text
stringlengths 14
7.51M
| subset
stringclasses 3
values | source
stringclasses 2
values |
---|---|---|
Given the equation $-4 x^2+3 x-5 y^2+8 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+8 y-4 x^2+3 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-5 y^2+8 y-4 x^2+3 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+3 x+\underline{\text{ }}\right)+\left(-5 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+3 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-5 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2+8 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right): \\
-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-7-\frac{9}{16}=-\frac{121}{16}: \\
-4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{121}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{121}{16}-\frac{16}{5}=-\frac{861}{80}: \\
-4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\fbox{$-\frac{861}{80}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\
-4 \fbox{$\left(x-\frac{3}{8}\right)^2$}-5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=-\frac{861}{80} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{8 y}{5}+\frac{16}{25}=\left(y-\frac{4}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{3}{8}\right)^2-5 \fbox{$\left(y-\frac{4}{5}\right)^2$}=-\frac{861}{80} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+8 x+2 y^2+y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+y+10 x^2+8 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
2 y^2+y+10 x^2+8 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(10 x^2+8 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+y+\underline{\text{ }}\right)=2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{8}{5}-2=-\frac{2}{5}: \\
10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)+2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{2}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{2}{16}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{8}-\frac{2}{5}=-\frac{11}{40}: \\
10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)+2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{11}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{4 x}{5}+\frac{4}{25}=\left(x+\frac{2}{5}\right)^2: \\
\text{10 }\fbox{$\left(x+\frac{2}{5}\right)^2$}+2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{11}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x+\frac{2}{5}\right)^2+2 \fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{11}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+8 x-3 y^2+5 y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2+5 y+10 x^2+8 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2+8 x+\underline{\text{ }}\right)+\left(-3 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(10 x^2+8 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-3 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 y^2+5 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{5 y}{3}+\underline{\text{ }}\right): \\
10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{5 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-3\times \frac{25}{36}=-\frac{25}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{8}{5}-\frac{25}{12}=-\frac{29}{60}: \\
10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-\frac{5 y}{3}+\frac{25}{36}\right)=\fbox{$-\frac{29}{60}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{4 x}{5}+\frac{4}{25}=\left(x+\frac{2}{5}\right)^2: \\
\text{10 }\fbox{$\left(x+\frac{2}{5}\right)^2$}-3 \left(y^2-\frac{5 y}{3}+\frac{25}{36}\right)=-\frac{29}{60} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-\frac{5 y}{3}+\frac{25}{36}=\left(y-\frac{5}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x+\frac{2}{5}\right)^2-3 \fbox{$\left(y-\frac{5}{6}\right)^2$}=-\frac{29}{60} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2-8 x+9 y^2+2 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+2 y-9 x^2-8 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
9 y^2+2 y-9 x^2-8 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2-8 x+\underline{\text{ }}\right)+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2-8 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)$}+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+2 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\
-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-9-\frac{16}{9}=-\frac{97}{9}: \\
-9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)+9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{97}{9}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{9}-\frac{97}{9}=-\frac{32}{3}: \\
-9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$-\frac{32}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{9}+\frac{16}{81}=\left(x+\frac{4}{9}\right)^2: \\
-9 \fbox{$\left(x+\frac{4}{9}\right)^2$}+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=-\frac{32}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x+\frac{4}{9}\right)^2+9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=-\frac{32}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2-10 x+9 y^2+2 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+2 y-7 x^2-10 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
9 y^2+2 y-7 x^2-10 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2-10 x+\underline{\text{ }}\right)+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2-10 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)$}+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+2 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\
-7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{10}{7}}{2}\right)^2=\frac{25}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{49}=-\frac{25}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4-\frac{25}{7}=\frac{3}{7}: \\
-7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)+9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{3}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{3}{7}+\frac{1}{9}=\frac{34}{63}: \\
-7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{34}{63}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{10 x}{7}+\frac{25}{49}=\left(x+\frac{5}{7}\right)^2: \\
-7 \fbox{$\left(x+\frac{5}{7}\right)^2$}+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{34}{63} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x+\frac{5}{7}\right)^2+9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{34}{63} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-3 x-10 y^2+7 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2+7 y+6 x^2-3 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
-10 y^2+7 y+6 x^2-3 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-3 x+\underline{\text{ }}\right)+\left(-10 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-3 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-10 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2+7 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{6}{16}=\frac{3}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{3}{8}-1=-\frac{5}{8}: \\
6 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{5}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{49}{400}=-\frac{49}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{5}{8}-\frac{49}{40}=-\frac{37}{20}: \\
6 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=\fbox{$-\frac{37}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{4}\right)^2$}-10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=-\frac{37}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{7 y}{10}+\frac{49}{400}=\left(y-\frac{7}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{4}\right)^2-\text{10 }\fbox{$\left(y-\frac{7}{20}\right)^2$}=-\frac{37}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2-6 x+2 y^2+5 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+5 y-9 x^2-6 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
2 y^2+5 y-9 x^2-6 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2-6 x+\underline{\text{ }}\right)+\left(2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2-6 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+5 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right): \\
-9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-9}{9}=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-8-1=-9: \\
-9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+2 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$-9$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{8}-9=-\frac{47}{8}: \\
-9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+2 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{47}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\
-9 \fbox{$\left(x+\frac{1}{3}\right)^2$}+2 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{47}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{2}+\frac{25}{16}=\left(y+\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x+\frac{1}{3}\right)^2+2 \fbox{$\left(y+\frac{5}{4}\right)^2$}=-\frac{47}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2+8 x+2 y^2+8 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+8 y-2 x^2+8 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
2 y^2+8 y-2 x^2+8 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2+8 x+\underline{\text{ }}\right)=-2 \left(x^2-4 x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2-4 x+\underline{\text{ }}\right)$}+\left(2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+8 y+\underline{\text{ }}\right)=2 \left(y^2+4 y+\underline{\text{ }}\right): \\
-2 \left(x^2-4 x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-2\times 4=-8 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-8=-12: \\
-2 \left(x^2-4 x+4\right)+2 \left(y^2+4 y+\underline{\text{ }}\right)=\fbox{$-12$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }2\times 4=8 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
8-12=-4: \\
-2 \left(x^2-4 x+4\right)+2 \left(y^2+4 y+4\right)=\fbox{$-4$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-4 x+4=(x-2)^2: \\
-2 \fbox{$(x-2)^2$}+2 \left(y^2+4 y+4\right)=-4 \\
\end{array}
Step 11:
\begin{array}{l}
y^2+4 y+4=(y+2)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 (x-2)^2+2 \fbox{$(y+2)^2$}=-4 \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2-6 x-3 y^2-7 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2-7 y-3 x^2-6 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
-3 y^2-7 y-3 x^2-6 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-3 x^2-6 x+\underline{\text{ }}\right)+\left(-3 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 x^2-6 x+\underline{\text{ }}\right)=-3 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$-3 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(-3 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2-7 y+\underline{\text{ }}\right)=-3 \left(y^2+\frac{7 y}{3}+\underline{\text{ }}\right): \\
-3 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+\frac{7 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-3=-7: \\
-3 \left(x^2+2 x+1\right)-3 \left(y^2+\frac{7 y}{3}+\underline{\text{ }}\right)=\fbox{$-7$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{3}}{2}\right)^2=\frac{49}{36} \text{on }\text{the }\text{left }\text{and }-3\times \frac{49}{36}=-\frac{49}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-7-\frac{49}{12}=-\frac{133}{12}: \\
-3 \left(x^2+2 x+1\right)-3 \left(y^2+\frac{7 y}{3}+\frac{49}{36}\right)=\fbox{$-\frac{133}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
-3 \fbox{$(x+1)^2$}-3 \left(y^2+\frac{7 y}{3}+\frac{49}{36}\right)=-\frac{133}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{3}+\frac{49}{36}=\left(y+\frac{7}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -3 (x+1)^2-3 \fbox{$\left(y+\frac{7}{6}\right)^2$}=-\frac{133}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2+2 x+9 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 x^2+2 x+(9 y-7)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 y-7 \text{from }\text{both }\text{sides}: \\
7 x^2+2 x=7-9 y \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(7 x^2+2 x+\underline{\text{ }}\right)=(7-9 y)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+2 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{2 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+\frac{2 x}{7}+\underline{\text{ }}\right)$}=(7-9 y)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{7}{49}=\frac{1}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(7-9 y)+\frac{1}{7}=\frac{50}{7}-9 y: \\
7 \left(x^2+\frac{2 x}{7}+\frac{1}{49}\right)=\fbox{$\frac{50}{7}-9 y$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2+\frac{2 x}{7}+\frac{1}{49}=\left(x+\frac{1}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \fbox{$\left(x+\frac{1}{7}\right)^2$}=\frac{50}{7}-9 y \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+6 x+7 y^2+5 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+5 y+9 x^2+6 x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
7 y^2+5 y+9 x^2+6 x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+6 x+\underline{\text{ }}\right)+\left(7 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+6 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(7 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2+5 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right): \\
9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{9}{9}=1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-5=-4: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right)=\fbox{$-4$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{28}-4=-\frac{87}{28}: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+7 \left(y^2+\frac{5 y}{7}+\frac{25}{196}\right)=\fbox{$-\frac{87}{28}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\
9 \fbox{$\left(x+\frac{1}{3}\right)^2$}+7 \left(y^2+\frac{5 y}{7}+\frac{25}{196}\right)=-\frac{87}{28} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{7}+\frac{25}{196}=\left(y+\frac{5}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{1}{3}\right)^2+7 \fbox{$\left(y+\frac{5}{14}\right)^2$}=-\frac{87}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+4 x-y^2+7 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+7 y-10 x^2+4 x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-y^2+7 y-10 x^2+4 x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+4 x+\underline{\text{ }}\right)+\left(-y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+4 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(-y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2+7 y+\underline{\text{ }}\right)=-\left(y^2-7 y+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-7 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-10-\frac{2}{5}=-\frac{52}{5}: \\
-10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)-\left(y^2-7 y+\underline{\text{ }}\right)=\fbox{$-\frac{52}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{on }\text{the }\text{left }\text{and }-\frac{49}{4}=-\frac{49}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{52}{5}-\frac{49}{4}=-\frac{453}{20}: \\
-10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)-\left(y^2-7 y+\frac{49}{4}\right)=\fbox{$-\frac{453}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{2 x}{5}+\frac{1}{25}=\left(x-\frac{1}{5}\right)^2: \\
-10 \fbox{$\left(x-\frac{1}{5}\right)^2$}-\left(y^2-7 y+\frac{49}{4}\right)=-\frac{453}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-7 y+\frac{49}{4}=\left(y-\frac{7}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{1}{5}\right)^2-\fbox{$\left(y-\frac{7}{2}\right)^2$}=-\frac{453}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2-7 x-7 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 x^2-7 x+(4-7 y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-7 y-6 x^2-7 x+4 \text{from }\text{both }\text{sides}: \\
