text
stringlengths
14
7.51M
subset
stringclasses
3 values
source
stringclasses
2 values
Given the equation $-2 x^2+7 x-5 y^2-10 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2-10 y-2 x^2+7 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -5 y^2-10 y-2 x^2+7 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2+7 x+\underline{\text{ }}\right)+\left(-5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2+7 x+\underline{\text{ }}\right)=-2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)$}+\left(-5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2-10 y+\underline{\text{ }}\right)=-5 \left(y^2+2 y+\underline{\text{ }}\right): \\ -2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{2}}{2}\right)^2=\frac{49}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{49}{16}=-\frac{49}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{49}{8}=-\frac{25}{8}: \\ -2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-5 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$-\frac{25}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{25}{8}-5=-\frac{65}{8}: \\ -2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-5 \left(y^2+2 y+1\right)=\fbox{$-\frac{65}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{7 x}{2}+\frac{49}{16}=\left(x-\frac{7}{4}\right)^2: \\ -2 \fbox{$\left(x-\frac{7}{4}\right)^2$}-5 \left(y^2+2 y+1\right)=-\frac{65}{8} \\ \end{array} Step 11: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 \left(x-\frac{7}{4}\right)^2-5 \fbox{$(y+1)^2$}=-\frac{65}{8} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2-8 x+3 y^2-6 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 y^2-6 y-4 x^2-8 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ 3 y^2-6 y-4 x^2-8 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2-8 x+\underline{\text{ }}\right)+\left(3 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2-8 x+\underline{\text{ }}\right)=-4 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(3 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(3 y^2-6 y+\underline{\text{ }}\right)=3 \left(y^2-2 y+\underline{\text{ }}\right): \\ -4 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$3 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-4=-10: \\ -4 \left(x^2+2 x+1\right)+3 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-10$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }3\times 1=3 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 3-10=-7: \\ -4 \left(x^2+2 x+1\right)+3 \left(y^2-2 y+1\right)=\fbox{$-7$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -4 \fbox{$(x+1)^2$}+3 \left(y^2-2 y+1\right)=-7 \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 (x+1)^2+3 \fbox{$(y-1)^2$}=-7 \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2+4 x+8 y^2+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 x^2+4 x+\left(8 y^2+2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 y^2-2 x^2+4 x+2 \text{from }\text{both }\text{sides}: \\ 2 x^2-4 x+\left(-8 y^2-2\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ -8 y^2+2 x^2-4 x=2 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 x^2-4 x+\underline{\text{ }}\right)-8 y^2=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(2 x^2-4 x+\underline{\text{ }}\right)=2 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-2 x+\underline{\text{ }}\right)$}-8 y^2=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }2\times 1=2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+2=4: \\ 2 \left(x^2-2 x+1\right)-8 y^2=\fbox{$4$} \\ \end{array} Step 8: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$(x-1)^2$}-8 y^2=4 \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-4 x-y^2+4 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+4 y-9 x^2-4 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ -y^2+4 y-9 x^2-4 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-4 x+\underline{\text{ }}\right)+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-4 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{4 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+\frac{4 x}{9}+\underline{\text{ }}\right)$}+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+4 y+\underline{\text{ }}\right)=-\left(y^2-4 y+\underline{\text{ }}\right): \\ -9 \left(x^2+\frac{4 x}{9}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{4}{81}=-\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7-\frac{4}{9}=\frac{59}{9}: \\ -9 \left(x^2+\frac{4 x}{9}+\frac{4}{81}\right)-\left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$\frac{59}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-4=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{59}{9}-4=\frac{23}{9}: \\ -9 \left(x^2+\frac{4 x}{9}+\frac{4}{81}\right)-\left(y^2-4 y+4\right)=\fbox{$\frac{23}{9}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{9}+\frac{4}{81}=\left(x+\frac{2}{9}\right)^2: \\ -9 \fbox{$\left(x+\frac{2}{9}\right)^2$}-\left(y^2-4 y+4\right)=\frac{23}{9} \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{2}{9}\right)^2-\fbox{$(y-2)^2$}=\frac{23}{9} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+8 x+2 y^2+10 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+10 y-4 x^2+8 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ 2 y^2+10 y-4 x^2+8 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+8 x+\underline{\text{ }}\right)=-4 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(2 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+10 y+\underline{\text{ }}\right)=2 \left(y^2+5 y+\underline{\text{ }}\right): \\ -4 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+5 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-4=1: \\ -4 \left(x^2-2 x+1\right)+2 \left(y^2+5 y+\underline{\text{ }}\right)=\fbox{$1$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{5}{2}\right)^2=\frac{25}{4} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{4}=\frac{25}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 1+\frac{25}{2}=\frac{27}{2}: \\ -4 \left(x^2-2 x+1\right)+2 \left(y^2+5 y+\frac{25}{4}\right)=\fbox{$\frac{27}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -4 \fbox{$(x-1)^2$}+2 \left(y^2+5 y+\frac{25}{4}\right)=\frac{27}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+5 y+\frac{25}{4}=\left(y+\frac{5}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 (x-1)^2+2 \fbox{$\left(y+\frac{5}{2}\right)^2$}=\frac{27}{2} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-7 x+5 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 x^2-7 x+(5 y+3)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 y-7 x^2-7 x+3 \text{from }\text{both }\text{sides}: \\ 7 x^2+7 x+(-5 y-3)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }5 y+3 \text{to }\text{both }\text{sides}: \\ 7 x^2+7 x=5 y+3 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(7 x^2+7 x+\underline{\text{ }}\right)=(5 y+3)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(7 x^2+7 x+\underline{\text{ }}\right)=7 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+x+\underline{\text{ }}\right)$}=(5 y+3)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (5 y+3)+\frac{7}{4}=5 y+\frac{19}{4}: \\ 7 \left(x^2+x+\frac{1}{4}\right)=\fbox{$5 y+\frac{19}{4}$} \\ \end{array} Step 8: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \fbox{$\left(x+\frac{1}{2}\right)^2$}=5 y+\frac{19}{4} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-5 x-6 y^2-6 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-6 y-9 x^2-5 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -6 y^2-6 y-9 x^2-5 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-5 x+\underline{\text{ }}\right)+\left(-6 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-5 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)$}+\left(-6 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-6 y+\underline{\text{ }}\right)=-6 \left(y^2+y+\underline{\text{ }}\right): \\ -9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{324}=-\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{25}{36}=\frac{83}{36}: \\ -9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-6 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{83}{36}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-6}{4}=-\frac{3}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{83}{36}-\frac{3}{2}=\frac{29}{36}: \\ -9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-6 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{29}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{9}+\frac{25}{324}=\left(x+\frac{5}{18}\right)^2: \\ -9 \fbox{$\left(x+\frac{5}{18}\right)^2$}-6 \left(y^2+y+\frac{1}{4}\right)=\frac{29}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{5}{18}\right)^2-6 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{29}{36} \\ \end{array}
khanacademy
amps
