\kappa$(max)',
'y_axis' : 'polarization angles',
}
plot_labels_angle = try_set_defaults( options, 'plot_labels_angle', aux )
aux = {
'resonance' : 'eigenfrequencies',
'masked' : 'masked eigenfrequencies',
'eig_min' : r'wave number (min)',
'eig_mid' : r'wave number (mid)',
'eig_max' : r'wave number (max)',
'y_axis' : 'wave numbers',
}
plot_labels_wave = try_set_defaults( options, 'plot_labels_wave', aux )
plot_rsc = {
'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-' },
'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':' },
'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--' },
'eig_min' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '--' },
'eig_mid' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-.' },
'eig_max' : {'linewidth' : 0.5, 'color' : 'b', 'linestyle' : '-' },
'strong_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 0.5) },
'weak_gap' : {'linewidth' : 0, 'facecolor' : (1, 1, 1) },
'propagation' : {'linewidth' : 0, 'facecolor' : (0.5, 1, 0.5) },
'params' : {'axes.labelsize': 'large',
'text.fontsize': 'large',
'legend.fontsize': 'large',
'xtick.labelsize': 'large',
'ytick.labelsize': 'large',
'text.usetex': False},
}
plot_rsc = try_set_defaults( options, 'plot_rsc', plot_rsc )
eigenmomentum = get( 'eigenmomentum', None,
'missing "eigenmomentum" in options!' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
if eig_problem == 'simple_liquid':
liquid_region = get('liquid_region', None,
'missing "liquid_region" in options!')
else:
liquid_region = None
return Struct( **locals() )
process_options = staticmethod( process_options )
def process_options_pv( options ):
"""Application options setup for phase velocity computation. Sets
default values for missing non-compulsory options."""
get = options.get_default_attr
clear_cache = get( 'clear_cache', {} )
eigensolver = get( 'eigensolver', 'eig.sgscipy' )
incident_wave_dir = get( 'incident_wave_dir', None )
dispersion = get( 'dispersion', 'simple' )
dispersion_conf = get( 'dispersion_conf', None )
homogeneous = get( 'homogeneous', False )
fig_suffix = get( 'fig_suffix', '.pdf' )
region_to_material = get( 'region_to_material', None,
'missing "region_to_material" in options!' )
tensor_names = get( 'tensor_names', None,
'missing "tensor_names" in options!' )
volume = get( 'volume', None, 'missing "volume" in options!' )
return Struct( **locals() )
process_options_pv = staticmethod( process_options_pv )
def __init__( self, conf, options, output_prefix, **kwargs ):
SimpleApp.__init__( self, conf, options, output_prefix,
init_equations = False )
self.setup_options()
self.cached_coefs = None
self.cached_iw_dir = None
self.cached_christoffel = None
self.cached_evp = None
output_dir = self.problem.output_dir
shutil.copyfile( conf._filename,
op.join( output_dir, op.basename( conf._filename ) ) )
def setup_options( self ):
SimpleApp.setup_options( self )
if self.options.phase_velocity:
process_options = AcousticBandGapsApp.process_options_pv
else:
process_options = AcousticBandGapsApp.process_options
self.app_options += process_options( self.conf.options )
def call( self ):
"""In parametric runs, cached data (homogenized coefficients,
Christoffel acoustic tensor and eigenvalue problem solution) are
cleared according to 'clear_cache' aplication options.
Example:
clear_cache = {'cached_christoffel' : True, 'cached_evp' : True}
"""
options = self.options
for key, val in self.app_options.clear_cache.iteritems():
if val and key.startswith('cached_'):
setattr(self, key, None)
if options.phase_velocity:
# No band gaps in this case.
return self.compute_phase_velocity()
evp = self.solve_eigen_problem()
self.fix_eig_range( evp.eigs.shape[0] )
if options.detect_band_gaps:
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod )
if options.plot:
plot_range, teigs = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform,
self.conf.funmod )
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plot_labels = bg.opts.plot_labels
plt.rcParams.update( plot_rsc['params'] )
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
plt.show()
elif options.analyze_dispersion:
christoffel, iw_dir = self.compute_cat(ret_iw_dir=True)
bg = detect_band_gaps( self.problem, evp.kind,
evp.eigs_rescaled, evp.eig_vectors,
self.app_options, self.conf.funmod,
christoffel = christoffel )
output( 'computing polarization angles...' )
pas = compute_polarization_angles( iw_dir, bg.logs.eig_vectors )
output( '...done' )
bg.polarization_angles = pas
output( 'computing phase velocity...' )
bg.phase_velocity = self.compute_phase_velocity()
output( '...done' )
if options.plot:
plot_rsc = bg.opts.plot_rsc
plot_opts = bg.opts.plot_options
plt.rcParams.update( plot_rsc['params'] )
aux = transform_plot_data( pas,
bg.opts.plot_transform_angle,
self.conf.funmod )
plot_range, pas = aux
plot_labels = bg.opts.plot_labels_angle
fig = plot_gaps( 1, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 1, plot_rsc, plot_labels, bg.logs.freqs, pas,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_angle
if fig_name is not None:
fig.savefig( fig_name )
aux = transform_plot_data( bg.logs.eigs,
bg.opts.plot_transform_wave,
self.conf.funmod )
plot_range, teigs = aux
plot_labels = bg.opts.plot_labels_wave
fig = plot_gaps( 2, plot_rsc, bg.gaps, bg.kinds,
bg.freq_range_margins, plot_range,
clear = True )
fig = plot_logs( 2, plot_rsc, plot_labels, bg.logs.freqs, teigs,
bg.valid[bg.eig_range],
bg.freq_range_initial,
plot_range, False,
show_legend = plot_opts['legend'],
new_axes = True )
fig_name = bg.opts.fig_name_wave
if fig_name is not None:
fig.savefig( fig_name )
if plot_opts['show']:
| plt.show() | sfepy.base.plotutils.plt.show |
import numpy as nm
from sfepy.base.base import Struct
class SplineBox(Struct):
"""
B-spline geometry parametrization. Geometry can be modified
by moving spline control points.