6 x^2+7 x+(7 y-4)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Subtract }7 y-4 \text{from }\text{both }\text{sides}: \\
6 x^2+7 x=4-7 y \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(6 x^2+7 x+\underline{\text{ }}\right)=(4-7 y)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 x^2+7 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{7 x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{7 x}{6}+\underline{\text{ }}\right)$}=(4-7 y)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{6}}{2}\right)^2=\frac{49}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{49}{144}=\frac{49}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(4-7 y)+\frac{49}{24}=\frac{145}{24}-7 y: \\
6 \left(x^2+\frac{7 x}{6}+\frac{49}{144}\right)=\fbox{$\frac{145}{24}-7 y$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{7 x}{6}+\frac{49}{144}=\left(x+\frac{7}{12}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \fbox{$\left(x+\frac{7}{12}\right)^2$}=\frac{145}{24}-7 y \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2-2 x-8 y^2+9 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2+9 y+10 x^2-2 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
-8 y^2+9 y+10 x^2-2 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2-2 x+\underline{\text{ }}\right)+\left(-8 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(10 x^2-2 x+\underline{\text{ }}\right)=10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)$}+\left(-8 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2+9 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{9 y}{8}+\underline{\text{ }}\right): \\
10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{9 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{10}{100}=\frac{1}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{1}{10}=\frac{41}{10}: \\
10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)-8 \left(y^2-\frac{9 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{41}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{41}{10}-\frac{81}{32}=\frac{251}{160}: \\
10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)-8 \left(y^2-\frac{9 y}{8}+\frac{81}{256}\right)=\fbox{$\frac{251}{160}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{5}+\frac{1}{100}=\left(x-\frac{1}{10}\right)^2: \\
\text{10 }\fbox{$\left(x-\frac{1}{10}\right)^2$}-8 \left(y^2-\frac{9 y}{8}+\frac{81}{256}\right)=\frac{251}{160} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{9 y}{8}+\frac{81}{256}=\left(y-\frac{9}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x-\frac{1}{10}\right)^2-8 \fbox{$\left(y-\frac{9}{16}\right)^2$}=\frac{251}{160} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+2 x+8 y^2+y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+y+8 x^2+2 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
8 y^2+y+8 x^2+2 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+2 x+\underline{\text{ }}\right)+\left(8 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+2 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+y+\underline{\text{ }}\right)=8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{8}{64}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{8}-9=-\frac{71}{8}: \\
8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)+8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{71}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{8}}{2}\right)^2=\frac{1}{256} \text{on }\text{the }\text{left }\text{and }\frac{8}{256}=\frac{1}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{32}-\frac{71}{8}=-\frac{283}{32}: \\
8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)+8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=\fbox{$-\frac{283}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\
8 \fbox{$\left(x+\frac{1}{8}\right)^2$}+8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=-\frac{283}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{8}+\frac{1}{256}=\left(y+\frac{1}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{1}{8}\right)^2+8 \fbox{$\left(y+\frac{1}{16}\right)^2$}=-\frac{283}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+6 x-9 y^2-9 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2-9 y-10 x^2+6 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-9 y^2-9 y-10 x^2+6 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+6 x+\underline{\text{ }}\right)+\left(-9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+6 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2-9 y+\underline{\text{ }}\right)=-9 \left(y^2+y+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{100}=-\frac{9}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8-\frac{9}{10}=\frac{71}{10}: \\
-10 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)-9 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{71}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{71}{10}-\frac{9}{4}=\frac{97}{20}: \\
-10 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)-9 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{97}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{5}+\frac{9}{100}=\left(x-\frac{3}{10}\right)^2: \\
-10 \fbox{$\left(x-\frac{3}{10}\right)^2$}-9 \left(y^2+y+\frac{1}{4}\right)=\frac{97}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{3}{10}\right)^2-9 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{97}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2+5 x+6 y^2+2 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2+2 y+6 x^2+5 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
6 y^2+2 y+6 x^2+5 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2+5 x+\underline{\text{ }}\right)+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2+5 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right)$}+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2+2 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\
6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{144}=\frac{25}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1+\frac{25}{24}=\frac{49}{24}: \\
6 \left(x^2+\frac{5 x}{6}+\frac{25}{144}\right)+6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{49}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{24}+\frac{1}{6}=\frac{53}{24}: \\
6 \left(x^2+\frac{5 x}{6}+\frac{25}{144}\right)+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{53}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{6}+\frac{25}{144}=\left(x+\frac{5}{12}\right)^2: \\
6 \fbox{$\left(x+\frac{5}{12}\right)^2$}+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\frac{53}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x+\frac{5}{12}\right)^2+6 \fbox{$\left(y+\frac{1}{6}\right)^2$}=\frac{53}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-3 x-4 y^2+10 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2+10 y+5 x^2-3 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
-4 y^2+10 y+5 x^2-3 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-3 x+\underline{\text{ }}\right)+\left(-4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-3 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2+10 y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right): \\
5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1+\frac{9}{20}=\frac{29}{20}: \\
5 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)-4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{29}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{25}{16}=-\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{29}{20}-\frac{25}{4}=-\frac{24}{5}: \\
5 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)-4 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{24}{5}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{5}+\frac{9}{100}=\left(x-\frac{3}{10}\right)^2: \\
5 \fbox{$\left(x-\frac{3}{10}\right)^2$}-4 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{24}{5} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{2}+\frac{25}{16}=\left(y-\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{3}{10}\right)^2-4 \fbox{$\left(y-\frac{5}{4}\right)^2$}=-\frac{24}{5} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+x+4 y^2+2 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+2 y-4 x^2+x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
4 y^2+2 y-4 x^2+x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+x+\underline{\text{ }}\right)+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)$}+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+2 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
-4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-4}{64}=-\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7-\frac{1}{16}=\frac{111}{16}: \\
-4 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)+4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{111}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{111}{16}+\frac{1}{4}=\frac{115}{16}: \\
-4 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{115}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{4}+\frac{1}{64}=\left(x-\frac{1}{8}\right)^2: \\
-4 \fbox{$\left(x-\frac{1}{8}\right)^2$}+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{115}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{1}{8}\right)^2+4 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{115}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2+3 x+6 y^2+2 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2+2 y+3 x^2+3 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
6 y^2+2 y+3 x^2+3 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2+3 x+\underline{\text{ }}\right)+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2+3 x+\underline{\text{ }}\right)=3 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2+x+\underline{\text{ }}\right)$}+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2+2 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\
3 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{3}{4}=\frac{3}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10+\frac{3}{4}=\frac{43}{4}: \\
3 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{43}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{43}{4}+\frac{1}{6}=\frac{131}{12}: \\
3 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{131}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
3 \fbox{$\left(x+\frac{1}{2}\right)^2$}+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\frac{131}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \left(x+\frac{1}{2}\right)^2+6 \fbox{$\left(y+\frac{1}{6}\right)^2$}=\frac{131}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2+x-y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 x^2+x+(2-y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-y-3 x^2+x+2 \text{from }\text{both }\text{sides}: \\
3 x^2-x+(y-2)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Subtract }y-2 \text{from }\text{both }\text{sides}: \\
3 x^2-x=2-y \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(3 x^2-x+\underline{\text{ }}\right)=(2-y)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(3 x^2-x+\underline{\text{ }}\right)=3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}=(2-y)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{3}{36}=\frac{1}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(2-y)+\frac{1}{12}=\frac{25}{12}-y: \\
3 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)=\fbox{$\frac{25}{12}-y$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \fbox{$\left(x-\frac{1}{6}\right)^2$}=\frac{25}{12}-y \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+5 x-7 y^2+2 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+2 y-6 x^2+5 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
-7 y^2+2 y-6 x^2+5 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-6 x^2+5 x+\underline{\text{ }}\right)+\left(-7 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-6 x^2+5 x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right): \\
\fbox{$-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)$}+\left(-7 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-7 y^2+2 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right): \\
-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{144}=-\frac{25}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-\frac{25}{24}=-\frac{121}{24}: \\
-6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)-7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{121}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{-7}{49}=-\frac{1}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{121}{24}-\frac{1}{7}=-\frac{871}{168}: \\
-6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)-7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=\fbox{$-\frac{871}{168}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{6}+\frac{25}{144}=\left(x-\frac{5}{12}\right)^2: \\
-6 \fbox{$\left(x-\frac{5}{12}\right)^2$}-7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=-\frac{871}{168} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{7}+\frac{1}{49}=\left(y-\frac{1}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -6 \left(x-\frac{5}{12}\right)^2-7 \fbox{$\left(y-\frac{1}{7}\right)^2$}=-\frac{871}{168} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2-5 x+9 y^2+6 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+6 y-8 x^2-5 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
9 y^2+6 y-8 x^2-5 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2-5 x+\underline{\text{ }}\right)+\left(9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2-5 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+6 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right): \\
-8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-3-\frac{25}{32}=-\frac{121}{32}: \\
-8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{121}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{9}{9}=1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
1-\frac{121}{32}=-\frac{89}{32}: \\
-8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$-\frac{89}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{8}+\frac{25}{256}=\left(x+\frac{5}{16}\right)^2: \\
-8 \fbox{$\left(x+\frac{5}{16}\right)^2$}+9 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=-\frac{89}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{3}+\frac{1}{9}=\left(y+\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x+\frac{5}{16}\right)^2+9 \fbox{$\left(y+\frac{1}{3}\right)^2$}=-\frac{89}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-x^2+3 x+3 y^2+9 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 y^2+9 y-x^2+3 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
3 y^2+9 y-x^2+3 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-x^2+3 x+\underline{\text{ }}\right)+\left(3 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-x^2+3 x+\underline{\text{ }}\right)=-\left(x^2-3 x+\underline{\text{ }}\right): \\
\fbox{$-\left(x^2-3 x+\underline{\text{ }}\right)$}+\left(3 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(3 y^2+9 y+\underline{\text{ }}\right)=3 \left(y^2+3 y+\underline{\text{ }}\right): \\
-\left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$3 \left(y^2+3 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-\frac{9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2-\frac{9}{4}=-\frac{1}{4}: \\
-\left(x^2-3 x+\frac{9}{4}\right)+3 \left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$-\frac{1}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }3\times \frac{9}{4}=\frac{27}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{27}{4}-\frac{1}{4}=\frac{13}{2}: \\
-\left(x^2-3 x+\frac{9}{4}\right)+3 \left(y^2+3 y+\frac{9}{4}\right)=\fbox{$\frac{13}{2}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\