Given the equation $x^2+2 y^2+4 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+4 y+\left(x^2-2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 2 y^2+4 y+x^2=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 y^2+4 y+\underline{\text{ }}\right)+x^2=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(2 y^2+4 y+\underline{\text{ }}\right)=2 \left(y^2+2 y+\underline{\text{ }}\right): \\ \fbox{$2 \left(y^2+2 y+\underline{\text{ }}\right)$}+x^2=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }2\times 1=2 \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} 2+2=4: \\ 2 \left(y^2+2 y+1\right)+x^2=\fbox{$4$} \\ \end{array} Step 7: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$(y+1)^2$}+x^2=4 \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+7 x-9 y^2+10 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+10 y+7 x^2+7 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ -9 y^2+10 y+7 x^2+7 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+7 x+\underline{\text{ }}\right)+\left(-9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+7 x+\underline{\text{ }}\right)=7 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+10 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right): \\ 7 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{7}{4}=\frac{11}{4}: \\ 7 \left(x^2+x+\frac{1}{4}\right)-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{4}-\frac{25}{9}=-\frac{1}{36}: \\ 7 \left(x^2+x+\frac{1}{4}\right)-9 \left(y^2-\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$-\frac{1}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 7 \fbox{$\left(x+\frac{1}{2}\right)^2$}-9 \left(y^2-\frac{10 y}{9}+\frac{25}{81}\right)=-\frac{1}{36} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{10 y}{9}+\frac{25}{81}=\left(y-\frac{5}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{1}{2}\right)^2-9 \fbox{$\left(y-\frac{5}{9}\right)^2$}=-\frac{1}{36} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2-5 y^2+10 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+10 y+\left(10 x^2-2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-5 y^2+10 y+10 x^2-2 \text{from }\text{both }\text{sides}: \\ 5 y^2-10 y+\left(2-10 x^2\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ 5 y^2-10 y-10 x^2=-2 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(5 y^2-10 y+\underline{\text{ }}\right)-10 x^2=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2-10 y+\underline{\text{ }}\right)=5 \left(y^2-2 y+\underline{\text{ }}\right): \\ \fbox{$5 \left(y^2-2 y+\underline{\text{ }}\right)$}-10 x^2=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-2=3: \\ 5 \left(y^2-2 y+1\right)-10 x^2=\fbox{$3$} \\ \end{array} Step 8: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \fbox{$(y-1)^2$}-10 x^2=3 \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+5 x-9 y^2+3 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+3 y-7 x^2+5 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -9 y^2+3 y-7 x^2+5 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+5 x+\underline{\text{ }}\right)+\left(-9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+5 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(-9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+3 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-\frac{25}{28}=\frac{199}{28}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{199}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-9}{36}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{199}{28}-\frac{1}{4}=\frac{48}{7}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{48}{7}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{5}{14}\right)^2$}-9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\frac{48}{7} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{5}{14}\right)^2-9 \fbox{$\left(y-\frac{1}{6}\right)^2$}=\frac{48}{7} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2-9 x+10 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 x^2-9 x+(10 y+9)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }10 y+9 \text{from }\text{both }\text{sides}: \\ 8 x^2-9 x=-10 y-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(8 x^2-9 x+\underline{\text{ }}\right)=(-10 y-9)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2-9 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{9 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2-\frac{9 x}{8}+\underline{\text{ }}\right)$}=(-10 y-9)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{81}{256}=\frac{81}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (-10 y-9)+\frac{81}{32}=-10 y-\frac{207}{32}: \\ 8 \left(x^2-\frac{9 x}{8}+\frac{81}{256}\right)=\fbox{$-10 y-\frac{207}{32}$} \\ \end{array} Step 7: \begin{array}{l} x^2-\frac{9 x}{8}+\frac{81}{256}=\left(x-\frac{9}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \fbox{$\left(x-\frac{9}{16}\right)^2$}=-10 y-\frac{207}{32} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2-3 x+8 y^2+3 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+3 y-4 x^2-3 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ 8 y^2+3 y-4 x^2-3 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2-3 x+\underline{\text{ }}\right)+\left(8 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2-3 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+3 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right): \\ -4 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{9}{16}=-\frac{121}{16}: \\ -4 \left(x^2+\frac{3 x}{4}+\frac{9}{64}\right)+8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{121}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{256}=\frac{9}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{32}-\frac{121}{16}=-\frac{233}{32}: \\ -4 \left(x^2+\frac{3 x}{4}+\frac{9}{64}\right)+8 \left(y^2+\frac{3 y}{8}+\frac{9}{256}\right)=\fbox{$-\frac{233}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{4}+\frac{9}{64}=\left(x+\frac{3}{8}\right)^2: \\ -4 \fbox{$\left(x+\frac{3}{8}\right)^2$}+8 \left(y^2+\frac{3 y}{8}+\frac{9}{256}\right)=-\frac{233}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{8}+\frac{9}{256}=\left(y+\frac{3}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x+\frac{3}{8}\right)^2+8 \fbox{$\left(y+\frac{3}{16}\right)^2$}=-\frac{233}{32} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2+7 x+10 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 x^2+7 x+(10 y+9)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }10 y-5 x^2+7 x+9 \text{from }\text{both }\text{sides}: \\ 5 x^2-7 x+(-10 y-9)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }10 y+9 \text{to }\text{both }\text{sides}: \\ 5 x^2-7 x=10 y+9 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(5 x^2-7 x+\underline{\text{ }}\right)=(10 y+9)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(5 x^2-7 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right)$}=(10 y+9)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{49}{100}=\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (10 y+9)+\frac{49}{20}=10 y+\frac{229}{20}: \\ 5 \left(x^2-\frac{7 x}{5}+\frac{49}{100}\right)=\fbox{$10 y+\frac{229}{20}$} \\ \end{array} Step 8: \begin{array}{l} x^2-\frac{7 x}{5}+\frac{49}{100}=\left(x-\frac{7}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \fbox{$\left(x-\frac{7}{10}\right)^2$}=10 y+\frac{229}{20} \\ \end{array}
khanacademy
amps
Given the equation $x^2-y^2-9 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2-9 y+\left(x^2+4\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-y^2-9 y+x^2+4 \text{from }\text{both }\text{sides}: \\ y^2+9 y+\left(-x^2-4\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }4 \text{to }\text{both }\text{sides}: \\ y^2+9 y-x^2=4 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(y^2+9 y+\underline{\text{ }}\right)-x^2=\underline{\text{ }}+4 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{9}{2}\right)^2=\frac{81}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} 4+\frac{81}{4}=\frac{97}{4}: \\ \left(y^2+9 y+\frac{81}{4}\right)-x^2=\fbox{$\frac{97}{4}$} \\ \end{array} Step 7: \begin{array}{l} y^2+9 y+\frac{81}{4}=\left(y+\frac{9}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \fbox{$\left(y+\frac{9}{2}\right)^2$}-x^2=\frac{97}{4} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+2 x-4 y^2+4 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+4 y+9 x^2+2 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2+2 x+\underline{\text{ }}\right)+\left(-4 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(9 x^2+2 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{2 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{2 x}{9}+\underline{\text{ }}\right)$}+\left(-4 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(-4 y^2+4 y+\underline{\text{ }}\right)=-4 \left(y^2-y+\underline{\text{ }}\right): \\ 9 \left(x^2+\frac{2 x}{9}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-4}{4}=-1 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{9}-1=-\frac{8}{9}: \\ 9 \left(x^2+\frac{2 x}{9}+\frac{1}{81}\right)-4 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{8}{9}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{2 x}{9}+\frac{1}{81}=\left(x+\frac{1}{9}\right)^2: \\ 9 \fbox{$\left(x+\frac{1}{9}\right)^2$}-4 \left(y^2-y+\frac{1}{4}\right)=-\frac{8}{9} \\ \end{array} Step 9: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x+\frac{1}{9}\right)^2-4 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{8}{9} \\ \end{array}
khanacademy
amps