"""
@staticmethod
def mmax(x, y):
n = len(x)
aux = nm.zeros((2,n), dtype=nm.int)
aux[0,:] = x[:]
aux[1,:] = nm.ones((1,n)) * y
out = nm.max(aux, axis=0)
return out
@staticmethod
def spsorted(meshsites, sites):
n1 = len(meshsites)
n2 = len(sites)
aux = nm.zeros((n1 + n2,), dtype=nm.double)
aux[:n1] = meshsites
aux[n1:] = sites
inx = nm.argsort(aux)
out = nm.where(inx >= len(meshsites)) - nm.arange(len(sites))
return out[0]
@staticmethod
def augknt(knots, k, mults=1):
if mults > 1:
aux = []
for j in k[1:-1]:
aux += [j] * mults;
else:
aux = knots[1:-1]
augknot = [knots[0]] * k + list(aux) + [knots[-1]] * k
return augknot
@staticmethod
def spcol(knots, k, tau):
npk = len(knots)
n = npk - k
nrows = tau.shape[0]
pts = tau
km1 = k - 1
savl = SplineBox.mmax(SplineBox.spsorted(knots[:n], pts), k)
b = nm.zeros((nrows, k), dtype=nm.double)
b[:,0] = nm.ones((nrows,), dtype=nm.double)
for j in range(km1):
saved = nm.zeros((nrows,), dtype=nm.double);
for r in range(j+1):
tr = knots[savl + r] - pts
tl = pts - knots[savl + r - j - 1]
term = nm.double(b[:,r]) / (tr + tl)
b[:,r] = saved + tr * term
saved = tl * term
b[:,j+1] = saved
idx = nm.where((tau < knots[0]) | (tau > knots[npk-1]))[0]
if len(idx) > 0:
b[idx,:] = 0
idx1 = nm.tile(nm.arange(1-nrows, 1), (k,))
idx2 = nm.tile(nrows * savl, (k,))
idx3 = nm.tile(nrows * nm.arange(-km1, 1), (nrows, 1))
idx3 = nm.reshape(idx3, (nrows * k,), order='F')
width = n + km1 + km1
nn = nrows * width
cc = nm.zeros((nn,), dtype=nm.double)
idx = idx1 + idx2 + idx3 - 1
cc[idx] = b.reshape((len(idx),), order='F')
idx1 = nm.tile(nm.arange(1-nrows, 1), (n,))
idx2 = nm.tile(nrows * nm.arange(1, n + 1), (nrows, 1))
idx2 = nm.reshape(idx2, (nrows * n,), order='F')
idx = idx1 + idx2 - 1
colloc = cc[idx].reshape((nrows, n), order='F')
return colloc
@staticmethod
def create_spb(bbox, coors, nsg=None):
if type(bbox) is not nm.ndarray:
bbox = nm.array(bbox)
if type(coors) is not nm.ndarray:
coors = nm.array(coors)
dim = coors.shape[1]
axes = []
if nsg is None:
nsg = nm.ones((dim,), dtype=nm.int)
else:
nsg = nm.array(nsg)
cpt = []
ncpt = []
for idim in range(dim):
axes.append({})
aux = nm.linspace(bbox[idim,0], bbox[idim,1], nsg[idim] + 1)
knots = nm.array(SplineBox.augknt(aux, 4))
axes[idim]['knots'] = knots
nn = 4 + nsg[idim] - 1
ncpt.append(nn)
cpt.append(nm.zeros((nn,), dtype=nm.double))
for j in range(nn):
cpt[idim][j] = nm.sum(knots[(j+1):(j+4)]) / 3.0
inx = nm.argsort(coors[:,idim])
aux = SplineBox.spcol(knots, 4, coors[inx,idim])
axes[idim]['bsc'] = nm.zeros_like(aux)
axes[idim]['bsc'][inx,:] = aux[:,:]
ncpts = nm.prod(ncpt)
cpoints = nm.zeros((ncpts, dim), dtype=nm.double)
cpoints_idx = nm.zeros(ncpt, dtype=nm.int)
n2 = nm.prod(ncpt[:2])
aux = nm.arange(n2).reshape(ncpt[:2], order='F')
if dim == 2:
idx = nm.mgrid[0:ncpt[1],0:ncpt[0]]
cpoints[:,0] = cpt[0][idx[1].reshape((ncpts,))]
cpoints[:,1] = cpt[1][idx[0].reshape((ncpts,))]
cpoints_idx[:,:] = aux
elif dim == 3:
idx = nm.mgrid[0:ncpt[2],0:ncpt[1],0:ncpt[0]]
cpoints[:,0] = cpt[0][idx[2].reshape((ncpts,))]
cpoints[:,1] = cpt[1][idx[1].reshape((ncpts,))]
cpoints[:,2] = cpt[2][idx[0].reshape((ncpts,))]
for j in range(ncpt[2]):
cpoints_idx[:,:,j] = aux + j * n2
return axes, cpoints, cpoints_idx
def __init__(self, bbox, coors,
name='spbox', **kwargs):
"""
Create a SplineBox.
Parameters
----------
bbox : array
Mesh bounding box.
coors : array
Coordinates of mesh nodes.
name : str
Object name.
"""
| Struct.__init__(self, name=name, **kwargs) | sfepy.base.base.Struct.__init__ |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, | get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDConvectTerm(Term):
r"""
Sensitivity (shape derivative) of convective term `dw_convect`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_convect'
arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_convect)
def get_fargs(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_u = self.get(par_u, 'val')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_w = self.get(par_w, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (val_u, grad_u, val_w, div_mv, grad_mv, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDConvectTerm(Term):
r"""
Sensitivity (shape derivative) of convective term `dw_convect`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_convect'
arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_convect)
def get_fargs(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_u = self.get(par_u, 'val')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_w = self.get(par_w, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (val_u, grad_u, val_w, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class NSOFMinGradTerm(Term):
name = 'd_of_ns_min_grad'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'parameter' : 1}
function = staticmethod(terms.d_of_nsMinGrad)
def get_fargs(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
grad = grad_as_vector(self.get(parameter, 'grad'))
return grad, weight * mat, vg
def get_eval_shape(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressTerm(Term):
r"""
Sensitivity of :math:`\Psi(p)`.
:Definition:
.. math::
\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p -
\int_{\Gamma_{out}}bpress \right)
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`bpress` (given pressure)
- parameter : :math:`p`
"""
name = 'd_of_ns_surf_min_d_press'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : 1, 'material_2' : 1,
'parameter' : 1}
integration = 'surface'
function = staticmethod(terms.d_of_nsSurfMinDPress)
def get_fargs(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(parameter)
val_p = self.get(parameter, 'val')
return val_p, weight, bpress, sg, 0
def get_eval_shape(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressDiffTerm(NSOFSurfMinDPressTerm):
r"""
Gateaux differential of :math:`\Psi(p)` w.r.t. :math:`p` in the
direction :math:`q`.
:Definition:
.. math::
w \delta_{p} \Psi(p) \circ q
:Arguments:
- material : :math:`w` (weight)
- virtual : :math:`q`
"""
name = 'dw_of_ns_surf_min_d_press_diff'
arg_types = ('material', 'virtual')
arg_shapes = {'material' : 1, 'virtual' : (1, None)}
def get_fargs(self, weight, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
aux = nm.array([0], ndmin=4, dtype=nm.float64)
return aux, weight, 0.0, sg, 1
class SDGradDivStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_grad_div`.
:Definition:
.. math::
\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w})
(\nabla \cdot \ul{\Vcal})
- \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w})
- (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]
:Arguments:
- material : :math:`\gamma`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_grad_div'
arg_types = ('material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_grad_div)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
div_w = self.get(par_w, 'div')
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, div_w, grad_w, div_mv, grad_mv, mat, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDConvectTerm(Term):
r"""
Sensitivity (shape derivative) of convective term `dw_convect`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_convect'
arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_convect)
def get_fargs(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_u = self.get(par_u, 'val')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_w = self.get(par_w, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (val_u, grad_u, val_w, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class NSOFMinGradTerm(Term):
name = 'd_of_ns_min_grad'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'parameter' : 1}
function = staticmethod(terms.d_of_nsMinGrad)
def get_fargs(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
grad = grad_as_vector(self.get(parameter, 'grad'))
return grad, weight * mat, vg
def get_eval_shape(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressTerm(Term):
r"""
Sensitivity of :math:`\Psi(p)`.
:Definition:
.. math::
\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p -
\int_{\Gamma_{out}}bpress \right)
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`bpress` (given pressure)
- parameter : :math:`p`
"""
name = 'd_of_ns_surf_min_d_press'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : 1, 'material_2' : 1,
'parameter' : 1}
integration = 'surface'
function = staticmethod(terms.d_of_nsSurfMinDPress)
def get_fargs(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(parameter)
val_p = self.get(parameter, 'val')
return val_p, weight, bpress, sg, 0
def get_eval_shape(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressDiffTerm(NSOFSurfMinDPressTerm):
r"""
Gateaux differential of :math:`\Psi(p)` w.r.t. :math:`p` in the
direction :math:`q`.