-\fbox{$\left(x-\frac{3}{2}\right)^2$}+3 \left(y^2+3 y+\frac{9}{4}\right)=\frac{13}{2} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -\left(x-\frac{3}{2}\right)^2+3 \fbox{$\left(y+\frac{3}{2}\right)^2$}=\frac{13}{2} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+3 x+8 y^2-6 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2-6 y+5 x^2+3 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
8 y^2-6 y+5 x^2+3 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+3 x+\underline{\text{ }}\right)+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+3 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2-6 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\
5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{9}{20}-6=-\frac{111}{20}: \\
5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)+8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{111}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{8}-\frac{111}{20}=-\frac{177}{40}: \\
5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$-\frac{177}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\
5 \fbox{$\left(x+\frac{3}{10}\right)^2$}+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=-\frac{177}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{3}{10}\right)^2+8 \fbox{$\left(y-\frac{3}{8}\right)^2$}=-\frac{177}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-4 x-4 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 x^2-4 x+(5-4 y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5-4 y \text{from }\text{both }\text{sides}: \\
4 x^2-4 x=4 y-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2-4 x+\underline{\text{ }}\right)=(4 y-5)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-4 x+\underline{\text{ }}\right)=4 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-x+\underline{\text{ }}\right)$}=(4 y-5)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{4}{4}=1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(4 y-5)+1=4 y-4: \\
4 \left(x^2-x+\frac{1}{4}\right)=\fbox{$4 y-4$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x-\frac{1}{2}\right)^2$}=4 y-4 \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+6 x-9 y^2+3 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+3 y-4 x^2+6 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
-9 y^2+3 y-4 x^2+6 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+6 x+\underline{\text{ }}\right)+\left(-9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+6 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(-9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+3 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\
-4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2-\frac{9}{4}=-\frac{1}{4}: \\
-4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{1}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-9}{36}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}: \\
-4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)-9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$-\frac{1}{2}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{2}+\frac{9}{16}=\left(x-\frac{3}{4}\right)^2: \\
-4 \fbox{$\left(x-\frac{3}{4}\right)^2$}-9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=-\frac{1}{2} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{3}{4}\right)^2-9 \fbox{$\left(y-\frac{1}{6}\right)^2$}=-\frac{1}{2} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+7 x-9 y^2+2 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+2 y+8 x^2+7 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
-9 y^2+2 y+8 x^2+7 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+7 x+\underline{\text{ }}\right)+\left(-9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+7 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{7 x}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{7 x}{8}+\underline{\text{ }}\right)$}+\left(-9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+2 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{2 y}{9}+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{7 x}{8}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{49}{256}=\frac{49}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{49}{32}-2=-\frac{15}{32}: \\
8 \left(x^2+\frac{7 x}{8}+\frac{49}{256}\right)-9 \left(y^2-\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{15}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{-9}{81}=-\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{15}{32}-\frac{1}{9}=-\frac{167}{288}: \\
8 \left(x^2+\frac{7 x}{8}+\frac{49}{256}\right)-9 \left(y^2-\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$-\frac{167}{288}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{7 x}{8}+\frac{49}{256}=\left(x+\frac{7}{16}\right)^2: \\
8 \fbox{$\left(x+\frac{7}{16}\right)^2$}-9 \left(y^2-\frac{2 y}{9}+\frac{1}{81}\right)=-\frac{167}{288} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{9}+\frac{1}{81}=\left(y-\frac{1}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{7}{16}\right)^2-9 \fbox{$\left(y-\frac{1}{9}\right)^2$}=-\frac{167}{288} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-x-y^2+2 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+2 y-5 x^2-x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
-y^2+2 y-5 x^2-x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-x+\underline{\text{ }}\right)+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)$}+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2+2 y+\underline{\text{ }}\right)=-\left(y^2-2 y+\underline{\text{ }}\right): \\
-5 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-5}{100}=-\frac{1}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-3-\frac{1}{20}=-\frac{61}{20}: \\
-5 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-\left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-\frac{61}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-1=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{61}{20}-1=-\frac{81}{20}: \\
-5 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-\left(y^2-2 y+1\right)=\fbox{$-\frac{81}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{5}+\frac{1}{100}=\left(x+\frac{1}{10}\right)^2: \\
-5 \fbox{$\left(x+\frac{1}{10}\right)^2$}-\left(y^2-2 y+1\right)=-\frac{81}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x+\frac{1}{10}\right)^2-\fbox{$(y-1)^2$}=-\frac{81}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2+7 y^2+7 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+7 y+\left(-2 x^2-4\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
7 y^2+7 y-2 x^2=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(7 y^2+7 y+\underline{\text{ }}\right)-2 x^2=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 y^2+7 y+\underline{\text{ }}\right)=7 \left(y^2+y+\underline{\text{ }}\right): \\
\fbox{$7 \left(y^2+y+\underline{\text{ }}\right)$}-2 x^2=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
4+\frac{7}{4}=\frac{23}{4}: \\
7 \left(y^2+y+\frac{1}{4}\right)-2 x^2=\fbox{$\frac{23}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \fbox{$\left(y+\frac{1}{2}\right)^2$}-2 x^2=\frac{23}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2+8 x+2 y^2+3 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+3 y-9 x^2+8 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
2 y^2+3 y-9 x^2+8 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2+8 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{8 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2-\frac{8 x}{9}+\underline{\text{ }}\right)$}+\left(2 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+3 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\
-9 \left(x^2-\frac{8 x}{9}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2-\frac{16}{9}=\frac{2}{9}: \\
-9 \left(x^2-\frac{8 x}{9}+\frac{16}{81}\right)+2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{2}{9}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{2}{9}+\frac{9}{8}=\frac{97}{72}: \\
-9 \left(x^2-\frac{8 x}{9}+\frac{16}{81}\right)+2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{97}{72}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{8 x}{9}+\frac{16}{81}=\left(x-\frac{4}{9}\right)^2: \\
-9 \fbox{$\left(x-\frac{4}{9}\right)^2$}+2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\frac{97}{72} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x-\frac{4}{9}\right)^2+2 \fbox{$\left(y+\frac{3}{4}\right)^2$}=\frac{97}{72} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2-7 x+6 y^2-9 y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2-9 y-6 x^2-7 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-6 x^2-7 x+\underline{\text{ }}\right)+\left(6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(-6 x^2-7 x+\underline{\text{ }}\right)=-6 \left(x^2+\frac{7 x}{6}+\underline{\text{ }}\right): \\
\fbox{$-6 \left(x^2+\frac{7 x}{6}+\underline{\text{ }}\right)$}+\left(6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 y^2-9 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\
-6 \left(x^2+\frac{7 x}{6}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{6}}{2}\right)^2=\frac{49}{144} \text{on }\text{the }\text{left }\text{and }-6\times \frac{49}{144}=-\frac{49}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }6\times \frac{9}{16}=\frac{27}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{27}{8}-\frac{49}{24}=\frac{4}{3}: \\
-6 \left(x^2+\frac{7 x}{6}+\frac{49}{144}\right)+6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{4}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{7 x}{6}+\frac{49}{144}=\left(x+\frac{7}{12}\right)^2: \\
-6 \fbox{$\left(x+\frac{7}{12}\right)^2$}+6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\frac{4}{3} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -6 \left(x+\frac{7}{12}\right)^2+6 \fbox{$\left(y-\frac{3}{4}\right)^2$}=\frac{4}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2-6 x-6 y^2+8 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2+8 y+3 x^2-6 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
-6 y^2+8 y+3 x^2-6 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2-6 x+\underline{\text{ }}\right)+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2-6 x+\underline{\text{ }}\right)=3 \left(x^2-2 x+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2+8 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right): \\
3 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }3\times 1=3 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+3=7: \\
3 \left(x^2-2 x+1\right)-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$7$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
7-\frac{8}{3}=\frac{13}{3}: \\
3 \left(x^2-2 x+1\right)-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$\frac{13}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-2 x+1=(x-1)^2: \\
3 \fbox{$(x-1)^2$}-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\frac{13}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{4 y}{3}+\frac{4}{9}=\left(y-\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 (x-1)^2-6 \fbox{$\left(y-\frac{2}{3}\right)^2$}=\frac{13}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+10 x+3 y^2+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 x^2+10 x+\left(3 y^2+1\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
3 y^2+4 x^2+10 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2+10 x+\underline{\text{ }}\right)+3 y^2=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+10 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+3 y^2=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{25}{4}-1=\frac{21}{4}: \\
4 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+3 y^2=\fbox{$\frac{21}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x+\frac{5}{4}\right)^2$}+3 y^2=\frac{21}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+6 x-5 y^2-4 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2-4 y+8 x^2+6 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
-5 y^2-4 y+8 x^2+6 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+6 x+\underline{\text{ }}\right)+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+6 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2-4 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{9}{8}=\frac{41}{8}: \\
8 \left(x^2+\frac{3 x}{4}+\frac{9}{64}\right)-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{41}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{4}{25}=-\frac{4}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{41}{8}-\frac{4}{5}=\frac{173}{40}: \\
8 \left(x^2+\frac{3 x}{4}+\frac{9}{64}\right)-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{173}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{4}+\frac{9}{64}=\left(x+\frac{3}{8}\right)^2: \\
8 \fbox{$\left(x+\frac{3}{8}\right)^2$}-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{173}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{3}{8}\right)^2-5 \fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{173}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-4 x+y^2+5 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+5 y-10 x^2-4 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
y^2+5 y-10 x^2-4 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-4 x+\underline{\text{ }}\right)+\left(y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-4 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
4-\frac{2}{5}=\frac{18}{5}: \\
-10 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+5 y+\underline{\text{ }}\right)=\fbox{$\frac{18}{5}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{5}{2}\right)^2=\frac{25}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{18}{5}+\frac{25}{4}=\frac{197}{20}: \\
-10 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+5 y+\frac{25}{4}\right)=\fbox{$\frac{197}{20}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2+\frac{2 x}{5}+\frac{1}{25}=\left(x+\frac{1}{5}\right)^2: \\
-10 \fbox{$\left(x+\frac{1}{5}\right)^2$}+\left(y^2+5 y+\frac{25}{4}\right)=\frac{197}{20} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+5 y+\frac{25}{4}=\left(y+\frac{5}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{1}{5}\right)^2+\fbox{$\left(y+\frac{5}{2}\right)^2$}=\frac{197}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-10 x+8 y^2-6 y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2-6 y-5 x^2-10 x-6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
8 y^2-6 y-5 x^2-10 x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-10 x+\underline{\text{ }}\right)+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-10 x+\underline{\text{ }}\right)=-5 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2-6 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\
-5 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
6-5=1: \\
-5 \left(x^2+2 x+1\right)+8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$1$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
1+\frac{9}{8}=\frac{17}{8}: \\
-5 \left(x^2+2 x+1\right)+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{17}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
-5 \fbox{$(x+1)^2$}+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\frac{17}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 (x+1)^2+8 \fbox{$\left(y-\frac{3}{8}\right)^2$}=\frac{17}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+7 y^2+7 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+7 y+\left(9 x^2+7\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
7 y^2+7 y+9 x^2=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(7 y^2+7 y+\underline{\text{ }}\right)+9 x^2=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 y^2+7 y+\underline{\text{ }}\right)=7 \left(y^2+y+\underline{\text{ }}\right): \\
\fbox{$7 \left(y^2+y+\underline{\text{ }}\right)$}+9 x^2=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{7}{4}-7=-\frac{21}{4}: \\