Given the equation $x^2-4 x+7 y^2-6 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-6 y+x^2-4 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ 7 y^2-6 y+x^2-4 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-4 x+\underline{\text{ }}\right)+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(7 y^2-6 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\ \left(x^2-4 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-4}{2}\right)^2=4 \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} 7+4=11: \\ \left(x^2-4 x+4\right)+7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$11$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} 11+\frac{9}{7}=\frac{86}{7}: \\ \left(x^2-4 x+4\right)+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{86}{7}$} \\ \end{array} Step 9: \begin{array}{l} x^2-4 x+4=(x-2)^2: \\ \fbox{$(x-2)^2$}+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\frac{86}{7} \\ \end{array} Step 10: \begin{array}{l} y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & (x-2)^2+7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=\frac{86}{7} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+8 x-9 y^2+8 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+8 y-8 x^2+8 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -9 y^2+8 y-8 x^2+8 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+8 x+\underline{\text{ }}\right)+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+8 x+\underline{\text{ }}\right)=-8 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+8 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right): \\ -8 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-8}{4}=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-2=-8: \\ -8 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)=\fbox{$-8$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -8-\frac{16}{9}=-\frac{88}{9}: \\ -8 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=\fbox{$-\frac{88}{9}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -8 \fbox{$\left(x-\frac{1}{2}\right)^2$}-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=-\frac{88}{9} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{8 y}{9}+\frac{16}{81}=\left(y-\frac{4}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{1}{2}\right)^2-9 \fbox{$\left(y-\frac{4}{9}\right)^2$}=-\frac{88}{9} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+3 x-10 y^2-5 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-5 y+8 x^2+3 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -10 y^2-5 y+8 x^2+3 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+3 x+\underline{\text{ }}\right)+\left(-10 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+3 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right)$}+\left(-10 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-5 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ 8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{256}=\frac{9}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{32}-5=-\frac{151}{32}: \\ 8 \left(x^2+\frac{3 x}{8}+\frac{9}{256}\right)-10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{151}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-10}{16}=-\frac{5}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{151}{32}-\frac{5}{8}=-\frac{171}{32}: \\ 8 \left(x^2+\frac{3 x}{8}+\frac{9}{256}\right)-10 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{171}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{8}+\frac{9}{256}=\left(x+\frac{3}{16}\right)^2: \\ 8 \fbox{$\left(x+\frac{3}{16}\right)^2$}-10 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{171}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{3}{16}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{171}{32} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+7 x+8 y^2+7 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+7 y-x^2+7 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ 8 y^2+7 y-x^2+7 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+7 x+\underline{\text{ }}\right)+\left(8 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+7 x+\underline{\text{ }}\right)=-\left(x^2-7 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-7 x+\underline{\text{ }}\right)$}+\left(8 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+7 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right): \\ -\left(x^2-7 x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{on }\text{the }\text{left }\text{and }-\frac{49}{4}=-\frac{49}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{49}{4}=-\frac{77}{4}: \\ -\left(x^2-7 x+\frac{49}{4}\right)+8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{77}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{49}{256}=\frac{49}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{32}-\frac{77}{4}=-\frac{567}{32}: \\ -\left(x^2-7 x+\frac{49}{4}\right)+8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\fbox{$-\frac{567}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2-7 x+\frac{49}{4}=\left(x-\frac{7}{2}\right)^2: \\ -\fbox{$\left(x-\frac{7}{2}\right)^2$}+8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=-\frac{567}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{8}+\frac{49}{256}=\left(y+\frac{7}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x-\frac{7}{2}\right)^2+8 \fbox{$\left(y+\frac{7}{16}\right)^2$}=-\frac{567}{32} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+4 x+2 y^2-7 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-7 y+2 x^2+4 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 2 y^2-7 y+2 x^2+4 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+4 x+\underline{\text{ }}\right)+\left(2 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+4 x+\underline{\text{ }}\right)=2 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(2 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-7 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{7 y}{2}+\underline{\text{ }}\right): \\ 2 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{7 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }2\times 1=2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+2=12: \\ 2 \left(x^2+2 x+1\right)+2 \left(y^2-\frac{7 y}{2}+\underline{\text{ }}\right)=\fbox{$12$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{2}}{2}\right)^2=\frac{49}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{49}{16}=\frac{49}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 12+\frac{49}{8}=\frac{145}{8}: \\ 2 \left(x^2+2 x+1\right)+2 \left(y^2-\frac{7 y}{2}+\frac{49}{16}\right)=\fbox{$\frac{145}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ 2 \fbox{$(x+1)^2$}+2 \left(y^2-\frac{7 y}{2}+\frac{49}{16}\right)=\frac{145}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{2}+\frac{49}{16}=\left(y-\frac{7}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 (x+1)^2+2 \fbox{$\left(y-\frac{7}{4}\right)^2$}=\frac{145}{8} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+8 x-9 y^2-4 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-4 y-7 x^2+8 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -9 y^2-4 y-7 x^2+8 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+8 x+\underline{\text{ }}\right)+\left(-9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+8 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right)$}+\left(-9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-4 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{4 y}{9}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{16}{49}=-\frac{16}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{16}{7}=\frac{5}{7}: \\ -7 \left(x^2-\frac{8 x}{7}+\frac{16}{49}\right)-9 \left(y^2+\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{5}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{4}{81}=-\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{5}{7}-\frac{4}{9}=\frac{17}{63}: \\ -7 \left(x^2-\frac{8 x}{7}+\frac{16}{49}\right)-9 \left(y^2+\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$\frac{17}{63}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{8 x}{7}+\frac{16}{49}=\left(x-\frac{4}{7}\right)^2: \\ -7 \fbox{$\left(x-\frac{4}{7}\right)^2$}-9 \left(y^2+\frac{4 y}{9}+\frac{4}{81}\right)=\frac{17}{63} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{9}+\frac{4}{81}=\left(y+\frac{2}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{4}{7}\right)^2-9 \fbox{$\left(y+\frac{2}{9}\right)^2$}=\frac{17}{63} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2+4 x+7 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 x^2+4 x+(7 y+3)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 y-6 x^2+4 x+3 \text{from }\text{both }\text{sides}: \\ 6 x^2-4 x+(-7 y-3)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }7 y+3 \text{to }\text{both }\text{sides}: \\ 6 x^2-4 x=7 y+3 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(6 x^2-4 x+\underline{\text{ }}\right)=(7 y+3)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(6 x^2-4 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}=(7 y+3)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (7 y+3)+\frac{2}{3}=7 y+\frac{11}{3}: \\ 6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)=\fbox{$7 y+\frac{11}{3}$} \\ \end{array} Step 8: \begin{array}{l} x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \fbox{$\left(x-\frac{1}{3}\right)^2$}=7 y+\frac{11}{3} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+8 x+4 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 x^2+8 x+(4 y-3)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 y-3 \text{from }\text{both }\text{sides}: \\ 6 x^2+8 x=3-4 y \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(6 x^2+8 x+\underline{\text{ }}\right)=(3-4 y)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+8 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)$}=(3-4 y)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }6\times \frac{4}{9}=\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (3-4 y)+\frac{8}{3}=\frac{17}{3}-4 y: \\ 6 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)=\fbox{$\frac{17}{3}-4 y$} \\ \end{array} Step 7: \begin{array}{l} x^2+\frac{4 x}{3}+\frac{4}{9}=\left(x+\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \fbox{$\left(x+\frac{2}{3}\right)^2$}=\frac{17}{3}-4 y \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2-2 