prompt
stringclasses
2 values
models
sequencelengths
2
2
images
listlengths
2
2
intelligence
[ "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev" ]
[ { "path": "artifacts/flux_schnell/images/90b884933d23c4d57ca01dbe2898d405.jpeg" }, { "path": "artifacts/flux_dev/images/90b884933d23c4d57ca01dbe2898d405.jpeg" } ]
A raccoon wearing formal clothes, wearing a tophat and holding a cane. The raccoon is holding a garbage bag. Oil painting in the style of traditional Chinese painting.
[ "black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev" ]
[ { "path": "artifacts/flux_schnell/images/956906200aa3cc4be48a395dd798a595.jpeg" }, { "path": "artifacts/flux_dev/images/956906200aa3cc4be48a395dd798a595.jpeg" } ]

Built with Distilabel

Dataset Card for img-prefs-distilabel-artifacts-sample

This dataset has been created with distilabel.

Dataset Summary

This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI:

distilabel pipeline run --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"

or explore the configuration:

distilabel pipeline info --config "https://huggingface.co/datasets/dvilasuero/img-prefs-distilabel-artifacts-sample/raw/main/pipeline.yaml"

Dataset structure

The examples have the following structure per configuration:

Configuration: default
{
    "images": [
        {
            "path": "artifacts/flux_schnell/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        },
        {
            "path": "artifacts/flux_dev/images/90b884933d23c4d57ca01dbe2898d405.jpeg"
        }
    ],
    "models": [
        "black-forest-labs/FLUX.1-schnell",
        "black-forest-labs/FLUX.1-dev"
    ],
    "prompt": "intelligence"
}

This subset can be loaded as:

from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample", "default")

Or simply as it follows, since there's only one configuration and is named default:

from datasets import load_dataset

ds = load_dataset("dvilasuero/img-prefs-distilabel-artifacts-sample")

Artifacts

  • Step: flux_dev

    • Artifact name: images

      • type: image

      • library: diffusers

  • Step: flux_schnell

    • Artifact name: images

      • type: image

      • library: diffusers

Downloads last month
52