7 \left(y^2+y+\frac{1}{4}\right)+9 x^2=\fbox{$-\frac{21}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \fbox{$\left(y+\frac{1}{2}\right)^2$}+9 x^2=-\frac{21}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+6 x-9 y^2-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 x^2+6 x+\left(-9 y^2-5\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-9 y^2+4 x^2+6 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2+6 x+\underline{\text{ }}\right)-9 y^2=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+6 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right)$}-9 y^2=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{16}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
5+\frac{9}{4}=\frac{29}{4}: \\
4 \left(x^2+\frac{3 x}{2}+\frac{9}{16}\right)-9 y^2=\fbox{$\frac{29}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2+\frac{3 x}{2}+\frac{9}{16}=\left(x+\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x+\frac{3}{4}\right)^2$}-9 y^2=\frac{29}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2+5 x+3 y^2-2 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 y^2-2 y+2 x^2+5 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
3 y^2-2 y+2 x^2+5 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2+5 x+\underline{\text{ }}\right)+\left(3 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2+5 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(3 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(3 y^2-2 y+\underline{\text{ }}\right)=3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\
2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8+\frac{25}{8}=\frac{89}{8}: \\
2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{89}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{3}{9}=\frac{1}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{89}{8}+\frac{1}{3}=\frac{275}{24}: \\
2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+3 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$\frac{275}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\
2 \fbox{$\left(x+\frac{5}{4}\right)^2$}+3 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\frac{275}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x+\frac{5}{4}\right)^2+3 \fbox{$\left(y-\frac{1}{3}\right)^2$}=\frac{275}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2+8 x+10 y^2-9 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2-9 y-2 x^2+8 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
10 y^2-9 y-2 x^2+8 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2+8 x+\underline{\text{ }}\right)+\left(10 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2+8 x+\underline{\text{ }}\right)=-2 \left(x^2-4 x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2-4 x+\underline{\text{ }}\right)$}+\left(10 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2-9 y+\underline{\text{ }}\right)=10 \left(y^2-\frac{9 y}{10}+\underline{\text{ }}\right): \\
-2 \left(x^2-4 x+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-\frac{9 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-2\times 4=-8 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10-8=2: \\
-2 \left(x^2-4 x+4\right)+10 \left(y^2-\frac{9 y}{10}+\underline{\text{ }}\right)=\fbox{$2$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{81}{400}=\frac{81}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
2+\frac{81}{40}=\frac{161}{40}: \\
-2 \left(x^2-4 x+4\right)+10 \left(y^2-\frac{9 y}{10}+\frac{81}{400}\right)=\fbox{$\frac{161}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-4 x+4=(x-2)^2: \\
-2 \fbox{$(x-2)^2$}+10 \left(y^2-\frac{9 y}{10}+\frac{81}{400}\right)=\frac{161}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{9 y}{10}+\frac{81}{400}=\left(y-\frac{9}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 (x-2)^2+\text{10 }\fbox{$\left(y-\frac{9}{20}\right)^2$}=\frac{161}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-x^2+x-7 y^2+3 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+3 y-x^2+x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-7 y^2+3 y-x^2+x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-x^2+x+\underline{\text{ }}\right)+\left(-7 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-x^2+x+\underline{\text{ }}\right)=-\left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-\left(x^2-x+\underline{\text{ }}\right)$}+\left(-7 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-7 y^2+3 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right): \\
-\left(x^2-x+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9-\frac{1}{4}=\frac{35}{4}: \\
-\left(x^2-x+\frac{1}{4}\right)-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{35}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{196}=-\frac{9}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{35}{4}-\frac{9}{28}=\frac{59}{7}: \\
-\left(x^2-x+\frac{1}{4}\right)-7 \left(y^2-\frac{3 y}{7}+\frac{9}{196}\right)=\fbox{$\frac{59}{7}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-\fbox{$\left(x-\frac{1}{2}\right)^2$}-7 \left(y^2-\frac{3 y}{7}+\frac{9}{196}\right)=\frac{59}{7} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{7}+\frac{9}{196}=\left(y-\frac{3}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -\left(x-\frac{1}{2}\right)^2-7 \fbox{$\left(y-\frac{3}{14}\right)^2$}=\frac{59}{7} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2-2 x-8 y^2-5 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-5 y-8 x^2-2 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
-8 y^2-5 y-8 x^2-2 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2-2 x+\underline{\text{ }}\right)+\left(-8 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2-2 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-8 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-5 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right): \\
-8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-8}{64}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-9-\frac{1}{8}=-\frac{73}{8}: \\
-8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{73}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{73}{8}-\frac{25}{32}=-\frac{317}{32}: \\
-8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=\fbox{$-\frac{317}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\
-8 \fbox{$\left(x+\frac{1}{8}\right)^2$}-8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=-\frac{317}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{8}+\frac{25}{256}=\left(y+\frac{5}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x+\frac{1}{8}\right)^2-8 \fbox{$\left(y+\frac{5}{16}\right)^2$}=-\frac{317}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-3 x-8 y^2+4 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2+4 y+7 x^2-3 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
-8 y^2+4 y+7 x^2-3 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2-3 x+\underline{\text{ }}\right)+\left(-8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-3 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)$}+\left(-8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2+4 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{196}=\frac{9}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1+\frac{9}{28}=\frac{37}{28}: \\
7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{37}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-8}{16}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{37}{28}-\frac{1}{2}=\frac{23}{28}: \\
7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-8 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{23}{28}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{7}+\frac{9}{196}=\left(x-\frac{3}{14}\right)^2: \\
7 \fbox{$\left(x-\frac{3}{14}\right)^2$}-8 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\frac{23}{28} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x-\frac{3}{14}\right)^2-8 \fbox{$\left(y-\frac{1}{4}\right)^2$}=\frac{23}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+9 x-10 y^2+5 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2+5 y+8 x^2+9 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-10 y^2+5 y+8 x^2+9 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+9 x+\underline{\text{ }}\right)+\left(-10 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+9 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right)$}+\left(-10 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2+5 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{81}{256}=\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{81}{32}=\frac{241}{32}: \\
8 \left(x^2+\frac{9 x}{8}+\frac{81}{256}\right)-10 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{241}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-10}{16}=-\frac{5}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{241}{32}-\frac{5}{8}=\frac{221}{32}: \\
8 \left(x^2+\frac{9 x}{8}+\frac{81}{256}\right)-10 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{221}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{8}+\frac{81}{256}=\left(x+\frac{9}{16}\right)^2: \\
8 \fbox{$\left(x+\frac{9}{16}\right)^2$}-10 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\frac{221}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{9}{16}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{4}\right)^2$}=\frac{221}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+6 x+8 y^2-2 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2-2 y-6 x^2+6 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
8 y^2-2 y-6 x^2+6 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-6 x^2+6 x+\underline{\text{ }}\right)+\left(8 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-6 x^2+6 x+\underline{\text{ }}\right)=-6 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-6 \left(x^2-x+\underline{\text{ }}\right)$}+\left(8 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2-2 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right): \\
-6 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-6}{4}=-\frac{3}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-6-\frac{3}{2}=-\frac{15}{2}: \\
-6 \left(x^2-x+\frac{1}{4}\right)+8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{15}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{8}{64}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{8}-\frac{15}{2}=-\frac{59}{8}: \\
-6 \left(x^2-x+\frac{1}{4}\right)+8 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=\fbox{$-\frac{59}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-6 \fbox{$\left(x-\frac{1}{2}\right)^2$}+8 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=-\frac{59}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{4}+\frac{1}{64}=\left(y-\frac{1}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -6 \left(x-\frac{1}{2}\right)^2+8 \fbox{$\left(y-\frac{1}{8}\right)^2$}=-\frac{59}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2+4 y^2+10 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+10 y+\left(3 x^2+1\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
4 y^2+10 y+3 x^2=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 y^2+10 y+\underline{\text{ }}\right)+3 x^2=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 y^2+10 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)$}+3 x^2=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{25}{4}-1=\frac{21}{4}: \\
4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)+3 x^2=\fbox{$\frac{21}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2+\frac{5 y}{2}+\frac{25}{16}=\left(y+\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(y+\frac{5}{4}\right)^2$}+3 x^2=\frac{21}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-7 x-8 y^2-y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-y-10 x^2-7 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-7 x+\underline{\text{ }}\right)+\left(-8 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(-10 x^2-7 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right)$}+\left(-8 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 y^2-y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{49}{400}=-\frac{49}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{8}}{2}\right)^2=\frac{1}{256} \text{on }\text{the }\text{left }\text{and }\frac{-8}{256}=-\frac{1}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-\frac{49}{40}-\frac{1}{32}=-\frac{201}{160}: \\
-10 \left(x^2+\frac{7 x}{10}+\frac{49}{400}\right)-8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=\fbox{$-\frac{201}{160}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{7 x}{10}+\frac{49}{400}=\left(x+\frac{7}{20}\right)^2: \\
-10 \fbox{$\left(x+\frac{7}{20}\right)^2$}-8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=-\frac{201}{160} \\
\end{array}
Step 9:
\begin{array}{l}
y^2+\frac{y}{8}+\frac{1}{256}=\left(y+\frac{1}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{7}{20}\right)^2-8 \fbox{$\left(y+\frac{1}{16}\right)^2$}=-\frac{201}{160} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+8 x-4 y^2-7 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-7 y+8 x^2+8 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-4 y^2-7 y+8 x^2+8 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+8 x+\underline{\text{ }}\right)+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+8 x+\underline{\text{ }}\right)=8 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2-7 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right): \\
8 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9+2=11: \\
8 \left(x^2+x+\frac{1}{4}\right)-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$11$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
11-\frac{49}{16}=\frac{127}{16}: \\
8 \left(x^2+x+\frac{1}{4}\right)-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$\frac{127}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
8 \fbox{$\left(x+\frac{1}{2}\right)^2$}-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\frac{127}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{4}+\frac{49}{64}=\left(y+\frac{7}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{1}{2}\right)^2-4 \fbox{$\left(y+\frac{7}{8}\right)^2$}=\frac{127}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-8 x+7 y^2-5 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2-5 y+5 x^2-8 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
7 y^2-5 y+5 x^2-8 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-8 x+\underline{\text{ }}\right)+\left(7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-8 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2-5 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right): \\
5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{16}{5}=\frac{41}{5}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{41}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{41}{5}+\frac{25}{28}=\frac{1273}{140}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2-\frac{5 y}{7}+\frac{25}{196}\right)=\fbox{$\frac{1273}{140}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\
5 \fbox{$\left(x-\frac{4}{5}\right)^2$}+7 \left(y^2-\frac{5 y}{7}+\frac{25}{196}\right)=\frac{1273}{140} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{7}+\frac{25}{196}=\left(y-\frac{5}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{4}{5}\right)^2+7 \fbox{$\left(y-\frac{5}{14}\right)^2$}=\frac{1273}{140} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+2 x-5 y^2+5 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+5 y+5 x^2+2 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-5 y^2+5 y+5 x^2+2 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+2 x+\underline{\text{ }}\right)+\left(-5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+2 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(-5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2+5 y+\underline{\text{ }}\right)=-5 \left(y^2-y+\underline{\text{ }}\right): \\