x+9 y^2+2 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+2 y-6 x^2-2 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 9 y^2+2 y-6 x^2-2 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2-2 x+\underline{\text{ }}\right)+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2-2 x+\underline{\text{ }}\right)=-6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)$}+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+2 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\ -6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-6}{36}=-\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2-\frac{1}{6}=\frac{11}{6}: \\ -6 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{11}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{6}+\frac{1}{9}=\frac{35}{18}: \\ -6 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{35}{18}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2: \\ -6 \fbox{$\left(x+\frac{1}{6}\right)^2$}+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{35}{18} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x+\frac{1}{6}\right)^2+9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{35}{18} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-x-8 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y-x^2-x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 y+x^2+x \text{to }\text{both }\text{sides}: \\ 8 y+x^2+x=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }8 y \text{from }\text{both }\text{sides}: \\ x^2+x=-8 y \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(x^2+x+\underline{\text{ }}\right)=\underline{\text{ }}-8 y \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \fbox{$\left(x+\frac{1}{2}\right)^2$}=\frac{1}{4}-8 y \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-9 x+2 y^2-3 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-3 y-9 x^2-9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ 2 y^2-3 y-9 x^2-9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-9 x+\underline{\text{ }}\right)+\left(2 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-9 x+\underline{\text{ }}\right)=-9 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+x+\underline{\text{ }}\right)$}+\left(2 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-3 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\ -9 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-\frac{9}{4}=\frac{11}{4}: \\ -9 \left(x^2+x+\frac{1}{4}\right)+2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{4}+\frac{9}{8}=\frac{31}{8}: \\ -9 \left(x^2+x+\frac{1}{4}\right)+2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{31}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ -9 \fbox{$\left(x+\frac{1}{2}\right)^2$}+2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\frac{31}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{1}{2}\right)^2+2 \fbox{$\left(y-\frac{3}{4}\right)^2$}=\frac{31}{8} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2-4 x-9 y^2-y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-y-8 x^2-4 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -9 y^2-y-8 x^2-4 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2-4 x+\underline{\text{ }}\right)+\left(-9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2-4 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right): \\ -8 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-8}{16}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{1}{2}=-\frac{13}{2}: \\ -8 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{13}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{9}}{2}\right)^2=\frac{1}{324} \text{on }\text{the }\text{left }\text{and }\frac{-9}{324}=-\frac{1}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{13}{2}-\frac{1}{36}=-\frac{235}{36}: \\ -8 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)-9 \left(y^2+\frac{y}{9}+\frac{1}{324}\right)=\fbox{$-\frac{235}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ -8 \fbox{$\left(x+\frac{1}{4}\right)^2$}-9 \left(y^2+\frac{y}{9}+\frac{1}{324}\right)=-\frac{235}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{9}+\frac{1}{324}=\left(y+\frac{1}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x+\frac{1}{4}\right)^2-9 \fbox{$\left(y+\frac{1}{18}\right)^2$}=-\frac{235}{36} \\ \end{array}
khanacademy
amps
Given the equation $x^2-7 x+9 y^2-4 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-4 y+x^2-7 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-7 x+\underline{\text{ }}\right)+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(9 y^2-4 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\ \left(x^2-7 x+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{4}{81}=\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{49}{4}+\frac{4}{9}=\frac{457}{36}: \\ \left(x^2-7 x+\frac{49}{4}\right)+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$\frac{457}{36}$} \\ \end{array} Step 7: \begin{array}{l} x^2-7 x+\frac{49}{4}=\left(x-\frac{7}{2}\right)^2: \\ \fbox{$\left(x-\frac{7}{2}\right)^2$}+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\frac{457}{36} \\ \end{array} Step 8: \begin{array}{l} y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x-\frac{7}{2}\right)^2+9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=\frac{457}{36} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2+6 x-6 y^2-9 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-9 y-5 x^2+6 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -6 y^2-9 y-5 x^2+6 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2+6 x+\underline{\text{ }}\right)+\left(-6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2+6 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right)$}+\left(-6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-9 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ -5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{5}}{2}\right)^2=\frac{9}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{25}=-\frac{9}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{9}{5}=-\frac{59}{5}: \\ -5 \left(x^2-\frac{6 x}{5}+\frac{9}{25}\right)-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{59}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-6\times \frac{9}{16}=-\frac{27}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{59}{5}-\frac{27}{8}=-\frac{607}{40}: \\ -5 \left(x^2-\frac{6 x}{5}+\frac{9}{25}\right)-6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{607}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{6 x}{5}+\frac{9}{25}=\left(x-\frac{3}{5}\right)^2: \\ -5 \fbox{$\left(x-\frac{3}{5}\right)^2$}-6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{607}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x-\frac{3}{5}\right)^2-6 \fbox{$\left(y+\frac{3}{4}\right)^2$}=-\frac{607}{40} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2-4 y^2+y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+y+\left(8 x^2+1\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-4 y^2+y+8 x^2+1 \text{from }\text{both }\text{sides}: \\ 4 y^2-y+\left(-8 x^2-1\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 4 y^2-y-8 x^2=1 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(4 y^2-y+\underline{\text{ }}\right)-8 x^2=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2-y+\underline{\text{ }}\right)=4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)$}-8 x^2=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{1}{16}=\frac{17}{16}: \\ 4 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)-8 x^2=\fbox{$\frac{17}{16}$} \\ \end{array} Step 8: \begin{array}{l} y^2-\frac{y}{4}+\frac{1}{64}=\left(y-\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \fbox{$\left(y-\frac{1}{8}\right)^2$}-8 x^2=\frac{17}{16} \\ \end{array}
khanacademy
amps
Given the equation $x^2+5 x+2 y^2-3 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-3 y+x^2+5 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 2 y^2-3 y+x^2+5 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2+5 x+\underline{\text{ }}\right)+\left(2 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(2 y^2-3 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\ \left(x^2+5 x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{5}{2}\right)^2=\frac{25}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} \frac{25}{4}-4=\frac{9}{4}: \\ \left(x^2+5 x+\frac{25}{4}\right)+2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{9}{4}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} \frac{9}{4}+\frac{9}{8}=\frac{27}{8}: \\ \left(x^2+5 x+\frac{25}{4}\right)+2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{27}{8}$} \\ \end{array} Step 9: \begin{array}{l} x^2+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^2: \\ \fbox{$\left(x+\frac{5}{2}\right)^2$}+2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\frac{27}{8} \\ \end{array} Step 10: \begin{array}{l} y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x+\frac{5}{2}\right)^2+2 \fbox{$\left(y-\frac{3}{4}\right)^2$}=\frac{27}{8} \\ \end{array}
khanacademy
amps
