File size: 2,550 Bytes
62acbf7
925ceb1
62acbf7
 
 
 
 
 
 
 
 
 
 
 
5d7d834
 
 
 
62acbf7
 
 
 
 
925ceb1
 
 
 
62acbf7
925ceb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dff752
925ceb1
38012ca
0dff752
38012ca
925ceb1
 
0dff752
 
925ceb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dff752
38012ca
 
 
 
 
 
 
 
 
0dff752
925ceb1
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
size_categories: n<1K
dataset_info:
  features:
  - name: prompt
    dtype: string
  - name: models
    sequence: string
  - name: images
    list:
    - name: path
      dtype: string
  splits:
  - name: train
    num_bytes: 615
    num_examples: 2
  download_size: 3357
  dataset_size: 615
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
---

<p align="left">
  <a href="https://github.com/argilla-io/distilabel">
    <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
  </a>
</p>

# Dataset Card for img-prefs-distilabel-artifacts-sample

This dataset has been created with [distilabel](https://distilabel.argilla.io/).



## Dataset Summary

This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:

```console
distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```

or explore the configuration:

```console
distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```

## Dataset structure

The examples have the following structure per configuration:


<details><summary> Configuration: default </summary><hr>

```json
{
    "images": [
        {
            "path": "artifacts/flux_schnell/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        },
        {
            "path": "artifacts/flux_dev/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        }
    ],
    "models": [
        "black-forest-labs/FLUX.1-schnell",
        "black-forest-labs/FLUX.1-dev"
    ],
    "prompt": "intelligence"
}
```

This subset can be loaded as:

```python
from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")
```

Or simply as it follows, since there's only one configuration and is named `default`: 

```python
from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")
```


</details>



## Artifacts


* **Step**: `flux_dev`
  
    * **Artifact name**: `images`
      
        * `type`: image
      
        * `library`: diffusers
      
  

* **Step**: `flux_schnell`
  
    * **Artifact name**: `images`
      
        * `type`: image
      
        * `library`: diffusers