Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Andrianos's picture
Minor Rewording
6c9cd48 verified
|
raw
history blame
1.65 kB
metadata
dataset_info:
  features:
    - name: sts-id
      dtype: string
    - name: sts-score
      dtype: float64
    - name: sentence1
      dtype: string
    - name: sentence2
      dtype: string
    - name: paraphrase
      dtype: int64
    - name: Human Annotation - P1
      dtype: int64
    - name: Human Annotation - P2
      dtype: int64
    - name: __index_level_0__
      dtype: int64
  splits:
    - name: test
      num_bytes: 58088
      num_examples: 338
  download_size: 37035
  dataset_size: 58088
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
license: apache-2.0
task_categories:
  - text-classification
language:
  - en
pretty_name: STS-H

STS-Hard Test Set

The STS-Hard dataset is a paraphrase detection test set derived from the STSBenchmark dataset. It was introduced as part of the PARAPHRASUS: A Comprehensive Benchmark for Evaluating Paraphrase Detection Models. The test set includes the paraphrase label as well as individual annotation labels from two annotators:

  • P1: The semanticist.
  • P2: A student annotator.

For more details, refer to the original paper that was presented at COLING 2025.


Citation

If you use this dataset, please cite it using the following BibTeX entry:

@misc{michail2024paraphrasuscomprehensivebenchmark,
      title={PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models}, 
      author={Andrianos Michail and Simon Clematide and Juri Opitz},
      year={2024},
      eprint={2409.12060},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.12060}, 
}