Given the equation $x^2+9 x-3 y^2-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ x^2+9 x+\left(-3 y^2-5\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -3 y^2+x^2+9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(x^2+9 x+\underline{\text{ }}\right)-3 y^2=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{9}{2}\right)^2=\frac{81}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 5: \begin{array}{l} 5+\frac{81}{4}=\frac{101}{4}: \\ \left(x^2+9 x+\frac{81}{4}\right)-3 y^2=\fbox{$\frac{101}{4}$} \\ \end{array} Step 6: \begin{array}{l} x^2+9 x+\frac{81}{4}=\left(x+\frac{9}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \fbox{$\left(x+\frac{9}{2}\right)^2$}-3 y^2=\frac{101}{4} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2-2 x-6 y^2+8 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+8 y+3 x^2-2 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -6 y^2+8 y+3 x^2-2 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2-2 x+\underline{\text{ }}\right)+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2-2 x+\underline{\text{ }}\right)=3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+8 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right): \\ 3 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{3}{9}=\frac{1}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{3}-2=-\frac{5}{3}: \\ 3 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{5}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{5}{3}-\frac{8}{3}=-\frac{13}{3}: \\ 3 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{13}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\ 3 \fbox{$\left(x-\frac{1}{3}\right)^2$}-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{13}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{3}+\frac{4}{9}=\left(y-\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x-\frac{1}{3}\right)^2-6 \fbox{$\left(y-\frac{2}{3}\right)^2$}=-\frac{13}{3} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2-8 y^2+4 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2+4 y+\left(10 x^2+10\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-8 y^2+4 y+10 x^2+10 \text{from }\text{both }\text{sides}: \\ 8 y^2-4 y+\left(-10 x^2-10\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 8 y^2-4 y-10 x^2=10 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(8 y^2-4 y+\underline{\text{ }}\right)-10 x^2=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2-4 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ \fbox{$8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}-10 x^2=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{1}{2}=\frac{21}{2}: \\ 8 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)-10 x^2=\fbox{$\frac{21}{2}$} \\ \end{array} Step 8: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \fbox{$\left(y-\frac{1}{4}\right)^2$}-10 x^2=\frac{21}{2} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+5 x-5 y^2-9 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2-9 y-4 x^2+5 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -5 y^2-9 y-4 x^2+5 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+5 x+\underline{\text{ }}\right)+\left(-5 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+5 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(-5 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2-9 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{9 y}{5}+\underline{\text{ }}\right): \\ -4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{9 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{25}{64}=-\frac{25}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -5-\frac{25}{16}=-\frac{105}{16}: \\ -4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)-5 \left(y^2+\frac{9 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{105}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{81}{100}=-\frac{81}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{105}{16}-\frac{81}{20}=-\frac{849}{80}: \\ -4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)-5 \left(y^2+\frac{9 y}{5}+\frac{81}{100}\right)=\fbox{$-\frac{849}{80}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{4}+\frac{25}{64}=\left(x-\frac{5}{8}\right)^2: \\ -4 \fbox{$\left(x-\frac{5}{8}\right)^2$}-5 \left(y^2+\frac{9 y}{5}+\frac{81}{100}\right)=-\frac{849}{80} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{9 y}{5}+\frac{81}{100}=\left(y+\frac{9}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x-\frac{5}{8}\right)^2-5 \fbox{$\left(y+\frac{9}{10}\right)^2$}=-\frac{849}{80} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2+10 x+9 y^2+3 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+3 y-6 x^2+10 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ 9 y^2+3 y-6 x^2+10 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2+10 x+\underline{\text{ }}\right)+\left(9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2+10 x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(9 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+3 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\ -6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{36}=-\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{25}{6}=-\frac{73}{6}: \\ -6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+9 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{73}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{9}{36}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{4}-\frac{73}{6}=-\frac{143}{12}: \\ -6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+9 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$-\frac{143}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\ -6 \fbox{$\left(x-\frac{5}{6}\right)^2$}+9 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=-\frac{143}{12} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x-\frac{5}{6}\right)^2+9 \fbox{$\left(y+\frac{1}{6}\right)^2$}=-\frac{143}{12} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+9 x+6 y^2-2 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2-2 y-3 x^2+9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ 6 y^2-2 y-3 x^2+9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+9 x+\underline{\text{ }}\right)+\left(6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+9 x+\underline{\text{ }}\right)=-3 \left(x^2-3 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-3 x+\underline{\text{ }}\right)$}+\left(6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2-2 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\ -3 \left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-\frac{27}{4}=-\frac{7}{4}: \\ -3 \left(x^2-3 x+\frac{9}{4}\right)+6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{6}-\frac{7}{4}=-\frac{19}{12}: \\ -3 \left(x^2-3 x+\frac{9}{4}\right)+6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$-\frac{19}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\ -3 \fbox{$\left(x-\frac{3}{2}\right)^2$}+6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=-\frac{19}{12} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{3}{2}\right)^2+6 \fbox{$\left(y-\frac{1}{6}\right)^2$}=-\frac{19}{12} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-6 x+2 y^2-9 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-9 y+4 x^2-6 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ 2 y^2-9 y+4 x^2-6 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-6 x+\underline{\text{ }}\right)+\left(2 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-6 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(2 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-9 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{16}=\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{4}-9=-\frac{27}{4}: \\ 4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)+2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{27}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{81}{8}-\frac{27}{4}=\frac{27}{8}: \\ 4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)+2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=\fbox{$\frac{27}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{2}+\frac{9}{16}=\left(x-\frac{3}{4}\right)^2: \\ 4 \fbox{$\left(x-\frac{3}{4}\right)^2$}+2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=\frac{27}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{9 y}{2}+\frac{81}{16}=\left(y-\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{3}{4}\right)^2+2 \fbox{$\left(y-\frac{9}{4}\right)^2$}=\frac{27}{8} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2-3 y^2+3 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+3 y+\left(9 x^2+8\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-3 y^2+3 y+9 x^2+8 \text{from }\text{both }\text{sides}: \\ 3 y^2-3 y+\left(-9 x^2-8\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 3 y^2-3 y-9 x^2=8 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(3 y^2-3 y+\underline{\text{ }}\right)-9 x^2=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(3 y^2-3 y+\underline{\text{ }}\right)=3 \left(y^2-y+\underline{\text{ }}\right): \\ \fbox{$3 \left(y^2-y+\underline{\text{ }}\right)$}-9 x^2=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{3}{4}=\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{3}{4}=\frac{35}{4}: \\ 3 \left(y^2-y+\frac{1}{4}\right)-9 x^2=\fbox{$\frac{35}{4}$} \\ \end{array} Step 8: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \fbox{$\left(y-\frac{1}{2}\right)^2$}-9 x^2=\frac{35}{4} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-2 x+6 y^2+9 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+9 y-2 x^2-2 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 6 y^2+9 y-2 x^2-2 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-2 x+\underline{\text{ }}\right)+\left(6 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-2 x+\underline{\text{ }}\right)=-2 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+x+\underline{\text{ }}\right)$}+\left(6 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+9 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ -2 