5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{5}{25}=\frac{1}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9+\frac{1}{5}=\frac{46}{5}: \\
5 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)-5 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$\frac{46}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-5}{4}=-\frac{5}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{46}{5}-\frac{5}{4}=\frac{159}{20}: \\
5 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)-5 \left(y^2-y+\frac{1}{4}\right)=\fbox{$\frac{159}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{5}+\frac{1}{25}=\left(x+\frac{1}{5}\right)^2: \\
5 \fbox{$\left(x+\frac{1}{5}\right)^2$}-5 \left(y^2-y+\frac{1}{4}\right)=\frac{159}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{1}{5}\right)^2-5 \fbox{$\left(y-\frac{1}{2}\right)^2$}=\frac{159}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2-3 x+8 y^2+7 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+7 y+x^2-3 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
8 y^2+7 y+x^2-3 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2-3 x+\underline{\text{ }}\right)+\left(8 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 y^2+7 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right): \\
\left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{9}{4}-8=-\frac{23}{4}: \\
\left(x^2-3 x+\frac{9}{4}\right)+8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{23}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{49}{256}=\frac{49}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{49}{32}-\frac{23}{4}=-\frac{135}{32}: \\
\left(x^2-3 x+\frac{9}{4}\right)+8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\fbox{$-\frac{135}{32}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\
\fbox{$\left(x-\frac{3}{2}\right)^2$}+8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=-\frac{135}{32} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+\frac{7 y}{8}+\frac{49}{256}=\left(y+\frac{7}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & \left(x-\frac{3}{2}\right)^2+8 \fbox{$\left(y+\frac{7}{16}\right)^2$}=-\frac{135}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2-9 x-2 y^2-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 x^2-9 x+\left(-2 y^2-6\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
-2 y^2+3 x^2-9 x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(3 x^2-9 x+\underline{\text{ }}\right)-2 y^2=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2-9 x+\underline{\text{ }}\right)=3 \left(x^2-3 x+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2-3 x+\underline{\text{ }}\right)$}-2 y^2=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }3\times \frac{9}{4}=\frac{27}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
6+\frac{27}{4}=\frac{51}{4}: \\
3 \left(x^2-3 x+\frac{9}{4}\right)-2 y^2=\fbox{$\frac{51}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \fbox{$\left(x-\frac{3}{2}\right)^2$}-2 y^2=\frac{51}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2-7 x-5 y^2+8 y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+8 y-4 x^2-7 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2-7 x+\underline{\text{ }}\right)+\left(-5 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(-4 x^2-7 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)$}+\left(-5 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 y^2+8 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right): \\
-4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-\frac{49}{16}-\frac{16}{5}=-\frac{501}{80}: \\
-4 \left(x^2+\frac{7 x}{4}+\frac{49}{64}\right)-5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\fbox{$-\frac{501}{80}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{7 x}{4}+\frac{49}{64}=\left(x+\frac{7}{8}\right)^2: \\
-4 \fbox{$\left(x+\frac{7}{8}\right)^2$}-5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=-\frac{501}{80} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-\frac{8 y}{5}+\frac{16}{25}=\left(y-\frac{4}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x+\frac{7}{8}\right)^2-5 \fbox{$\left(y-\frac{4}{5}\right)^2$}=-\frac{501}{80} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+6 x+y^2+3 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+3 y+9 x^2+6 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
y^2+3 y+9 x^2+6 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+6 x+\underline{\text{ }}\right)+\left(y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+6 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{9}{9}=1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
1+1=2: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+\left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$2$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
2+\frac{9}{4}=\frac{17}{4}: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)+\left(y^2+3 y+\frac{9}{4}\right)=\fbox{$\frac{17}{4}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\
9 \fbox{$\left(x+\frac{1}{3}\right)^2$}+\left(y^2+3 y+\frac{9}{4}\right)=\frac{17}{4} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{1}{3}\right)^2+\fbox{$\left(y+\frac{3}{2}\right)^2$}=\frac{17}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+9 x+7 y^2+9 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+9 y+9 x^2+9 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
7 y^2+9 y+9 x^2+9 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+9 x+\underline{\text{ }}\right)+\left(7 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+9 x+\underline{\text{ }}\right)=9 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+x+\underline{\text{ }}\right)$}+\left(7 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2+9 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{9 y}{7}+\underline{\text{ }}\right): \\
9 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{9 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{9}{4}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{9}{4}-7=-\frac{19}{4}: \\
9 \left(x^2+x+\frac{1}{4}\right)+7 \left(y^2+\frac{9 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{81}{196}=\frac{81}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{81}{28}-\frac{19}{4}=-\frac{13}{7}: \\
9 \left(x^2+x+\frac{1}{4}\right)+7 \left(y^2+\frac{9 y}{7}+\frac{81}{196}\right)=\fbox{$-\frac{13}{7}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
9 \fbox{$\left(x+\frac{1}{2}\right)^2$}+7 \left(y^2+\frac{9 y}{7}+\frac{81}{196}\right)=-\frac{13}{7} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{9 y}{7}+\frac{81}{196}=\left(y+\frac{9}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{1}{2}\right)^2+7 \fbox{$\left(y+\frac{9}{14}\right)^2$}=-\frac{13}{7} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2-10 x-2 y^2-y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2-y+2 x^2-10 x-6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
-2 y^2-y+2 x^2-10 x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2-10 x+\underline{\text{ }}\right)+\left(-2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2-10 x+\underline{\text{ }}\right)=2 \left(x^2-5 x+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2-5 x+\underline{\text{ }}\right)$}+\left(-2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2-y+\underline{\text{ }}\right)=-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
2 \left(x^2-5 x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-5}{2}\right)^2=\frac{25}{4} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{4}=\frac{25}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
6+\frac{25}{2}=\frac{37}{2}: \\
2 \left(x^2-5 x+\frac{25}{4}\right)-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{37}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{37}{2}-\frac{1}{8}=\frac{147}{8}: \\
2 \left(x^2-5 x+\frac{25}{4}\right)-2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{147}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-5 x+\frac{25}{4}=\left(x-\frac{5}{2}\right)^2: \\
2 \fbox{$\left(x-\frac{5}{2}\right)^2$}-2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{147}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x-\frac{5}{2}\right)^2-2 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{147}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+10 x+7 y^2+y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+y+5 x^2+10 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
7 y^2+y+5 x^2+10 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+10 x+\underline{\text{ }}\right)+\left(7 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+10 x+\underline{\text{ }}\right)=5 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(7 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2+y+\underline{\text{ }}\right)=7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right): \\
5 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5-1=4: \\
5 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right)=\fbox{$4$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{7}{196}=\frac{1}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
4+\frac{1}{28}=\frac{113}{28}: \\
5 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{y}{7}+\frac{1}{196}\right)=\fbox{$\frac{113}{28}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
5 \fbox{$(x+1)^2$}+7 \left(y^2+\frac{y}{7}+\frac{1}{196}\right)=\frac{113}{28} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{7}+\frac{1}{196}=\left(y+\frac{1}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 (x+1)^2+7 \fbox{$\left(y+\frac{1}{14}\right)^2$}=\frac{113}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+x+5 y^2-10 y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2-10 y-10 x^2+x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+x+\underline{\text{ }}\right)+\left(5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(-10 x^2+x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{x}{10}+\underline{\text{ }}\right)$}+\left(5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 y^2-10 y+\underline{\text{ }}\right)=5 \left(y^2-2 y+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{x}{10}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{10}}{2}\right)^2=\frac{1}{400} \text{on }\text{the }\text{left }\text{and }\frac{-10}{400}=-\frac{1}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5-\frac{1}{40}=\frac{199}{40}: \\
-10 \left(x^2-\frac{x}{10}+\frac{1}{400}\right)+5 \left(y^2-2 y+1\right)=\fbox{$\frac{199}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2-\frac{x}{10}+\frac{1}{400}=\left(x-\frac{1}{20}\right)^2: \\
-10 \fbox{$\left(x-\frac{1}{20}\right)^2$}+5 \left(y^2-2 y+1\right)=\frac{199}{40} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{1}{20}\right)^2+5 \fbox{$(y-1)^2$}=\frac{199}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2-8 x-5 y^2+3 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+3 y-9 x^2-8 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
-5 y^2+3 y-9 x^2-8 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2-8 x+\underline{\text{ }}\right)+\left(-5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2-8 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)$}+\left(-5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2+3 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right): \\
-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-\frac{16}{9}=-\frac{52}{9}: \\
-9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{52}{9}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{100}=-\frac{9}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{52}{9}-\frac{9}{20}=-\frac{1121}{180}: \\
-9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-5 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$-\frac{1121}{180}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{9}+\frac{16}{81}=\left(x+\frac{4}{9}\right)^2: \\
-9 \fbox{$\left(x+\frac{4}{9}\right)^2$}-5 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=-\frac{1121}{180} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{5}+\frac{9}{100}=\left(y-\frac{3}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x+\frac{4}{9}\right)^2-5 \fbox{$\left(y-\frac{3}{10}\right)^2$}=-\frac{1121}{180} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-10 x-4 y^2+8 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2+8 y-5 x^2-10 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
-4 y^2+8 y-5 x^2-10 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-10 x+\underline{\text{ }}\right)+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-10 x+\underline{\text{ }}\right)=-5 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2+8 y+\underline{\text{ }}\right)=-4 \left(y^2-2 y+\underline{\text{ }}\right): \\
-5 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-5=-9: \\
-5 \left(x^2+2 x+1\right)-4 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-9$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-9-4=-13: \\
-5 \left(x^2+2 x+1\right)-4 \left(y^2-2 y+1\right)=\fbox{$-13$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
-5 \fbox{$(x+1)^2$}-4 \left(y^2-2 y+1\right)=-13 \\
\end{array}
Step 11:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 (x+1)^2-4 \fbox{$(y-1)^2$}=-13 \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+5 x-6 y^2-8 y-3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2-8 y-6 x^2+5 x-3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }3 \text{to }\text{both }\text{sides}: \\
-6 y^2-8 y-6 x^2+5 x=3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-6 x^2+5 x+\underline{\text{ }}\right)+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-6 x^2+5 x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right): \\
\fbox{$-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)$}+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2-8 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\
-6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{144}=-\frac{25}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
3-\frac{25}{24}=\frac{47}{24}: \\
-6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{47}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{47}{24}-\frac{8}{3}=-\frac{17}{24}: \\
-6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{17}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{6}+\frac{25}{144}=\left(x-\frac{5}{12}\right)^2: \\
-6 \fbox{$\left(x-\frac{5}{12}\right)^2$}-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{17}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -6 \left(x-\frac{5}{12}\right)^2-6 \fbox{$\left(y+\frac{2}{3}\right)^2$}=-\frac{17}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+2 x+10 y^2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2+10 x^2+2 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(10 x^2+2 x+\underline{\text{ }}\right)+10 y^2=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(10 x^2+2 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)$}+10 y^2=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{10}{100}=\frac{1}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 5:
\begin{array}{l}
x^2+\frac{x}{5}+\frac{1}{100}=\left(x+\frac{1}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & \text{10 }\fbox{$\left(x+\frac{1}{10}\right)^2$}+10 y^2=\frac{1}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2+9 x+10 y^2-4 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2-4 y-5 x^2+9 x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
10 y^2-4 y-5 x^2+9 x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2+9 x+\underline{\text{ }}\right)+\left(10 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2+9 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right)$}+\left(10 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2-4 y+\underline{\text{ }}\right)=10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right): \\
