Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Andrianos's picture
Minor Rewording
6c9cd48 verified
|
raw
history blame
1.65 kB
---
dataset_info:
features:
- name: sts-id
dtype: string
- name: sts-score
dtype: float64
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: paraphrase
dtype: int64
- name: Human Annotation - P1
dtype: int64
- name: Human Annotation - P2
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: test
num_bytes: 58088
num_examples: 338
download_size: 37035
dataset_size: 58088
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- en
pretty_name: STS-H
---
# STS-Hard Test Set
The STS-Hard dataset is a paraphrase detection test set derived from the STSBenchmark dataset. It was introduced as part of the **PARAPHRASUS: A Comprehensive Benchmark for Evaluating Paraphrase Detection Models**. The test set includes the paraphrase label as well as individual annotation labels from two annotators:
- **P1**: The semanticist.
- **P2**: A student annotator.
For more details, refer to the [original paper](https://arxiv.org/abs/2409.12060) that was presented at COLING 2025.
---
### Citation
If you use this dataset, please cite it using the following BibTeX entry:
```bibtex
@misc{michail2024paraphrasuscomprehensivebenchmark,
title={PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models},
author={Andrianos Michail and Simon Clematide and Juri Opitz},
year={2024},
eprint={2409.12060},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.12060},
}