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2-\frac{1}{2}=\frac{3}{2}: \\ -2 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{3}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }6\times \frac{9}{16}=\frac{27}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{3}{2}+\frac{27}{8}=\frac{39}{8}: \\ -2 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{39}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ -2 \fbox{$\left(x+\frac{1}{2}\right)^2$}+6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\frac{39}{8} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 \left(x+\frac{1}{2}\right)^2+6 \fbox{$\left(y+\frac{3}{4}\right)^2$}=\frac{39}{8} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+3 x+7 y^2+7 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+7 y-8 x^2+3 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 7 y^2+7 y-8 x^2+3 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+3 x+\underline{\text{ }}\right)+\left(7 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+3 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{3 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{3 x}{8}+\underline{\text{ }}\right)$}+\left(7 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2+7 y+\underline{\text{ }}\right)=7 \left(y^2+y+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{3 x}{8}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{256}=-\frac{9}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-\frac{9}{32}=\frac{247}{32}: \\ -8 \left(x^2-\frac{3 x}{8}+\frac{9}{256}\right)+7 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{247}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{7}{4}=\frac{7}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{247}{32}+\frac{7}{4}=\frac{303}{32}: \\ -8 \left(x^2-\frac{3 x}{8}+\frac{9}{256}\right)+7 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{303}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{8}+\frac{9}{256}=\left(x-\frac{3}{16}\right)^2: \\ -8 \fbox{$\left(x-\frac{3}{16}\right)^2$}+7 \left(y^2+y+\frac{1}{4}\right)=\frac{303}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{3}{16}\right)^2+7 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{303}{32} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+6 x-5 y^2+7 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+7 y-4 x^2+6 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -5 y^2+7 y-4 x^2+6 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+6 x+\underline{\text{ }}\right)+\left(-5 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+6 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(-5 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+7 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right): \\ -4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-\frac{9}{4}=\frac{11}{4}: \\ -4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{4}-\frac{49}{20}=\frac{3}{10}: \\ -4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)-5 \left(y^2-\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$\frac{3}{10}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{2}+\frac{9}{16}=\left(x-\frac{3}{4}\right)^2: \\ -4 \fbox{$\left(x-\frac{3}{4}\right)^2$}-5 \left(y^2-\frac{7 y}{5}+\frac{49}{100}\right)=\frac{3}{10} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{5}+\frac{49}{100}=\left(y-\frac{7}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x-\frac{3}{4}\right)^2-5 \fbox{$\left(y-\frac{7}{10}\right)^2$}=\frac{3}{10} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2-3 x-6 y^2-2 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-2 y+10 x^2-3 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -6 y^2-2 y+10 x^2-3 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2-3 x+\underline{\text{ }}\right)+\left(-6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2-3 x+\underline{\text{ }}\right)=10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(-6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-2 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\ 10 \left(x^2-\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{9}{400}=\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3+\frac{9}{40}=\frac{129}{40}: \\ 10 \left(x^2-\frac{3 x}{10}+\frac{9}{400}\right)-6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{129}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-6}{36}=-\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{129}{40}-\frac{1}{6}=\frac{367}{120}: \\ 10 \left(x^2-\frac{3 x}{10}+\frac{9}{400}\right)-6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{367}{120}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{10}+\frac{9}{400}=\left(x-\frac{3}{20}\right)^2: \\ \text{10 }\fbox{$\left(x-\frac{3}{20}\right)^2$}-6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\frac{367}{120} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x-\frac{3}{20}\right)^2-6 \fbox{$\left(y+\frac{1}{6}\right)^2$}=\frac{367}{120} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+x+6 y^2-4 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2-4 y+2 x^2+x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ 6 y^2-4 y+2 x^2+x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+x+\underline{\text{ }}\right)+\left(6 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+x+\underline{\text{ }}\right)=2 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(6 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2-4 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\ 2 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{2}{16}=\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{8}-5=-\frac{39}{8}: \\ 2 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+6 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{39}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{2}{3}-\frac{39}{8}=-\frac{101}{24}: \\ 2 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+6 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$-\frac{101}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{1}{4}\right)^2$}+6 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=-\frac{101}{24} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{1}{4}\right)^2+6 \fbox{$\left(y-\frac{1}{3}\right)^2$}=-\frac{101}{24} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+7 x-3 y^2-6 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-6 y+4 x^2+7 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -3 y^2-6 y+4 x^2+7 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+7 x+\underline{\text{ }}\right)+\left(-3 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+7 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)$}+\left(-3 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2-6 y+\underline{\text{ }}\right)=-3 \left(y^2+2 y+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{49}{64}=\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{49}{16}-10=-\frac{111}{16}: \\ 4 \left(x^2+\frac{7 x}{4}+\frac{49}{64}\right)-3 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$-\frac{111}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{111}{16}-3=-\frac{159}{16}: \\ 4 \left(x^2+\frac{7 x}{4}+\frac{49}{64}\right)-3 \left(y^2+2 y+1\right)=\fbox{$-\frac{159}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{7 x}{4}+\frac{49}{64}=\left(x+\frac{7}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{7}{8}\right)^2$}-3 \left(y^2+2 y+1\right)=-\frac{159}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{7}{8}\right)^2-3 \fbox{$(y+1)^2$}=-\frac{159}{16} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+3 x-3 y^2-y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-y-7 x^2+3 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -3 y^2-y-7 x^2+3 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+3 x+\underline{\text{ }}\right)+\left(-3 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+3 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)$}+\left(-3 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2-y+\underline{\text{ }}\right)=-3 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{3 x}{7}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{7}}{2}\right)^2=\frac{9}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{196}=-\frac{9}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -5-\frac{9}{28}=-\frac{149}{28}: \\ -7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-3 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{149}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-3}{36}=-\frac{1}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{149}{28}-\frac{1}{12}=-\frac{227}{42}: \\ -7 \left(x^2-\frac{3 x}{7}+\frac{9}{196}\right)-3 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$-\frac{227}{42}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{7}+\frac{9}{196}=\left(x-\frac{3}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{3}{14}\right)^2$}-3 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=-\frac{227}{42} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{3}{14}\right)^2-3 \fbox{$\left(y+\frac{1}{6}\right)^2$}=-\frac{227}{42} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+3 x+6 y^2+2 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+2 y+10 x^2+3 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 6 y^2+2 y+10 x^2+3 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+3 x+\underline{\text{ }}\right)+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+3 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+2 