-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{81}{100}=-\frac{81}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-10-\frac{81}{20}=-\frac{281}{20}: \\
-5 \left(x^2-\frac{9 x}{5}+\frac{81}{100}\right)+10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{281}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{10}{25}=\frac{2}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{2}{5}-\frac{281}{20}=-\frac{273}{20}: \\
-5 \left(x^2-\frac{9 x}{5}+\frac{81}{100}\right)+10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=\fbox{$-\frac{273}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{5}+\frac{81}{100}=\left(x-\frac{9}{10}\right)^2: \\
-5 \fbox{$\left(x-\frac{9}{10}\right)^2$}+10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=-\frac{273}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{5}+\frac{1}{25}=\left(y-\frac{1}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x-\frac{9}{10}\right)^2+\text{10 }\fbox{$\left(y-\frac{1}{5}\right)^2$}=-\frac{273}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2+10 x-9 y^2-10 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2-10 y-9 x^2+10 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
-9 y^2-10 y-9 x^2+10 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2+10 x+\underline{\text{ }}\right)+\left(-9 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2+10 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(-9 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2-10 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right): \\
-9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-1-\frac{25}{9}=-\frac{34}{9}: \\
-9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{34}{9}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{34}{9}-\frac{25}{9}=-\frac{59}{9}: \\
-9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)-9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$-\frac{59}{9}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{10 x}{9}+\frac{25}{81}=\left(x-\frac{5}{9}\right)^2: \\
-9 \fbox{$\left(x-\frac{5}{9}\right)^2$}-9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=-\frac{59}{9} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{10 y}{9}+\frac{25}{81}=\left(y+\frac{5}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x-\frac{5}{9}\right)^2-9 \fbox{$\left(y+\frac{5}{9}\right)^2$}=-\frac{59}{9} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2-9 x-6 y^2+4 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2+4 y-2 x^2-9 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-6 y^2+4 y-2 x^2-9 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2-9 x+\underline{\text{ }}\right)+\left(-6 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2-9 x+\underline{\text{ }}\right)=-2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2+4 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\
-2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{81}{16}=-\frac{81}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8-\frac{81}{8}=-\frac{17}{8}: \\
-2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)-6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{17}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-6}{9}=-\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{17}{8}-\frac{2}{3}=-\frac{67}{24}: \\
-2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)-6 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$-\frac{67}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{2}+\frac{81}{16}=\left(x+\frac{9}{4}\right)^2: \\
-2 \fbox{$\left(x+\frac{9}{4}\right)^2$}-6 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=-\frac{67}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 \left(x+\frac{9}{4}\right)^2-6 \fbox{$\left(y-\frac{1}{3}\right)^2$}=-\frac{67}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2+2 x+4 y^2+10 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+10 y-3 x^2+2 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
4 y^2+10 y-3 x^2+2 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-3 x^2+2 x+\underline{\text{ }}\right)+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 x^2+2 x+\underline{\text{ }}\right)=-3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$-3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+10 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right): \\
-3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-3}{9}=-\frac{1}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-9-\frac{1}{3}=-\frac{28}{3}: \\
-3 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)+4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{28}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{4}-\frac{28}{3}=-\frac{37}{12}: \\
-3 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{37}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\
-3 \fbox{$\left(x-\frac{1}{3}\right)^2$}+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{37}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{2}+\frac{25}{16}=\left(y+\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -3 \left(x-\frac{1}{3}\right)^2+4 \fbox{$\left(y+\frac{5}{4}\right)^2$}=-\frac{37}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2-2 x+y^2+7 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+7 y+9 x^2-2 x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
y^2+7 y+9 x^2-2 x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2-2 x+\underline{\text{ }}\right)+\left(y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2-2 x+\underline{\text{ }}\right)=9 \left(x^2-\frac{2 x}{9}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2-\frac{2 x}{9}+\underline{\text{ }}\right)$}+\left(y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{1}{9}-5=-\frac{44}{9}: \\
9 \left(x^2-\frac{2 x}{9}+\frac{1}{81}\right)+\left(y^2+7 y+\underline{\text{ }}\right)=\fbox{$-\frac{44}{9}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{49}{4}-\frac{44}{9}=\frac{265}{36}: \\
9 \left(x^2-\frac{2 x}{9}+\frac{1}{81}\right)+\left(y^2+7 y+\frac{49}{4}\right)=\fbox{$\frac{265}{36}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-\frac{2 x}{9}+\frac{1}{81}=\left(x-\frac{1}{9}\right)^2: \\
9 \fbox{$\left(x-\frac{1}{9}\right)^2$}+\left(y^2+7 y+\frac{49}{4}\right)=\frac{265}{36} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+7 y+\frac{49}{4}=\left(y+\frac{7}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x-\frac{1}{9}\right)^2+\fbox{$\left(y+\frac{7}{2}\right)^2$}=\frac{265}{36} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2+6 x+9 y^2+7 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+7 y+7 x^2+6 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
9 y^2+7 y+7 x^2+6 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2+6 x+\underline{\text{ }}\right)+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+7 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right): \\
7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{9}{7}=\frac{37}{7}: \\
7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{37}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{49}{324}=\frac{49}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{37}{7}+\frac{49}{36}=\frac{1675}{252}: \\
7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\fbox{$\frac{1675}{252}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\
7 \fbox{$\left(x+\frac{3}{7}\right)^2$}+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\frac{1675}{252} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{9}+\frac{49}{324}=\left(y+\frac{7}{18}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x+\frac{3}{7}\right)^2+9 \fbox{$\left(y+\frac{7}{18}\right)^2$}=\frac{1675}{252} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2-9 x+8 y^2+4 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+4 y-8 x^2-9 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
8 y^2+4 y-8 x^2-9 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2-9 x+\underline{\text{ }}\right)+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2-9 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right)$}+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+4 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
-8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-\frac{81}{32}=-\frac{49}{32}: \\
-8 \left(x^2+\frac{9 x}{8}+\frac{81}{256}\right)+8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{49}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{2}-\frac{49}{32}=-\frac{33}{32}: \\
-8 \left(x^2+\frac{9 x}{8}+\frac{81}{256}\right)+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{33}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{8}+\frac{81}{256}=\left(x+\frac{9}{16}\right)^2: \\
-8 \fbox{$\left(x+\frac{9}{16}\right)^2$}+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{33}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x+\frac{9}{16}\right)^2+8 \fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{33}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-x-4 y^2+4 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2+4 y+6 x^2-x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
-4 y^2+4 y+6 x^2-x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-x+\underline{\text{ }}\right)+\left(-4 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)$}+\left(-4 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2+4 y+\underline{\text{ }}\right)=-4 \left(y^2-y+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{24}-8=-\frac{191}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-4 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{191}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-4}{4}=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{191}{24}-1=-\frac{215}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-4 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{215}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{6}+\frac{1}{144}=\left(x-\frac{1}{12}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{12}\right)^2$}-4 \left(y^2-y+\frac{1}{4}\right)=-\frac{215}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{12}\right)^2-4 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{215}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2-2 x+8 y^2-6 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2-6 y-4 x^2-2 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
8 y^2-6 y-4 x^2-2 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2-2 x+\underline{\text{ }}\right)+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2-2 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2-6 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\
-4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-4}{16}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4-\frac{1}{4}=\frac{15}{4}: \\
-4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{15}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{15}{4}+\frac{9}{8}=\frac{39}{8}: \\
-4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{39}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\
-4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\frac{39}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x+\frac{1}{4}\right)^2+8 \fbox{$\left(y-\frac{3}{8}\right)^2$}=\frac{39}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-9 x+8 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 x^2-9 x+(8 y-2)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 y-10 x^2-9 x-2 \text{from }\text{both }\text{sides}: \\
10 x^2+9 x+(2-8 y)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Subtract }2-8 y \text{from }\text{both }\text{sides}: \\
10 x^2+9 x=8 y-2 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(10 x^2+9 x+\underline{\text{ }}\right)=(8 y-2)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 x^2+9 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)$}=(8 y-2)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{81}{400}=\frac{81}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(8 y-2)+\frac{81}{40}=8 y+\frac{1}{40}: \\
10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)=\fbox{$8 y+\frac{1}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{9 x}{10}+\frac{81}{400}=\left(x+\frac{9}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & \text{10 }\fbox{$\left(x+\frac{9}{20}\right)^2$}=8 y+\frac{1}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-3 x+8 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 x^2-3 x+(8 y-10)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 y-10 \text{from }\text{both }\text{sides}: \\
7 x^2-3 x=10-8 y \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(7 x^2-3 x+\underline{\text{ }}\right)=(10-8 y)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-3 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)$}=(10-8 y)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{196}=\frac{9}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(10-8 y)+\frac{9}{28}=\frac{289}{28}-8 y: \\
7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)=\fbox{$\frac{289}{28}-8 y$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-\frac{3 x}{7}+\frac{9}{196}=\left(x-\frac{3}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \fbox{$\left(x-\frac{3}{14}\right)^2$}=\frac{289}{28}-8 y \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+3 x-3 y^2+4 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2+4 y-10 x^2+3 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
-3 y^2+4 y-10 x^2+3 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+3 x+\underline{\text{ }}\right)+\left(-3 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+3 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(-3 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2+4 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-2-\frac{9}{40}=-\frac{89}{40}: \\
-10 \left(x^2-\frac{3 x}{10}+\frac{9}{400}\right)-3 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{89}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{4}{9}=-\frac{4}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{89}{40}-\frac{4}{3}=-\frac{427}{120}: \\
-10 \left(x^2-\frac{3 x}{10}+\frac{9}{400}\right)-3 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{427}{120}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{10}+\frac{9}{400}=\left(x-\frac{3}{20}\right)^2: \\
-10 \fbox{$\left(x-\frac{3}{20}\right)^2$}-3 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{427}{120} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{4 y}{3}+\frac{4}{9}=\left(y-\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{3}{20}\right)^2-3 \fbox{$\left(y-\frac{2}{3}\right)^2$}=-\frac{427}{120} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-2 x-8 y^2+6 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2+6 y-5 x^2-2 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
-8 y^2+6 y-5 x^2-2 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-2 x+\underline{\text{ }}\right)+\left(-8 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-2 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(-8 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2+6 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\
-5 \left(x^2+\frac{2 x}{5}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-5}{25}=-\frac{1}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2-\frac{1}{5}=\frac{9}{5}: \\
-5 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)-8 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{9}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{64}=-\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{5}-\frac{9}{8}=\frac{27}{40}: \\
-5 \left(x^2+\frac{2 x}{5}+\frac{1}{25}\right)-8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{27}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{5}+\frac{1}{25}=\left(x+\frac{1}{5}\right)^2: \\