:Definition:
.. math::
w \delta_{p} \Psi(p) \circ q
:Arguments:
- material : :math:`w` (weight)
- virtual : :math:`q`
"""
name = 'dw_of_ns_surf_min_d_press_diff'
arg_types = ('material', 'virtual')
arg_shapes = {'material' : 1, 'virtual' : (1, None)}
def get_fargs(self, weight, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
aux = nm.array([0], ndmin=4, dtype=nm.float64)
return aux, weight, 0.0, sg, 1
class SDGradDivStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_grad_div`.
:Definition:
.. math::
\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w})
(\nabla \cdot \ul{\Vcal})
- \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w})
- (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]
:Arguments:
- material : :math:`\gamma`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_grad_div'
arg_types = ('material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_grad_div)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
div_w = self.get(par_w, 'div')
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, div_w, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDSUPGCStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k)
(\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) -
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i}
(\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k)
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ]
:Arguments:
- material : :math:`\delta_K`
- parameter_b : :math:`\ul{b}`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_supg_c'
arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_supg_c)
def get_fargs(self, mat, par_b, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_b = self.get(par_b, 'val')
grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy()
grad_w = self.get(par_w, 'grad').transpose((0, 1, 3, 2)).copy()
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (val_b, grad_u, grad_w, div_mv, grad_mv, mat, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDConvectTerm(Term):
r"""
Sensitivity (shape derivative) of convective term `dw_convect`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_convect'
arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_convect)
def get_fargs(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_u = self.get(par_u, 'val')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_w = self.get(par_w, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (val_u, grad_u, val_w, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class NSOFMinGradTerm(Term):
name = 'd_of_ns_min_grad'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'parameter' : 1}
function = staticmethod(terms.d_of_nsMinGrad)
def get_fargs(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
grad = grad_as_vector(self.get(parameter, 'grad'))
return grad, weight * mat, vg
def get_eval_shape(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressTerm(Term):
r"""
Sensitivity of :math:`\Psi(p)`.
:Definition:
.. math::
\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p -
\int_{\Gamma_{out}}bpress \right)
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`bpress` (given pressure)
- parameter : :math:`p`
"""
name = 'd_of_ns_surf_min_d_press'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : 1, 'material_2' : 1,
'parameter' : 1}
integration = 'surface'
function = staticmethod(terms.d_of_nsSurfMinDPress)
def get_fargs(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(parameter)
val_p = self.get(parameter, 'val')
return val_p, weight, bpress, sg, 0
def get_eval_shape(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressDiffTerm(NSOFSurfMinDPressTerm):
r"""
Gateaux differential of :math:`\Psi(p)` w.r.t. :math:`p` in the
direction :math:`q`.
:Definition:
.. math::
w \delta_{p} \Psi(p) \circ q
:Arguments:
- material : :math:`w` (weight)
- virtual : :math:`q`
"""
name = 'dw_of_ns_surf_min_d_press_diff'
arg_types = ('material', 'virtual')
arg_shapes = {'material' : 1, 'virtual' : (1, None)}
def get_fargs(self, weight, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
aux = nm.array([0], ndmin=4, dtype=nm.float64)
return aux, weight, 0.0, sg, 1
class SDGradDivStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_grad_div`.
:Definition:
.. math::
\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w})
(\nabla \cdot \ul{\Vcal})
- \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w})
- (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]
:Arguments:
- material : :math:`\gamma`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_grad_div'
arg_types = ('material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_grad_div)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
div_w = self.get(par_w, 'div')
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, div_w, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDSUPGCStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k)
(\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) -
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i}
(\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k)
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ]
:Arguments:
- material : :math:`\delta_K`
- parameter_b : :math:`\ul{b}`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_supg_c'
arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_supg_c)
def get_fargs(self, mat, par_b, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_b = self.get(par_b, 'val')
grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy()
grad_w = self.get(par_w, 'grad').transpose((0, 1, 3, 2)).copy()
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (val_b, grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_b, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDPSPGCStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization terms `dw_st_supg_p` or
`dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\
[ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) -
\pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i)
- \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ]
:Arguments:
- material : :math:`\delta_K`
- parameter_b : :math:`\ul{b}`
- parameter_u : :math:`\ul{u}`
- parameter_r : :math:`r`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_pspg_c'
arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_r',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_r' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_pspg_c)
def get_fargs(self, mat, par_b, par_u, par_r, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_b = self.get(par_b, 'val')
grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy()
grad_r = self.get(par_r, 'grad')
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (val_b, grad_u, grad_r, div_mv, grad_mv, mat, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import get_default
def grad_as_vector(grad):
grad = grad.transpose((0, 1, 3, 2))
sh = grad.shape
return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1))
class AdjDivGradTerm(Term):
r"""
Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\
\nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction
:math:`\ul{v}` or adjoint term to `dw_div_grad`.
:Definition:
.. math::
w \delta_{u} \Psi(\ul{u}) \circ \ul{v}
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`\nu` (viscosity)
- virtual : :math:`\ul{v}`
- state : :math:`\ul{u}`
"""
name = 'dw_adj_div_grad'
arg_types = ('material_1', 'material_2', 'virtual', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'virtual' : ('D', None), 'parameter' : 'D'}
function = staticmethod(terms.term_ns_asm_div_grad)
def get_fargs(self, mat1, mat2, virtual, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
if diff_var is None:
grad = grad_as_vector(self.get(state, 'grad'))
fmode = 0
else:
grad = nm.array([0], ndmin=4, dtype=nm.float64)
fmode = 1
return grad, mat1 * mat2, vg, fmode
class AdjConvect1Term(Term):
r"""
The first adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect1'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect1)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
grad_u = self.get(parameter, 'grad') # No transposition here!
fmode = diff_var is not None
return val_w, grad_u, vg, fmode
class AdjConvect2Term(Term):
r"""
The second adjoint term to nonlinear convective term `dw_convect`.
:Definition:
.. math::
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w}
:Arguments:
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_adj_convect2'
arg_types = ('virtual', 'state', 'parameter' )
arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_adj_convect2)
def get_fargs(self, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_w = self.get(state, 'val')
val_u = self.get(parameter, 'val')
fmode = diff_var is not None
return val_w, val_u, vg, fmode
class SUPGCAdjStabilizationTerm(Term):
r"""
Adjoint term to SUPG stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`\ul{u}`
"""
name = 'dw_st_adj_supg_c'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj_supg_c)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(state)
val_u = self.get(parameter, 'val')
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), val_u, grad_u, mat, vg, conn, fmode
class SUPGPAdj1StabilizationTerm(Term):
r"""
The first adjoint term to SUPG stabilization term `dw_st_supg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot
\nabla \ul{w})
:Arguments:
- material : :math:`\delta_K`
- virtual : :math:`\ul{v}`
- state : :math:`\ul{w}`
- parameter : :math:`p`
"""
name = 'dw_st_adj1_supg_p'
arg_types = ('material', 'virtual', 'state', 'parameter')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 'D', 'parameter' : 1}
function = staticmethod(terms.dw_st_adj1_supg_p)
def get_fargs(self, mat, virtual, state, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_w, _ = self.get_mapping(state)
grad_p = self.get(parameter, 'grad')
conn_w = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return state(), grad_p, mat, vg_w, conn_w, fmode
class SUPGPAdj2StabilizationTerm(Term):
r"""
The second adjoint term to SUPG stabilization term `dw_st_supg_p`
as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla
\ul{u})
:Arguments:
- material : :math:`\tau_K`
- virtual : :math:`\ul{v}`
- parameter : :math:`\ul{u}`
- state : :math:`r`
"""
name = 'dw_st_adj2_supg_p'
arg_types = ('material', 'virtual', 'parameter', 'state')
arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'),
'state' : 1, 'parameter' : 'D'}
function = staticmethod(terms.dw_st_adj2_supg_p)
def get_fargs(self, mat, virtual, parameter, state,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg_r, _ = self.get_mapping(state)
vg_u, _ = self.get_mapping(parameter)
grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy()
conn_r = state.field.get_connectivity(self.region, self.integration)
fmode = diff_var is not None
return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode
class SDDotVolumeTerm(Term):
r"""
Sensitivity (shape derivative) of dot product of scalars or vectors.