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{9}{400}=\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{9}{40}=\frac{49}{40}: \\ 10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+6 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{49}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{40}+\frac{1}{6}=\frac{167}{120}: \\ 10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{167}{120}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{10}+\frac{9}{400}=\left(x+\frac{3}{20}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{3}{20}\right)^2$}+6 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\frac{167}{120} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{3}{20}\right)^2+6 \fbox{$\left(y+\frac{1}{6}\right)^2$}=\frac{167}{120} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+4 x-8 y^2-8 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-8 y-9 x^2+4 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+4 x+\underline{\text{ }}\right)+\left(-8 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(-9 x^2+4 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right)$}+\left(-8 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(-8 y^2-8 y+\underline{\text{ }}\right)=-8 \left(y^2+y+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{4}{81}=-\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-8}{4}=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -\frac{4}{9}-2=-\frac{22}{9}: \\ -9 \left(x^2-\frac{4 x}{9}+\frac{4}{81}\right)-8 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{22}{9}$} \\ \end{array} Step 8: \begin{array}{l} x^2-\frac{4 x}{9}+\frac{4}{81}=\left(x-\frac{2}{9}\right)^2: \\ -9 \fbox{$\left(x-\frac{2}{9}\right)^2$}-8 \left(y^2+y+\frac{1}{4}\right)=-\frac{22}{9} \\ \end{array} Step 9: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{2}{9}\right)^2-8 \fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{22}{9} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+9 x-9 y^2-10 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-10 y-x^2+9 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -9 y^2-10 y-x^2+9 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+9 x+\underline{\text{ }}\right)+\left(-9 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+9 x+\underline{\text{ }}\right)=-\left(x^2-9 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-9 x+\underline{\text{ }}\right)$}+\left(-9 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-10 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right): \\ -\left(x^2-9 x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-9}{2}\right)^2=\frac{81}{4} \text{on }\text{the }\text{left }\text{and }-\frac{81}{4}=-\frac{81}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -2-\frac{81}{4}=-\frac{89}{4}: \\ -\left(x^2-9 x+\frac{81}{4}\right)-9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{89}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{89}{4}-\frac{25}{9}=-\frac{901}{36}: \\ -\left(x^2-9 x+\frac{81}{4}\right)-9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$-\frac{901}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2-9 x+\frac{81}{4}=\left(x-\frac{9}{2}\right)^2: \\ -\fbox{$\left(x-\frac{9}{2}\right)^2$}-9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=-\frac{901}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{10 y}{9}+\frac{25}{81}=\left(y+\frac{5}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x-\frac{9}{2}\right)^2-9 \fbox{$\left(y+\frac{5}{9}\right)^2$}=-\frac{901}{36} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+6 x+4 y^2+3 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+3 y+6 x^2+6 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ 4 y^2+3 y+6 x^2+6 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+6 x+\underline{\text{ }}\right)+\left(4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+6 x+\underline{\text{ }}\right)=6 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+x+\underline{\text{ }}\right)$}+\left(4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+3 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ 6 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{6}{4}=\frac{3}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7+\frac{3}{2}=\frac{17}{2}: \\ 6 \left(x^2+x+\frac{1}{4}\right)+4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{17}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{17}{2}+\frac{9}{16}=\frac{145}{16}: \\ 6 \left(x^2+x+\frac{1}{4}\right)+4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{145}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 6 \fbox{$\left(x+\frac{1}{2}\right)^2$}+4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\frac{145}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{1}{2}\right)^2+4 \fbox{$\left(y+\frac{3}{8}\right)^2$}=\frac{145}{16} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+5 x+8 y^2+5 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+5 y+9 x^2+5 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ 8 y^2+5 y+9 x^2+5 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2+5 x+\underline{\text{ }}\right)+\left(8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2+5 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)$}+\left(8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+5 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right): \\ 9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{36}-1=-\frac{11}{36}: \\ 9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)+8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{11}{36}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{32}-\frac{11}{36}=\frac{137}{288}: \\ 9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)+8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=\fbox{$\frac{137}{288}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{9}+\frac{25}{324}=\left(x+\frac{5}{18}\right)^2: \\ 9 \fbox{$\left(x+\frac{5}{18}\right)^2$}+8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=\frac{137}{288} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{8}+\frac{25}{256}=\left(y+\frac{5}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x+\frac{5}{18}\right)^2+8 \fbox{$\left(y+\frac{5}{16}\right)^2$}=\frac{137}{288} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+5 x+5 y^2+5 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+5 y+10 x^2+5 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 5 y^2+5 y+10 x^2+5 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+5 x+\underline{\text{ }}\right)+\left(5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+5 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+5 y+\underline{\text{ }}\right)=5 \left(y^2+y+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{10}{16}=\frac{5}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{5}{8}=\frac{69}{8}: \\ 10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{69}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{5}{4}=\frac{5}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{69}{8}+\frac{5}{4}=\frac{79}{8}: \\ 10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{79}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{1}{4}\right)^2$}+5 \left(y^2+y+\frac{1}{4}\right)=\frac{79}{8} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{1}{4}\right)^2+5 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{79}{8} \\ \end{array}
khanacademy
amps
Given the equation $x^2-7 x-8 y^2-8 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-8 y+x^2-7 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -8 y^2-8 y+x^2-7 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-7 x+\underline{\text{ }}\right)+\left(-8 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-8 y^2-8 y+\underline{\text{ }}\right)=-8 \left(y^2+y+\underline{\text{ }}\right): \\ \left(x^2-7 x+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} \frac{49}{4}-1=\frac{45}{4}: \\ \left(x^2-7 x+\frac{49}{4}\right)-8 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{45}{4}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-8}{4}=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} \frac{45}{4}-2=\frac{37}{4}: \\ \left(x^2-7 x+\frac{49}{4}\right)-8 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{37}{4}$} \\ \end{array} Step 9: \begin{array}{l} x^2-7 x+\frac{49}{4}=\left(x-\frac{7}{2}\right)^2: \\ \fbox{$\left(x-\frac{7}{2}\right)^2$}-8 \left(y^2+y+\frac{1}{4}\right)=\frac{37}{4} \\ \end{array} Step 10: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x-\frac{7}{2}\right)^2-8 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{37}{4} \\ \end{array}
khanacademy
amps
Given the equation $x^2+6 x+y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ x^2+6 x+(y-7)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }y-7 \text{from }\text{both }\text{sides}: \\ x^2+6 x=7-y \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(x^2+6 x+\underline{\text{ }}\right)=(7-y)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\ \end{array} Step 5: \begin{array}{l} (7-y)+9=16-y: \\ \left(x^2+6 x+9\right)=\fbox{$16-y$} \\ \end{array} Step 6: \begin{array}{l} x^2+6 x+9=(x+3)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \fbox{$(x+3)^2$}=16-y \\ \end{array}
khanacademy
amps