-5 \fbox{$\left(x+\frac{1}{5}\right)^2$}-8 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\frac{27}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x+\frac{1}{5}\right)^2-8 \fbox{$\left(y-\frac{3}{8}\right)^2$}=\frac{27}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+8 x+2 y^2+4 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+4 y-10 x^2+8 x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
2 y^2+4 y-10 x^2+8 x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+8 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(2 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+4 y+\underline{\text{ }}\right)=2 \left(y^2+2 y+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-10\times \frac{4}{25}=-\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-5-\frac{8}{5}=-\frac{33}{5}: \\
-10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)+2 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$-\frac{33}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }2\times 1=2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
2-\frac{33}{5}=-\frac{23}{5}: \\
-10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)+2 \left(y^2+2 y+1\right)=\fbox{$-\frac{23}{5}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{4 x}{5}+\frac{4}{25}=\left(x-\frac{2}{5}\right)^2: \\
-10 \fbox{$\left(x-\frac{2}{5}\right)^2$}+2 \left(y^2+2 y+1\right)=-\frac{23}{5} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+2 y+1=(y+1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{2}{5}\right)^2+2 \fbox{$(y+1)^2$}=-\frac{23}{5} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2-5 x-3 y^2+6 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2+6 y+3 x^2-5 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-3 y^2+6 y+3 x^2-5 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2-5 x+\underline{\text{ }}\right)+\left(-3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2-5 x+\underline{\text{ }}\right)=3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(-3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2+6 y+\underline{\text{ }}\right)=-3 \left(y^2-2 y+\underline{\text{ }}\right): \\
3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{36}=\frac{25}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9+\frac{25}{12}=\frac{133}{12}: \\
3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)-3 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{133}{12}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{133}{12}-3=\frac{97}{12}: \\
3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)-3 \left(y^2-2 y+1\right)=\fbox{$\frac{97}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\
3 \fbox{$\left(x-\frac{5}{6}\right)^2$}-3 \left(y^2-2 y+1\right)=\frac{97}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \left(x-\frac{5}{6}\right)^2-3 \fbox{$(y-1)^2$}=\frac{97}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2+7 x-y^2+8 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+8 y+7 x^2+7 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
-y^2+8 y+7 x^2+7 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2+7 x+\underline{\text{ }}\right)+\left(-y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+7 x+\underline{\text{ }}\right)=7 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2+8 y+\underline{\text{ }}\right)=-\left(y^2-8 y+\underline{\text{ }}\right): \\
7 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-\left(y^2-8 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{7}{4}-8=-\frac{25}{4}: \\
7 \left(x^2+x+\frac{1}{4}\right)-\left(y^2-8 y+\underline{\text{ }}\right)=\fbox{$-\frac{25}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{25}{4}-16=-\frac{89}{4}: \\
7 \left(x^2+x+\frac{1}{4}\right)-\left(y^2-8 y+16\right)=\fbox{$-\frac{89}{4}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
7 \fbox{$\left(x+\frac{1}{2}\right)^2$}-\left(y^2-8 y+16\right)=-\frac{89}{4} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-8 y+16=(y-4)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x+\frac{1}{2}\right)^2-\fbox{$(y-4)^2$}=-\frac{89}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+8 x-9 y^2+9 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+9 y+5 x^2+8 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
-9 y^2+9 y+5 x^2+8 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+8 x+\underline{\text{ }}\right)+\left(-9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+8 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+9 y+\underline{\text{ }}\right)=-9 \left(y^2-y+\underline{\text{ }}\right): \\
5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{16}{5}-2=\frac{6}{5}: \\
5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-9 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$\frac{6}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{6}{5}-\frac{9}{4}=-\frac{21}{20}: \\
5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-9 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{21}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\
5 \fbox{$\left(x+\frac{4}{5}\right)^2$}-9 \left(y^2-y+\frac{1}{4}\right)=-\frac{21}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{4}{5}\right)^2-9 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{21}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-4 x+y^2-6 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2-6 y+6 x^2-4 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
y^2-6 y+6 x^2-4 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-4 x+\underline{\text{ }}\right)+\left(y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-4 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{2}{3}-8=-\frac{22}{3}: \\
6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)+\left(y^2-6 y+\underline{\text{ }}\right)=\fbox{$-\frac{22}{3}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
9-\frac{22}{3}=\frac{5}{3}: \\
6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)+\left(y^2-6 y+9\right)=\fbox{$\frac{5}{3}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{3}\right)^2$}+\left(y^2-6 y+9\right)=\frac{5}{3} \\
\end{array}
Step 10:
\begin{array}{l}
y^2-6 y+9=(y-3)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{3}\right)^2+\fbox{$(y-3)^2$}=\frac{5}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+3 y^2-7 y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 y^2-7 y+\left(-4 x^2-6\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
3 y^2-7 y-4 x^2=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(3 y^2-7 y+\underline{\text{ }}\right)-4 x^2=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 y^2-7 y+\underline{\text{ }}\right)=3 \left(y^2-\frac{7 y}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(y^2-\frac{7 y}{3}+\underline{\text{ }}\right)$}-4 x^2=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{3}}{2}\right)^2=\frac{49}{36} \text{on }\text{the }\text{left }\text{and }3\times \frac{49}{36}=\frac{49}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
6+\frac{49}{12}=\frac{121}{12}: \\
3 \left(y^2-\frac{7 y}{3}+\frac{49}{36}\right)-4 x^2=\fbox{$\frac{121}{12}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2-\frac{7 y}{3}+\frac{49}{36}=\left(y-\frac{7}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \fbox{$\left(y-\frac{7}{6}\right)^2$}-4 x^2=\frac{121}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-9 x+6 y^2+4 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2+4 y+7 x^2-9 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
6 y^2+4 y+7 x^2-9 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2-9 x+\underline{\text{ }}\right)+\left(6 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-9 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(6 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2+4 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right): \\
7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{81}{196}=\frac{81}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{81}{28}=\frac{221}{28}: \\
7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)+6 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{221}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{221}{28}+\frac{2}{3}=\frac{719}{84}: \\
7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)+6 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$\frac{719}{84}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{7}+\frac{81}{196}=\left(x-\frac{9}{14}\right)^2: \\
7 \fbox{$\left(x-\frac{9}{14}\right)^2$}+6 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=\frac{719}{84} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{3}+\frac{1}{9}=\left(y+\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x-\frac{9}{14}\right)^2+6 \fbox{$\left(y+\frac{1}{3}\right)^2$}=\frac{719}{84} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2+x-2 y^2-y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2-y-7 x^2+x-6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
-2 y^2-y-7 x^2+x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2+x+\underline{\text{ }}\right)+\left(-2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2+x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2-\frac{x}{7}+\underline{\text{ }}\right)$}+\left(-2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2-y+\underline{\text{ }}\right)=-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
-7 \left(x^2-\frac{x}{7}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{-7}{196}=-\frac{1}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
6-\frac{1}{28}=\frac{167}{28}: \\
-7 \left(x^2-\frac{x}{7}+\frac{1}{196}\right)-2 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{167}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{167}{28}-\frac{1}{8}=\frac{327}{56}: \\
-7 \left(x^2-\frac{x}{7}+\frac{1}{196}\right)-2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{327}{56}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{7}+\frac{1}{196}=\left(x-\frac{1}{14}\right)^2: \\
-7 \fbox{$\left(x-\frac{1}{14}\right)^2$}-2 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{327}{56} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x-\frac{1}{14}\right)^2-2 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{327}{56} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2+8 x+6 y^2-3 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2-3 y+7 x^2+8 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
6 y^2-3 y+7 x^2+8 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2+8 x+\underline{\text{ }}\right)+\left(6 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+8 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{8 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+\frac{8 x}{7}+\underline{\text{ }}\right)$}+\left(6 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2-3 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
7 \left(x^2+\frac{8 x}{7}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{16}{7}-9=-\frac{47}{7}: \\
7 \left(x^2+\frac{8 x}{7}+\frac{16}{49}\right)+6 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{47}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{6}{16}=\frac{3}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{3}{8}-\frac{47}{7}=-\frac{355}{56}: \\
7 \left(x^2+\frac{8 x}{7}+\frac{16}{49}\right)+6 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{355}{56}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{7}+\frac{16}{49}=\left(x+\frac{4}{7}\right)^2: \\
7 \fbox{$\left(x+\frac{4}{7}\right)^2$}+6 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{355}{56} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x+\frac{4}{7}\right)^2+6 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{355}{56} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-3 x-6 y^2+9 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2+9 y+7 x^2-3 x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-6 y^2+9 y+7 x^2-3 x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2-3 x+\underline{\text{ }}\right)+\left(-6 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-3 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)$}+\left(-6 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2+9 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\
7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{196}=\frac{9}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{9}{28}-10=-\frac{271}{28}: \\
7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{271}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-6\times \frac{9}{16}=-\frac{27}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{271}{28}-\frac{27}{8}=-\frac{731}{56}: \\
7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{731}{56}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{7}+\frac{9}{196}=\left(x-\frac{3}{14}\right)^2: \\
7 \fbox{$\left(x-\frac{3}{14}\right)^2$}-6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{731}{56} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x-\frac{3}{14}\right)^2-6 \fbox{$\left(y-\frac{3}{4}\right)^2$}=-\frac{731}{56} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+8 y^2-7 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2-7 y+\left(6-6 x^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
8 y^2-7 y-6 x^2=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(8 y^2-7 y+\underline{\text{ }}\right)-6 x^2=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 y^2-7 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{7 y}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(y^2-\frac{7 y}{8}+\underline{\text{ }}\right)$}-6 x^2=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{49}{256}=\frac{49}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{49}{32}-6=-\frac{143}{32}: \\
8 \left(y^2-\frac{7 y}{8}+\frac{49}{256}\right)-6 x^2=\fbox{$-\frac{143}{32}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2-\frac{7 y}{8}+\frac{49}{256}=\left(y-\frac{7}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \fbox{$\left(y-\frac{7}{16}\right)^2$}-6 x^2=-\frac{143}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2-9 x-5 y^2+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 x^2-9 x+\left(7-5 y^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-5 y^2-8 x^2-9 x+7 \text{from }\text{both }\text{sides}: \\
8 x^2+9 x+\left(5 y^2-7\right)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
5 y^2+8 x^2+9 x=7 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(8 x^2+9 x+\underline{\text{ }}\right)+5 y^2=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 x^2+9 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{9 x}{8}+\underline{\text{ }}\right)$}+5 y^2=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{81}{256}=\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7+\frac{81}{32}=\frac{305}{32}: \\
8 \left(x^2+\frac{9 x}{8}+\frac{81}{256}\right)+5 y^2=\fbox{$\frac{305}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{9 x}{8}+\frac{81}{256}=\left(x+\frac{9}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \fbox{$\left(x+\frac{9}{16}\right)^2$}+5 y^2=\frac{305}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2+9 x+7 y^2-y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2-y-5 x^2+9 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2+9 x+\underline{\text{ }}\right)+\left(7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(-5 x^2+9 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right)$}+\left(7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 y^2-y+\underline{\text{ }}\right)=7 \left(y^2-\frac{y}{7}+\underline{\text{ }}\right): \\
-5 \left(x^2-\frac{9 x}{5}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{81}{100}=-\frac{81}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{7}{196}=\frac{1}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{28}-\frac{81}{20}=-\frac{281}{70}: \\