:Definition:
.. math::
\int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , }
\int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
:Arguments:
- parameter_1 : :math:`p` or :math:`\ul{u}`
- parameter_2 : :math:`q` or :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_volume_dot'
arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')
arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D',
'parameter_mv' : 'D'},
{'parameter_1' : 1, 'parameter_2' : 1}]
function = staticmethod(terms.d_sd_volume_dot)
def get_fargs(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par1)
val1 = self.get(par1, 'val')
val2 = self.get(par2, 'val')
div_mv = self.get(par_mv, 'div')
return val1, val2, div_mv, vg, get_default(term_mode, 1)
def get_eval_shape(self, par1, par2, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1)
return (n_el, 1, 1, 1), par1.dtype
class SDDivTerm(Term):
r"""
Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div'
arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div)
def get_fargs(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_p = self.get(par_p, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, val_p, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDDivGradTerm(Term):
r"""
Sensitivity (shape derivative) of diffusion term `dw_div_grad`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k}
(\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k}
- \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ]
:Arguments:
- material : :math:`\nu` (viscosity, optional)
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_div_grad'
arg_types = ('opt_material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'opt_material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_div_grad)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
grad_u = grad_as_vector(self.get(par_u, 'grad'))
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDConvectTerm(Term):
r"""
Sensitivity (shape derivative) of convective term `dw_convect`.
Supports the following term modes: 1 (sensitivity) or 0 (original term
value).
:Definition:
.. math::
\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]
:Arguments:
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
"""
name = 'd_sd_convect'
arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')
arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_convect)
def get_fargs(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_u = self.get(par_u, 'val')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
val_w = self.get(par_w, 'val')
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (val_u, grad_u, val_w, div_mv, grad_mv, vg,
get_default(term_mode, 1))
def get_eval_shape(self, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class NSOFMinGradTerm(Term):
name = 'd_of_ns_min_grad'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1',
'parameter' : 1}
function = staticmethod(terms.d_of_nsMinGrad)
def get_fargs(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
grad = grad_as_vector(self.get(parameter, 'grad'))
return grad, weight * mat, vg
def get_eval_shape(self, weight, mat, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressTerm(Term):
r"""
Sensitivity of :math:`\Psi(p)`.
:Definition:
.. math::
\delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p -
\int_{\Gamma_{out}}bpress \right)
:Arguments:
- material_1 : :math:`w` (weight)
- material_2 : :math:`bpress` (given pressure)
- parameter : :math:`p`
"""
name = 'd_of_ns_surf_min_d_press'
arg_types = ('material_1', 'material_2', 'parameter')
arg_shapes = {'material_1' : 1, 'material_2' : 1,
'parameter' : 1}
integration = 'surface'
function = staticmethod(terms.d_of_nsSurfMinDPress)
def get_fargs(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(parameter)
val_p = self.get(parameter, 'val')
return val_p, weight, bpress, sg, 0
def get_eval_shape(self, weight, bpress, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
return (1, 1, 1, 1), parameter.dtype
class NSOFSurfMinDPressDiffTerm(NSOFSurfMinDPressTerm):
r"""
Gateaux differential of :math:`\Psi(p)` w.r.t. :math:`p` in the
direction :math:`q`.
:Definition:
.. math::
w \delta_{p} \Psi(p) \circ q
:Arguments:
- material : :math:`w` (weight)
- virtual : :math:`q`
"""
name = 'dw_of_ns_surf_min_d_press_diff'
arg_types = ('material', 'virtual')
arg_shapes = {'material' : 1, 'virtual' : (1, None)}
def get_fargs(self, weight, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(virtual)
aux = nm.array([0], ndmin=4, dtype=nm.float64)
return aux, weight, 0.0, sg, 1
class SDGradDivStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_grad_div`.
:Definition:
.. math::
\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w})
(\nabla \cdot \ul{\Vcal})
- \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w})
- (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]
:Arguments:
- material : :math:`\gamma`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_grad_div'
arg_types = ('material', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_grad_div)
def get_fargs(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
div_u = self.get(par_u, 'div')
grad_u = grad_as_vector(self.get(par_u, 'grad'))
div_w = self.get(par_w, 'div')
grad_w = grad_as_vector(self.get(par_w, 'grad'))
div_mv = self.get(par_mv, 'div')
grad_mv = grad_as_vector(self.get(par_mv, 'grad'))
return (div_u, grad_u, div_w, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDSUPGCStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_supg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k)
(\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) -
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i}
(\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k)
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ]
:Arguments:
- material : :math:`\delta_K`
- parameter_b : :math:`\ul{b}`
- parameter_u : :math:`\ul{u}`
- parameter_w : :math:`\ul{w}`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_supg_c'
arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_w',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_w' : 'D',
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_supg_c)
def get_fargs(self, mat, par_b, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_b = self.get(par_b, 'val')
grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy()
grad_w = self.get(par_w, 'grad').transpose((0, 1, 3, 2)).copy()
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (val_b, grad_u, grad_w, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_b, par_u, par_w, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDPSPGCStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization terms `dw_st_supg_p` or
`dw_st_pspg_c`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\
[ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) -
\pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i)
- \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ]
:Arguments:
- material : :math:`\delta_K`
- parameter_b : :math:`\ul{b}`
- parameter_u : :math:`\ul{u}`
- parameter_r : :math:`r`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_pspg_c'
arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_r',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_r' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_pspg_c)
def get_fargs(self, mat, par_b, par_u, par_r, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_u)
val_b = self.get(par_b, 'val')
grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy()
grad_r = self.get(par_r, 'grad')
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (val_b, grad_u, grad_r, div_mv, grad_mv, mat, vg,
get_default(term_mode, 1))
def get_eval_shape(self, mat, par_b, par_u, par_r, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u)
return (n_el, 1, 1, 1), par_u.dtype
class SDPSPGPStabilizationTerm(Term):
r"""
Sensitivity (shape derivative) of stabilization term `dw_st_pspg_p`.
