File size: 2,550 Bytes
62acbf7 925ceb1 62acbf7 5d7d834 62acbf7 925ceb1 62acbf7 925ceb1 0dff752 925ceb1 38012ca 0dff752 38012ca 925ceb1 0dff752 925ceb1 0dff752 38012ca 0dff752 925ceb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
size_categories: n<1K
dataset_info:
features:
- name: prompt
dtype: string
- name: models
sequence: string
- name: images
list:
- name: path
dtype: string
splits:
- name: train
num_bytes: 615
num_examples: 2
download_size: 3357
dataset_size: 615
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for img-prefs-distilabel-artifacts-sample
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"images": [
{
"path": "artifacts/flux_schnell/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
},
{
"path": "artifacts/flux_dev/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
}
],
"models": [
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-dev"
],
"prompt": "intelligence"
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")
```
</details>
## Artifacts
* **Step**: `flux_dev`
* **Artifact name**: `images`
* `type`: image
* `library`: diffusers
* **Step**: `flux_schnell`
* **Artifact name**: `images`
* `type`: image
* `library`: diffusers
|