-5 \left(x^2-\frac{9 x}{5}+\frac{81}{100}\right)+7 \left(y^2-\frac{y}{7}+\frac{1}{196}\right)=\fbox{$-\frac{281}{70}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2-\frac{9 x}{5}+\frac{81}{100}=\left(x-\frac{9}{10}\right)^2: \\
-5 \fbox{$\left(x-\frac{9}{10}\right)^2$}+7 \left(y^2-\frac{y}{7}+\frac{1}{196}\right)=-\frac{281}{70} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-\frac{y}{7}+\frac{1}{196}=\left(y-\frac{1}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x-\frac{9}{10}\right)^2+7 \fbox{$\left(y-\frac{1}{14}\right)^2$}=-\frac{281}{70} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2-2 x-4 y^2-8 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-8 y+8 x^2-2 x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
-4 y^2-8 y+8 x^2-2 x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2-2 x+\underline{\text{ }}\right)+\left(-4 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2-2 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-4 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2-8 y+\underline{\text{ }}\right)=-4 \left(y^2+2 y+\underline{\text{ }}\right): \\
8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{8}{64}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{8}-5=-\frac{39}{8}: \\
8 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-4 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$-\frac{39}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{39}{8}-4=-\frac{71}{8}: \\
8 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-4 \left(y^2+2 y+1\right)=\fbox{$-\frac{71}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{4}+\frac{1}{64}=\left(x-\frac{1}{8}\right)^2: \\
8 \fbox{$\left(x-\frac{1}{8}\right)^2$}-4 \left(y^2+2 y+1\right)=-\frac{71}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+2 y+1=(y+1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x-\frac{1}{8}\right)^2-4 \fbox{$(y+1)^2$}=-\frac{71}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2+8 x+3 y^2-10 y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 y^2-10 y-8 x^2+8 x-6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
3 y^2-10 y-8 x^2+8 x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2+8 x+\underline{\text{ }}\right)+\left(3 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2+8 x+\underline{\text{ }}\right)=-8 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2-x+\underline{\text{ }}\right)$}+\left(3 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(3 y^2-10 y+\underline{\text{ }}\right)=3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right): \\
-8 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-8}{4}=-2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
6-2=4: \\
-8 \left(x^2-x+\frac{1}{4}\right)+3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)=\fbox{$4$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-10}{3}}{2}\right)^2=\frac{25}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{9}=\frac{25}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
4+\frac{25}{3}=\frac{37}{3}: \\
-8 \left(x^2-x+\frac{1}{4}\right)+3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=\fbox{$\frac{37}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-8 \fbox{$\left(x-\frac{1}{2}\right)^2$}+3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=\frac{37}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{10 y}{3}+\frac{25}{9}=\left(y-\frac{5}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x-\frac{1}{2}\right)^2+3 \fbox{$\left(y-\frac{5}{3}\right)^2$}=\frac{37}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-9 x+y^2+7 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+7 y-10 x^2-9 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
y^2+7 y-10 x^2-9 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-9 x+\underline{\text{ }}\right)+\left(y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-9 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{81}{400}=-\frac{81}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
4-\frac{81}{40}=\frac{79}{40}: \\
-10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)+\left(y^2+7 y+\underline{\text{ }}\right)=\fbox{$\frac{79}{40}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{79}{40}+\frac{49}{4}=\frac{569}{40}: \\
-10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)+\left(y^2+7 y+\frac{49}{4}\right)=\fbox{$\frac{569}{40}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2+\frac{9 x}{10}+\frac{81}{400}=\left(x+\frac{9}{20}\right)^2: \\
-10 \fbox{$\left(x+\frac{9}{20}\right)^2$}+\left(y^2+7 y+\frac{49}{4}\right)=\frac{569}{40} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+7 y+\frac{49}{4}=\left(y+\frac{7}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{9}{20}\right)^2+\fbox{$\left(y+\frac{7}{2}\right)^2$}=\frac{569}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2-2 x+5 y^2-9 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2-9 y-2 x^2-2 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
5 y^2-9 y-2 x^2-2 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2-2 x+\underline{\text{ }}\right)+\left(5 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2-2 x+\underline{\text{ }}\right)=-2 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2+x+\underline{\text{ }}\right)$}+\left(5 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(5 y^2-9 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{9 y}{5}+\underline{\text{ }}\right): \\
-2 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{9 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-\frac{1}{2}=-\frac{9}{2}: \\
-2 \left(x^2+x+\frac{1}{4}\right)+5 \left(y^2-\frac{9 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{9}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{81}{100}=\frac{81}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{81}{20}-\frac{9}{2}=-\frac{9}{20}: \\
-2 \left(x^2+x+\frac{1}{4}\right)+5 \left(y^2-\frac{9 y}{5}+\frac{81}{100}\right)=\fbox{$-\frac{9}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
-2 \fbox{$\left(x+\frac{1}{2}\right)^2$}+5 \left(y^2-\frac{9 y}{5}+\frac{81}{100}\right)=-\frac{9}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{9 y}{5}+\frac{81}{100}=\left(y-\frac{9}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 \left(x+\frac{1}{2}\right)^2+5 \fbox{$\left(y-\frac{9}{10}\right)^2$}=-\frac{9}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2+6 x-7 y^2+3 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+3 y+x^2+6 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
-7 y^2+3 y+x^2+6 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2+6 x+\underline{\text{ }}\right)+\left(-7 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 y^2+3 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right): \\
\left(x^2+6 x+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
9-3=6: \\
\left(x^2+6 x+9\right)-7 \left(y^2-\frac{3 y}{7}+\underline{\text{ }}\right)=\fbox{$6$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{196}=-\frac{9}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
6-\frac{9}{28}=\frac{159}{28}: \\
\left(x^2+6 x+9\right)-7 \left(y^2-\frac{3 y}{7}+\frac{9}{196}\right)=\fbox{$\frac{159}{28}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2+6 x+9=(x+3)^2: \\
\fbox{$(x+3)^2$}-7 \left(y^2-\frac{3 y}{7}+\frac{9}{196}\right)=\frac{159}{28} \\
\end{array}
Step 10:
\begin{array}{l}
y^2-\frac{3 y}{7}+\frac{9}{196}=\left(y-\frac{3}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & (x+3)^2-7 \fbox{$\left(y-\frac{3}{14}\right)^2$}=\frac{159}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+4 x-2 y^2-6 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2-6 y+5 x^2+4 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
-2 y^2-6 y+5 x^2+4 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+4 x+\underline{\text{ }}\right)+\left(-2 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+4 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-2 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2-6 y+\underline{\text{ }}\right)=-2 \left(y^2+3 y+\underline{\text{ }}\right): \\
5 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2+3 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{4}{25}=\frac{4}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{4}{5}-9=-\frac{41}{5}: \\
5 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-2 \left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$-\frac{41}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-2\times \frac{9}{4}=-\frac{9}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{41}{5}-\frac{9}{2}=-\frac{127}{10}: \\
5 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-2 \left(y^2+3 y+\frac{9}{4}\right)=\fbox{$-\frac{127}{10}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{4 x}{5}+\frac{4}{25}=\left(x+\frac{2}{5}\right)^2: \\
5 \fbox{$\left(x+\frac{2}{5}\right)^2$}-2 \left(y^2+3 y+\frac{9}{4}\right)=-\frac{127}{10} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{2}{5}\right)^2-2 \fbox{$\left(y+\frac{3}{2}\right)^2$}=-\frac{127}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2+4 x-5 y^2+6 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+6 y-8 x^2+4 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-5 y^2+6 y-8 x^2+4 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2+4 x+\underline{\text{ }}\right)+\left(-5 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2+4 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-5 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2+6 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{6 y}{5}+\underline{\text{ }}\right): \\
-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{6 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-8}{16}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-7-\frac{1}{2}=-\frac{15}{2}: \\
-8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-5 \left(y^2-\frac{6 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{15}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-6}{5}}{2}\right)^2=\frac{9}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{25}=-\frac{9}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{15}{2}-\frac{9}{5}=-\frac{93}{10}: \\
-8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-5 \left(y^2-\frac{6 y}{5}+\frac{9}{25}\right)=\fbox{$-\frac{93}{10}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
-8 \fbox{$\left(x-\frac{1}{4}\right)^2$}-5 \left(y^2-\frac{6 y}{5}+\frac{9}{25}\right)=-\frac{93}{10} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{6 y}{5}+\frac{9}{25}=\left(y-\frac{3}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x-\frac{1}{4}\right)^2-5 \fbox{$\left(y-\frac{3}{5}\right)^2$}=-\frac{93}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2-4 x-2 y^2+5 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+5 y+8 x^2-4 x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-2 y^2+5 y+8 x^2-4 x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2-4 x+\underline{\text{ }}\right)+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2-4 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+5 y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right): \\
8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{2}-10=-\frac{19}{2}: \\
8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{25}{16}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{19}{2}-\frac{25}{8}=-\frac{101}{8}: \\
8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{101}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
8 \fbox{$\left(x-\frac{1}{4}\right)^2$}-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{101}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{2}+\frac{25}{16}=\left(y-\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x-\frac{1}{4}\right)^2-2 \fbox{$\left(y-\frac{5}{4}\right)^2$}=-\frac{101}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+4 x+7 y^2-y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2-y-4 x^2+4 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
7 y^2-y-4 x^2+4 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+4 x+\underline{\text{ }}\right)+\left(7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+4 x+\underline{\text{ }}\right)=-4 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-x+\underline{\text{ }}\right)$}+\left(7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2-y+\underline{\text{ }}\right)=7 \left(y^2-\frac{y}{7}+\underline{\text{ }}\right): \\
-4 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-4}{4}=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5-1=4: \\
-4 \left(x^2-x+\frac{1}{4}\right)+7 \left(y^2-\frac{y}{7}+\underline{\text{ }}\right)=\fbox{$4$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{7}{196}=\frac{1}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
4+\frac{1}{28}=\frac{113}{28}: \\
-4 \left(x^2-x+\frac{1}{4}\right)+7 \left(y^2-\frac{y}{7}+\frac{1}{196}\right)=\fbox{$\frac{113}{28}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-4 \fbox{$\left(x-\frac{1}{2}\right)^2$}+7 \left(y^2-\frac{y}{7}+\frac{1}{196}\right)=\frac{113}{28} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{7}+\frac{1}{196}=\left(y-\frac{1}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{1}{2}\right)^2+7 \fbox{$\left(y-\frac{1}{14}\right)^2$}=\frac{113}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2-7 x+4 y^2+9 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+9 y+x^2-7 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
4 y^2+9 y+x^2-7 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2-7 x+\underline{\text{ }}\right)+\left(4 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 y^2+9 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{9 y}{4}+\underline{\text{ }}\right): \\
\left(x^2-7 x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{9 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
2+\frac{49}{4}=\frac{57}{4}: \\
\left(x^2-7 x+\frac{49}{4}\right)+4 \left(y^2+\frac{9 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{57}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{57}{4}+\frac{81}{16}=\frac{309}{16}: \\
\left(x^2-7 x+\frac{49}{4}\right)+4 \left(y^2+\frac{9 y}{4}+\frac{81}{64}\right)=\fbox{$\frac{309}{16}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-7 x+\frac{49}{4}=\left(x-\frac{7}{2}\right)^2: \\
\fbox{$\left(x-\frac{7}{2}\right)^2$}+4 \left(y^2+\frac{9 y}{4}+\frac{81}{64}\right)=\frac{309}{16} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+\frac{9 y}{4}+\frac{81}{64}=\left(y+\frac{9}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & \left(x-\frac{7}{2}\right)^2+4 \fbox{$\left(y+\frac{9}{8}\right)^2$}=\frac{309}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+2 x-10 y^2+3 y-3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2+3 y+4 x^2+2 x-3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }3 \text{to }\text{both }\text{sides}: \\
-10 y^2+3 y+4 x^2+2 x=3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+2 x+\underline{\text{ }}\right)+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+2 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2+3 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
3+\frac{1}{4}=\frac{13}{4}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)=\fbox{$\frac{13}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{13}{4}-\frac{9}{40}=\frac{121}{40}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=\fbox{$\frac{121}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{4}\right)^2$}-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=\frac{121}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{10}+\frac{9}{400}=\left(y-\frac{3}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{4}\right)^2-\text{10 }\fbox{$\left(y-\frac{3}{20}\right)^2$}=\frac{121}{40} \\
\end{array}
| khanacademy | amps |