:Definition:
.. math::
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p)
(\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) -
(\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ]
:Arguments:
- material : :math:`\tau_K`
- parameter_r : :math:`r`
- parameter_p : :math:`p`
- parameter_mv : :math:`\ul{\Vcal}`
- mode : 1 (sensitivity) or 0 (original term value)
"""
name = 'd_sd_st_pspg_p'
arg_types = ('material', 'parameter_r', 'parameter_p',
'parameter_mv')
arg_shapes = {'material' : '1, 1',
'parameter_r' : 1, 'parameter_p' : 1,
'parameter_mv' : 'D'}
function = staticmethod(terms.d_sd_st_pspg_p)
def get_fargs(self, mat, par_r, par_p, par_mv,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(par_p)
grad_r = self.get(par_r, 'grad')
grad_p = self.get(par_p, 'grad')
div_mv = self.get(par_mv, 'div')
grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy()
return (grad_r, grad_p, div_mv, grad_mv, mat, vg,
| get_default(term_mode, 1) | sfepy.base.base.get_default |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = | Mesh.from_file(pb.conf.filename_mesh) | sfepy.discrete.fem.Mesh.from_file |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = | FEDomain('domain', mesh) | sfepy.discrete.fem.FEDomain |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = | FieldVariable('g', 'unknown', field) | sfepy.discrete.FieldVariable |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = | FieldVariable('f', 'test', field, primary_var_name='g') | sfepy.discrete.FieldVariable |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = | Integral('i', order=2) | sfepy.discrete.Integral |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = | Material('m', function=set_grad) | sfepy.discrete.Material |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = | Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g) | sfepy.terms.Term.new |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = | Equation('balance', t1 - t2) | sfepy.discrete.Equation |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = Equation('balance', t1 - t2)
eqs = | Equations([eq]) | sfepy.discrete.Equations |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
ls = | ScipyDirect({}) | sfepy.solvers.ls.ScipyDirect |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = | IndexedStruct() | sfepy.base.base.IndexedStruct |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = | Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status) | sfepy.solvers.nls.Newton |
# This example implements homogenization of piezoeletric porous media.
# The mathematical model and numerical results are described in:
#
# <NAME>., <NAME>.
# Homogenization of the fluid-saturated piezoelectric porous media.
# International Journal of Solids and Structures
# Volume 147, 15 August 2018, Pages 110-125
# https://doi.org/10.1016/j.ijsolstr.2018.05.017
#
# Run simulation:
#
# ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py
#
# The results are stored in `example_poropiezo-1/results` directory.
#
import sys
import numpy as nm
import os.path as osp
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.micmac import get_homog_coefs_linear
from sfepy.homogenization.recovery import recover_micro_hook_eps
data_dir = 'example_poropiezo-1'
def set_grad(ts, coors, mode=None, problem=None, **kwargs):
if mode == 'qp':
out = problem.data.reshape((coors.shape[0], 1, 1))
return {'cs': out}
# projection of values from integration points into mesh vertices
def linear_projection(pb, cval):
from sfepy.discrete import (FieldVariable, Material, Integral,
Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.base.base import IndexedStruct
mesh = Mesh.from_file(pb.conf.filename_mesh)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
field = Field.from_args('scf', nm.float64, 'scalar', omega,
approx_order=1)
g = FieldVariable('g', 'unknown', field)
f = FieldVariable('f', 'test', field, primary_var_name='g')
integral = Integral('i', order=2)
m = Material('m', function=set_grad)
t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
t2 = Term.new('dw_volume_lvf(m.cs, f)',
integral, omega, m=m, f=f)
eq = Equation('balance', t1 - t2)
eqs = Equations([eq])
ls = ScipyDirect({})
nls_status = IndexedStruct()
nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)
pb = | Problem('elasticity', equations=eqs) | sfepy.discrete.Problem |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = | create_geometry_elements() | sfepy.discrete.fem.geometry_element.create_geometry_elements |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = create_geometry_elements()
ok = True
for filename in self.filename_meshes:
basename = os.path.basename(filename)
enum, esizes = expected[basename]
self.report('mesh: %s' % basename)
mesh = | Mesh.from_file(filename) | sfepy.discrete.fem.Mesh.from_file |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = create_geometry_elements()
ok = True
for filename in self.filename_meshes:
basename = os.path.basename(filename)
enum, esizes = expected[basename]
self.report('mesh: %s' % basename)
mesh = Mesh.from_file(filename)
cmesh = | CMesh.from_mesh(mesh) | sfepy.discrete.fem.extmods.cmesh.CMesh.from_mesh |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = create_geometry_elements()
ok = True
for filename in self.filename_meshes:
basename = os.path.basename(filename)
enum, esizes = expected[basename]
self.report('mesh: %s' % basename)
mesh = Mesh.from_file(filename)
cmesh = CMesh.from_mesh(mesh)
cmesh.set_local_entities(gels)
cmesh.setup_entities()
self.report('dim:', cmesh.dim)
self.report('n_cell: %d, n_face: %d, n_edge: %d, n_vertex: %d' %
tuple(cmesh.num))
_ok = (enum == cmesh.num).all()
if not _ok:
self.report('%s == %s failed!' % (enum, cmesh.num))
ok = ok and _ok
dim = cmesh.dim
for ir in range(dim + 1):
for ic in range(dim + 1):
cmesh.setup_connectivity(ir, ic)
mem_usage1 = | get_cmem_usage() | sfepy.discrete.fem.extmods.cmesh.get_cmem_usage |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = create_geometry_elements()
ok = True
for filename in self.filename_meshes:
basename = os.path.basename(filename)
enum, esizes = expected[basename]
self.report('mesh: %s' % basename)
mesh = Mesh.from_file(filename)
cmesh = CMesh.from_mesh(mesh)
cmesh.set_local_entities(gels)
cmesh.setup_entities()
self.report('dim:', cmesh.dim)
self.report('n_cell: %d, n_face: %d, n_edge: %d, n_vertex: %d' %
tuple(cmesh.num))
_ok = (enum == cmesh.num).all()
if not _ok:
self.report('%s == %s failed!' % (enum, cmesh.num))
ok = ok and _ok
dim = cmesh.dim
for ir in range(dim + 1):
for ic in range(dim + 1):
cmesh.setup_connectivity(ir, ic)
mem_usage1 = get_cmem_usage()[0]
if (ir == dim) and (ic == 0):
continue
cmesh.free_connectivity(ir, ic)
mem_usage2 = | get_cmem_usage() | sfepy.discrete.fem.extmods.cmesh.get_cmem_usage |
import os
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy import data_dir
# n_cell, n_face, n_edge, n_vertex
# d1 -> d2 : num, n_incident
expected = {
'2_3_2.mesh' : ([4, 5, 2, 0], {
(0, 0) : (4, 10),
(0, 1) : (4, 10),
(0, 2) : (4, 6),
(1, 0) : (5, 10),
(1, 1) : (5, 16),
