metadata
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: models
sequence: string
- name: images
list:
- name: path
dtype: string
splits:
- name: train
num_bytes: 615
num_examples: 2
download_size: 3357
dataset_size: 615
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
Dataset Card for img-prefs-distilabel-artifacts-sample
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml
which can be used to reproduce the pipeline that generated it in distilabel using the distilabel
CLI:
distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
or explore the configuration:
distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
Dataset structure
The examples have the following structure per configuration:
Configuration: default
{
"images": [
{
"path": "artifacts/flux_schnell/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
},
{
"path": "artifacts/flux_dev/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
}
],
"models": [
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-dev"
],
"prompt": "intelligence"
}
This subset can be loaded as:
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")
Or simply as it follows, since there's only one configuration and is named default
:
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")
Artifacts
Step:
flux_dev
Artifact name:
images
type
: imagelibrary
: diffusers
Step:
flux_schnell
Artifact name:
images
type
: imagelibrary
: diffusers