(1, 2) : (5, 6),
(2, 0) : (2, 6),
(2, 1) : (2, 6),
(2, 2) : (2, 2),
}),
'2_4_2.mesh' : ([6, 7, 2, 0], {
(0, 0) : (6, 22),
(0, 1) : (6, 14),
(0, 2) : (6, 8),
(1, 0) : (7, 14),
(1, 1) : (7, 20),
(1, 2) : (7, 8),
(2, 0) : (2, 8),
(2, 1) : (2, 8),
(2, 2) : (2, 2),
}),
'3_4_2.mesh' : ([5, 9, 7, 2], {
(0, 0) : (5, 18),
(0, 1) : (5, 18),
(0, 2) : (5, 21),
(0, 3) : (5, 8),
(1, 0) : (9, 18),
(1, 1) : (9, 48),
(1, 2) : (9, 21),
(1, 3) : (9, 12),
(2, 0) : (7, 21),
(2, 1) : (7, 21),
(2, 2) : (7, 42),
(2, 3) : (7, 8),
(3, 0) : (2, 8),
(3, 1) : (2, 12),
(3, 2) : (2, 8),
(3, 3) : (2, 2),
}),
'3_8_2.mesh' : ([12, 20, 11, 2], {
(0, 0) : (12, 100),
(0, 1) : (12, 40),
(0, 2) : (12, 44),
(0, 3) : (12, 16),
(1, 0) : (20, 40),
(1, 1) : (20, 96),
(1, 2) : (20, 44),
(1, 3) : (20, 24),
(2, 0) : (11, 44),
(2, 1) : (11, 44),
(2, 2) : (11, 72),
(2, 3) : (11, 12),
(3, 0) : (2, 16),
(3, 1) : (2, 24),
(3, 2) : (2, 12),
(3, 3) : (2, 2),
}),
'square_triquad.mesh' : ([470, 1127, 658, 0], {
(0, 0) : (470, 3054),
(0, 1) : (470, 2254),
(0, 2) : (470, 2174),
(1, 0) : (1127, 2254),
(1, 1) : (1127, 9174),
(1, 2) : (1127, 2174),
(2, 0) : (658, 2174),
(2, 1) : (658, 2174),
(2, 2) : (658, 6686),
}),
}
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom
for geom in ['2_3', '2_4', '3_4', '3_8']]
filename_meshes.append(data_dir
+ '/meshes/2d/special/square_triquad.mesh')
test = Test(filename_meshes=filename_meshes,
conf=conf, options=options)
return test
def test_cmesh_counts(self):
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem.extmods.cmesh import CMesh, get_cmem_usage
gels = create_geometry_elements()
ok = True
for filename in self.filename_meshes:
basename = os.path.basename(filename)
enum, esizes = expected[basename]
self.report('mesh: %s' % basename)
mesh = Mesh.from_file(filename)
cmesh = CMesh.from_mesh(mesh)
cmesh.set_local_entities(gels)
cmesh.setup_entities()
self.report('dim:', cmesh.dim)
self.report('n_cell: %d, n_face: %d, n_edge: %d, n_vertex: %d' %
tuple(cmesh.num))
_ok = (enum == cmesh.num).all()
if not _ok:
self.report('%s == %s failed!' % (enum, cmesh.num))
ok = ok and _ok
dim = cmesh.dim
for ir in range(dim + 1):
for ic in range(dim + 1):
cmesh.setup_connectivity(ir, ic)
mem_usage1 = get_cmem_usage()[0]
if (ir == dim) and (ic == 0):
continue
cmesh.free_connectivity(ir, ic)
mem_usage2 = get_cmem_usage()[0]
cmesh.setup_connectivity(ir, ic)
mem_usage3 = | get_cmem_usage() | sfepy.discrete.fem.extmods.cmesh.get_cmem_usage |
import numpy as nm
from sfepy.base.base import assert_
from sfepy.linalg import dot_sequences
from sfepy.terms.terms import Term, terms
class ZeroTerm(Term):
r"""
A do-nothing term useful for introducing additional variables into the
equations.
:Definition:
.. math::
0
:Arguments:
- virtual : :math:`q` or :math:`\ul{v}`
- state : :math:`p` or :math:`\ul{u}`
"""
name = 'dw_zero'
arg_types = ('virtual', 'state')
arg_shapes = {'virtual' : ('N', None), 'state' : 'N'}
@staticmethod
def function(out):
out.fill(0.0)
return 0
def get_fargs(self, vvar, svar,
mode=None, term_mode=None, diff_var=None, **kwargs):
return ()
class IntegrateVolumeTerm(Term):
r"""
Evaluate (weighted) variable in a volume region.
Depending on evaluation mode, integrate a variable over a volume region
('eval'), average it in elements ('el_avg') or interpolate it into volume
quadrature points ('qp').
Supports 'eval', 'el_avg' and 'qp' evaluation modes.
:Definition:
.. math::
\int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\
\int_\Omega c y \mbox{ , } \int_\Omega c \ul{y}
.. math::
\mbox{vector for } K \from \Ical_h:
\int_{T_K} y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} \ul{y} / \int_{T_K} 1 \\
\mbox{vector for } K \from \Ical_h:
\int_{T_K} c y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} c \ul{y} / \int_{T_K} 1
.. math::
y|_{qp} \mbox{ , } \ul{y}|_{qp} \\
c y|_{qp} \mbox{ , } c \ul{y}|_{qp}
:Arguments:
- material : :math:`c` (optional)
- parameter : :math:`y` or :math:`\ul{y}`
"""
name = 'ev_volume_integrate'
arg_types = ('opt_material', 'parameter')
arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'},
{'opt_material' : None}]
@staticmethod
def function(out, val_qp, vg, fmode):
if fmode == 2:
out[:] = val_qp
status = 0
else:
status = vg.integrate(out, val_qp, fmode)
return status
def get_fargs(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
val_qp = self.get(parameter, 'val')
if material is not None:
val_qp *= material
fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1)
return val_qp, vg, fmode
def get_eval_shape(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter)
if mode != 'qp':
n_qp = 1
return (n_el, n_qp, n_c, 1), parameter.dtype
class IntegrateSurfaceTerm(Term):
r"""
Evaluate (weighted) variable in a surface region.
Depending on evaluation mode, integrate a variable over a surface region
('eval'), average it in element faces ('el_avg') or interpolate it into
surface quadrature points ('qp'). For vector variables, setting `term_mode`
to `'flux'` leads to computing corresponding fluxes for the three modes
instead.
Supports 'eval', 'el_avg' and 'qp' evaluation modes.
:Definition:
.. math::
\int_\Gamma y \mbox{ , } \int_\Gamma \ul{y}
\mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\
\int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y}
\mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux }
.. math::
\mbox{vector for } K \from \Ical_h:
\int_{T_K} y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , }
\int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\
\mbox{vector for } K \from \Ical_h:
\int_{T_K} c y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , }
\int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1
.. math::
y|_{qp} \mbox{ , } \ul{y}|_{qp}
\mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\
c y|_{qp} \mbox{ , } c \ul{y}|_{qp}
\mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux }
:Arguments:
- material : :math:`c` (optional)
- parameter : :math:`y` or :math:`\ul{y}`
"""
name = 'ev_surface_integrate'
arg_types = ('opt_material', 'parameter')
arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'},
{'opt_material' : None}]
integration = 'surface'
@staticmethod
def function(out, val_qp, sg, fmode):
if fmode == 2:
out[:] = val_qp
status = 0
elif fmode == 5:
normal = sg.normal
out[:] = dot_sequences(val_qp, normal)
status = 0
else:
status = sg.integrate(out, val_qp, fmode)
return status
def get_fargs(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
sg, _ = self.get_mapping(parameter)
val_qp = self.get(parameter, 'val')
if material is not None:
val_qp *= material
fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1)
if term_mode == 'flux':
n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter)
if n_c == dim:
fmode += 3
return val_qp, sg, fmode
def get_eval_shape(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter)
if mode != 'qp':
n_qp = 1
if term_mode == 'flux':
n_c = 1
return (n_fa, n_qp, n_c, 1), parameter.dtype
class IntegrateVolumeOperatorTerm(Term):
r"""
Volume integral of a test function weighted by a scalar function
:math:`c`.
:Definition:
.. math::
\int_\Omega q \mbox{ or } \int_\Omega c q
:Arguments:
- material : :math:`c` (optional)
- virtual : :math:`q`
"""
name = 'dw_volume_integrate'
arg_types = ('opt_material', 'virtual')
arg_shapes = [{'opt_material' : '1, 1', 'virtual' : (1, None)},
{'opt_material' : None}]
@staticmethod
def function(out, material, bf, geo):
bf_t = nm.tile(bf.transpose((0, 1, 3, 2)), (out.shape[0], 1, 1, 1))
bf_t = nm.ascontiguousarray(bf_t)
if material is not None:
status = geo.integrate(out, material * bf_t)
else:
status = geo.integrate(out, bf_t)
return status
def get_fargs(self, material, virtual,
mode=None, term_mode=None, diff_var=None, **kwargs):
| assert_(virtual.n_components == 1) | sfepy.base.base.assert_ |
import numpy as nm
from sfepy.base.base import assert_
from sfepy.linalg import dot_sequences
from sfepy.terms.terms import Term, terms
class ZeroTerm(Term):
r"""
A do-nothing term useful for introducing additional variables into the
equations.
:Definition:
.. math::
0
:Arguments:
- virtual : :math:`q` or :math:`\ul{v}`
- state : :math:`p` or :math:`\ul{u}`
"""
name = 'dw_zero'
arg_types = ('virtual', 'state')
arg_shapes = {'virtual' : ('N', None), 'state' : 'N'}
@staticmethod
def function(out):
out.fill(0.0)
return 0
def get_fargs(self, vvar, svar,
mode=None, term_mode=None, diff_var=None, **kwargs):
return ()
class IntegrateVolumeTerm(Term):
r"""
Evaluate (weighted) variable in a volume region.
Depending on evaluation mode, integrate a variable over a volume region
('eval'), average it in elements ('el_avg') or interpolate it into volume
quadrature points ('qp').
Supports 'eval', 'el_avg' and 'qp' evaluation modes.
:Definition:
.. math::
\int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\
\int_\Omega c y \mbox{ , } \int_\Omega c \ul{y}
.. math::
\mbox{vector for } K \from \Ical_h:
\int_{T_K} y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} \ul{y} / \int_{T_K} 1 \\
\mbox{vector for } K \from \Ical_h:
\int_{T_K} c y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} c \ul{y} / \int_{T_K} 1
.. math::
y|_{qp} \mbox{ , } \ul{y}|_{qp} \\
c y|_{qp} \mbox{ , } c \ul{y}|_{qp}
:Arguments:
- material : :math:`c` (optional)
- parameter : :math:`y` or :math:`\ul{y}`
"""
name = 'ev_volume_integrate'
arg_types = ('opt_material', 'parameter')
arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'},
{'opt_material' : None}]
@staticmethod
def function(out, val_qp, vg, fmode):
if fmode == 2:
out[:] = val_qp
status = 0
else:
status = vg.integrate(out, val_qp, fmode)
return status
def get_fargs(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
vg, _ = self.get_mapping(parameter)
val_qp = self.get(parameter, 'val')
if material is not None:
val_qp *= material
fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1)
return val_qp, vg, fmode
def get_eval_shape(self, material, parameter,
mode=None, term_mode=None, diff_var=None, **kwargs):
n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter)
if mode != 'qp':
n_qp = 1
return (n_el, n_qp, n_c, 1), parameter.dtype
class IntegrateSurfaceTerm(Term):
r"""
Evaluate (weighted) variable in a surface region.
Depending on evaluation mode, integrate a variable over a surface region
('eval'), average it in element faces ('el_avg') or interpolate it into
surface quadrature points ('qp'). For vector variables, setting `term_mode`
to `'flux'` leads to computing corresponding fluxes for the three modes
instead.
Supports 'eval', 'el_avg' and 'qp' evaluation modes.
:Definition:
.. math::
\int_\Gamma y \mbox{ , } \int_\Gamma \ul{y}
\mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\
\int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y}
\mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux }
.. math::
\mbox{vector for } K \from \Ical_h:
\int_{T_K} y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , }
\int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\
\mbox{vector for } K \from \Ical_h:
\int_{T_K} c y / \int_{T_K} 1 \mbox{ , }
\int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , }
\int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1
.. math::
y|_{qp} \mbox{ , } \ul{y}|_{qp}
\mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\
c y|_{qp} \mbox{ , } c \ul{y}|_{qp}
\mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux }
:Arguments:
- material : :math:`c` (optional)
- parameter : :math:`y` or :math:`\ul{y}`
"""
name = 'ev_surface_integrate'
arg_types = ('opt_material', 'parameter')
arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'},
{'opt_material' : None}]
integration = 'surface'
@staticmethod
def function(out, val_qp, sg, fmode):
if fmode == 2:
out[:] = val_qp
status = 0
elif fmode == 5:
normal = sg.normal
out[:] = | dot_sequences(val_qp, normal) | sfepy.linalg.dot_sequences |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = | Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh') | sfepy.discrete.fem.Mesh.from_file |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = | FEDomain('domain', mesh) | sfepy.discrete.fem.FEDomain |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = | Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) | sfepy.discrete.fem.Field.from_args |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = | FieldVariable('u', 'unknown', fu) | sfepy.discrete.FieldVariable |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = | Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2) | sfepy.discrete.fem.Field.from_args |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = | FieldVariable('p', 'unknown', fp) | sfepy.discrete.FieldVariable |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = | Function('match_y_line', match_y_line) | sfepy.discrete.Function |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = | Functions([match_y_line]) | sfepy.discrete.Functions |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = | Conditions([pbc]) | sfepy.discrete.conditions.Conditions |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = | match_y_line(coors0, coors1) | sfepy.discrete.fem.periodic.match_y_line |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = | expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs) | sfepy.discrete.common.dof_info.expand_nodes_to_equations |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = | expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs) | sfepy.discrete.common.dof_info.expand_nodes_to_equations |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = | Integral('i', order=1) | sfepy.discrete.Integral |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = | FieldVariable('v', 'test', u.field, primary_var_name='u') | sfepy.discrete.FieldVariable |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = | FieldVariable('q', 'test', p.field, primary_var_name='p') | sfepy.discrete.FieldVariable |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = FieldVariable('q', 'test', p.field, primary_var_name='p')
regions = self.problem.domain.regions
omega = regions['Omega']
# Problem.save_ebc() requires to have equations defined.
t1 = Term.new('dw_lin_elastic(v, u)',
integral, omega, v=v, u=u)
t2 = | Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p) | sfepy.terms.Term.new |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = FieldVariable('q', 'test', p.field, primary_var_name='p')
regions = self.problem.domain.regions
omega = regions['Omega']
# Problem.save_ebc() requires to have equations defined.
t1 = Term.new('dw_lin_elastic(v, u)',
integral, omega, v=v, u=u)
t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
eq = | Equation('aux', t1 + t2) | sfepy.discrete.Equation |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = FieldVariable('q', 'test', p.field, primary_var_name='p')
regions = self.problem.domain.regions
omega = regions['Omega']
# Problem.save_ebc() requires to have equations defined.
t1 = Term.new('dw_lin_elastic(v, u)',
integral, omega, v=v, u=u)
t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
eq = Equation('aux', t1 + t2)
eqs = | Equations([eq]) | sfepy.discrete.Equations |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = FieldVariable('q', 'test', p.field, primary_var_name='p')
regions = self.problem.domain.regions
omega = regions['Omega']
# Problem.save_ebc() requires to have equations defined.
t1 = Term.new('dw_lin_elastic(v, u)',
integral, omega, v=v, u=u)
t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
eq = Equation('aux', t1 + t2)
eqs = Equations([eq])
pb = | Problem('test', equations=eqs, auto_solvers=False) | sfepy.discrete.Problem |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs)
off = variables.di.indx[var_name].start
n_nod = len(nods)
for cdof, dof_name in enumerate(cond.dofs[0]):
idof = var.dofs.index(dof_name)
eqs = eq[n_nod * cdof : n_nod * (cdof + 1)]
_ok = nm.allclose(vec[off + eqs], idof,
atol=1e-14, rtol=0.0)
if not _ok:
self.report(' %s: failed! (all of %s == %f)'
% (dof_name, vec[off + eqs], idof))
ok = ok and _ok
return ok
class Test(TestCommon):
@staticmethod
def from_conf(conf, options):
from sfepy.discrete import FieldVariable, Variables, Problem
from sfepy.discrete.fem import Mesh, FEDomain, Field
mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh')
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
domain.create_region('Left',
'vertices in (x < -0.499)',
'facet')
domain.create_region('LeftStrip',
'vertices in (x < -0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('LeftFix',
'r.Left -v r.LeftStrip',
'facet')
domain.create_region('Right',
'vertices in (x > 0.499)',
'facet')
domain.create_region('RightStrip',
'vertices in (x > 0.499)'
' & (y > -0.199) & (y < 0.199)',
'facet')
domain.create_region('RightFix',
'r.Right -v r.RightStrip',
'facet')
fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)
u = FieldVariable('u', 'unknown', fu)
fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2)
p = FieldVariable('p', 'unknown', fp)
pb = Problem('test', domain=domain, fields=[fu, fp],
auto_conf=False, auto_solvers=False)
test = Test(problem=pb, variables=Variables([u, p]),
conf=conf, options=options)
return test
def test_ics(self):
from sfepy.discrete.conditions import Conditions, InitialCondition
variables = self.variables
omega = self.problem.domain.regions['Omega']
all_ics = []
all_ics.append(InitialCondition('ic0', omega,
{'p.all' : 0.0}))
all_ics.append(InitialCondition('ic1', omega,
{'u.1' : 1.0}))
all_ics.append(InitialCondition('ic2', omega,
{'u.all' : nm.array([0.0, 1.0])}))
all_ics.append(InitialCondition('ic3', omega,
{'p.0' : 0.0,
'u.0' : 0.0, 'u.1' : 1.0}))
ok = True
for ii, ics in enumerate(all_ics):
if not isinstance(ics, list): ics = [ics]
ics = Conditions(ics)
variables.setup_initial_conditions(ics, functions=None)
vec = init_vec(variables)
variables.apply_ic(vec)
ok = check_vec(self, vec, ii, ok, ics, variables)
return ok
def test_ebcs(self):
from sfepy.discrete.conditions import Conditions, EssentialBC
variables = self.variables
regions = self.problem.domain.regions
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
all_ebcs.append([EssentialBC('fix_p3', regions['Right'],
{'p.0' : 0.0}),
EssentialBC('fix_u3', regions['Left'],
{'u.0' : 0.0, 'u.1' : 1.0})])
ok = True
for ii, bcs in enumerate(all_ebcs):
if not isinstance(bcs, list): bcs = [bcs]
ebcs = Conditions(bcs)
variables.equation_mapping(ebcs=ebcs, epbcs=None,
ts=None, functions=None)
vec = init_vec(variables)
variables.apply_ebc(vec)
ok = check_vec(self, vec, ii, ok, ebcs, variables)
return ok
def test_epbcs(self):
from sfepy.discrete import Function, Functions
from sfepy.discrete.conditions import Conditions, PeriodicBC
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
from sfepy.discrete.fem.periodic import match_y_line
variables = self.variables
regions = self.problem.domain.regions
match_y_line = Function('match_y_line', match_y_line)
pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']],
{'u.[1,0]' : 'u.[0,1]'}, match='match_y_line')
functions = Functions([match_y_line])
epbcs = Conditions([pbc])
variables.equation_mapping(ebcs=None, epbcs=epbcs,
ts=None, functions=functions)
vec = init_vec(variables)
variables.apply_ebc(vec)
var = variables['u']
var_bcs = epbcs.group_by_variables()['u']
bc = var_bcs['pbc']
bc.canonize_dof_names(var.dofs)
nods0 = var.field.get_dofs_in_region(bc.regions[0])
nods1 = var.field.get_dofs_in_region(bc.regions[1])
coors0 = var.field.get_coor(nods0)
coors1 = var.field.get_coor(nods1)
i0, i1 = match_y_line(coors0, coors1)
eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs)
eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs)
ok = True
_ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0
if not _ok:
self.report('master equations mismatch! (set(%s) == set(%s))'
% (eq0, var.eq_map.master))
ok = ok and _ok
_ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0
if not _ok:
self.report('slave equations mismatch! (set(%s) == set(%s))'
% (eq1, var.eq_map.slave))
ok = ok and _ok
off = variables.di.indx['u'].start
_ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)
if not _ok:
self.report('periodicity test failed! (%s == %s)'
% (vec[off + eq0], vec[off + eq0]))
ok = ok and _ok
return ok
def test_save_ebc(self):
from sfepy.discrete import (FieldVariable, Integral,
Equation, Equations, Problem)
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.terms import Term
name = op.join(self.options.out_dir,
op.splitext(op.basename(__file__))[0])
integral = Integral('i', order=1)
u = self.variables['u']
v = FieldVariable('v', 'test', u.field, primary_var_name='u')
p = self.variables['p']
q = FieldVariable('q', 'test', p.field, primary_var_name='p')
regions = self.problem.domain.regions
omega = regions['Omega']
# Problem.save_ebc() requires to have equations defined.
t1 = Term.new('dw_lin_elastic(v, u)',
integral, omega, v=v, u=u)
t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
eq = Equation('aux', t1 + t2)
eqs = Equations([eq])
pb = Problem('test', equations=eqs, auto_solvers=False)
all_ebcs = []
all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'],
{'u.all' : nm.array([0.0, 1.0])}))
all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
{'u.0' : 0.0, 'u.1' : 1.0}))
all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'],
{'p.all' : 0.0}))
all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
{'p.0' : 0.0}))
ebcs = | Conditions(all_ebcs) | sfepy.discrete.conditions.Conditions |
from __future__ import absolute_import
import os.path as op
import numpy as nm
from sfepy import data_dir
from sfepy.base.testing import TestCommon
import six
def init_vec(variables):
return nm.random.rand(variables.di.ptr[-1])
def check_vec(self, vec, ii, ok, conds, variables):
from sfepy.discrete.common.dof_info import expand_nodes_to_equations
for var_name, var_conds in six.iteritems(conds.group_by_variables()):
var = variables[var_name]
for cond in var_conds:
cond.canonize_dof_names(var.dofs)
self.report('%d: %s %s: %s %s'
% (ii, var.name,
cond.name, cond.region.name, cond.dofs[0]))
nods = var.field.get_dofs_in_region(cond.region)
eq = | expand_nodes_to_equations(nods, cond.dofs[0], var.dofs) | sfepy.discrete.common.dof_info.expand_nodes_to_equations |