Given the equation $7 x^2-9 x-7 y^2-2 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 y^2-2 y+7 x^2-9 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -7 y^2-2 y+7 x^2-9 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2-9 x+\underline{\text{ }}\right)+\left(-7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2-9 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(-7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-7 y^2-2 y+\underline{\text{ }}\right)=-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right): \\ 7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{81}{196}=\frac{81}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{28}-10=-\frac{199}{28}: \\ 7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{199}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{-7}{49}=-\frac{1}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{199}{28}-\frac{1}{7}=-\frac{29}{4}: \\ 7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-7 \left(y^2+\frac{2 y}{7}+\frac{1}{49}\right)=\fbox{$-\frac{29}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{7}+\frac{81}{196}=\left(x-\frac{9}{14}\right)^2: \\ 7 \fbox{$\left(x-\frac{9}{14}\right)^2$}-7 \left(y^2+\frac{2 y}{7}+\frac{1}{49}\right)=-\frac{29}{4} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{7}+\frac{1}{49}=\left(y+\frac{1}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x-\frac{9}{14}\right)^2-7 \fbox{$\left(y+\frac{1}{7}\right)^2$}=-\frac{29}{4} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-9 x-5 y^2+5 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+5 y-3 x^2-9 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -5 y^2+5 y-3 x^2-9 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2-9 x+\underline{\text{ }}\right)+\left(-5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2-9 x+\underline{\text{ }}\right)=-3 \left(x^2+3 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2+3 x+\underline{\text{ }}\right)$}+\left(-5 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+5 y+\underline{\text{ }}\right)=-5 \left(y^2-y+\underline{\text{ }}\right): \\ -3 \left(x^2+3 x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{27}{4}=-\frac{67}{4}: \\ -3 \left(x^2+3 x+\frac{9}{4}\right)-5 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{67}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-5}{4}=-\frac{5}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{67}{4}-\frac{5}{4}=-18: \\ -3 \left(x^2+3 x+\frac{9}{4}\right)-5 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-18$} \\ \end{array} Step 10: \begin{array}{l} x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\ -3 \fbox{$\left(x+\frac{3}{2}\right)^2$}-5 \left(y^2-y+\frac{1}{4}\right)=-18 \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x+\frac{3}{2}\right)^2-5 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-18 \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+7 x-4 y^2-6 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-6 y+4 x^2+7 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ -4 y^2-6 y+4 x^2+7 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+7 x+\underline{\text{ }}\right)+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+7 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)$}+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-6 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{7 x}{4}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{49}{64}=\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6+\frac{49}{16}=\frac{145}{16}: \\ 4 \left(x^2+\frac{7 x}{4}+\frac{49}{64}\right)-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{145}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{145}{16}-\frac{9}{4}=\frac{109}{16}: \\ 4 \left(x^2+\frac{7 x}{4}+\frac{49}{64}\right)-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$\frac{109}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{7 x}{4}+\frac{49}{64}=\left(x+\frac{7}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{7}{8}\right)^2$}-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\frac{109}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{7}{8}\right)^2-4 \fbox{$\left(y+\frac{3}{4}\right)^2$}=\frac{109}{16} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2+6 x+7 y^2+6 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+6 y+3 x^2+6 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2+6 x+\underline{\text{ }}\right)+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(3 x^2+6 x+\underline{\text{ }}\right)=3 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(7 y^2+6 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right): \\ 3 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }3\times 1=3 \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3+\frac{9}{7}=\frac{30}{7}: \\ 3 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{30}{7}$} \\ \end{array} Step 8: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ 3 \fbox{$(x+1)^2$}+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\frac{30}{7} \\ \end{array} Step 9: \begin{array}{l} y^2+\frac{6 y}{7}+\frac{9}{49}=\left(y+\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 (x+1)^2+7 \fbox{$\left(y+\frac{3}{7}\right)^2$}=\frac{30}{7} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+6 x+5 y^2+y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+y+2 x^2+6 x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 5 y^2+y+2 x^2+6 x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+6 x+\underline{\text{ }}\right)+\left(5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+6 x+\underline{\text{ }}\right)=2 \left(x^2+3 x+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+3 x+\underline{\text{ }}\right)$}+\left(5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+y+\underline{\text{ }}\right)=5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\ 2 \left(x^2+3 x+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{4}=\frac{9}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{2}-3=\frac{3}{2}: \\ 2 \left(x^2+3 x+\frac{9}{4}\right)+5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{3}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{5}{100}=\frac{1}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{3}{2}+\frac{1}{20}=\frac{31}{20}: \\ 2 \left(x^2+3 x+\frac{9}{4}\right)+5 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$\frac{31}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\ 2 \fbox{$\left(x+\frac{3}{2}\right)^2$}+5 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\frac{31}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{3}{2}\right)^2+5 \fbox{$\left(y+\frac{1}{10}\right)^2$}=\frac{31}{20} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-5 x-6 y^2+y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+y+2 x^2-5 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ -6 y^2+y+2 x^2-5 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-5 x+\underline{\text{ }}\right)+\left(-6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-5 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9+\frac{25}{8}=\frac{97}{8}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right)=\fbox{$\frac{97}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{-6}{144}=-\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{97}{8}-\frac{1}{24}=\frac{145}{12}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-6 \left(y^2-\frac{y}{6}+\frac{1}{144}\right)=\fbox{$\frac{145}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{5}{4}\right)^2$}-6 \left(y^2-\frac{y}{6}+\frac{1}{144}\right)=\frac{145}{12} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{6}+\frac{1}{144}=\left(y-\frac{1}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{5}{4}\right)^2-6 \fbox{$\left(y-\frac{1}{12}\right)^2$}=\frac{145}{12} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+4 x+9 y^2-4 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-4 y-7 x^2+4 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ 9 y^2-4 y-7 x^2+4 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+4 x+\underline{\text{ }}\right)+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+4 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{4 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{4 x}{7}+\underline{\text{ }}\right)$}+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2-4 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{4 x}{7}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{7}}{2}\right)^2=\frac{4}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{4}{49}=-\frac{4}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{4}{7}=-\frac{74}{7}: \\ -7 \left(x^2-\frac{4 x}{7}+\frac{4}{49}\right)+9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{74}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{4}{81}=\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{4}{9}-\frac{74}{7}=-\frac{638}{63}: \\ -7 \left(x^2-\frac{4 x}{7}+\frac{4}{49}\right)+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$-\frac{638}{63}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{4 x}{7}+\frac{4}{49}=\left(x-\frac{2}{7}\right)^2: \\ -7 \fbox{$\left(x-\frac{2}{7}\right)^2$}+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=-\frac{638}{63} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{2}{7}\right)^2+9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=-\frac{638}{63} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-7 x+4 y^2+3 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+3 y-5 x^2-7 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 4 y^2+3 y-5 x^2-7 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-7 x+\underline{\text{ }}\right)+\left(4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-7 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{7 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+\frac{7 x}{5}+\underline{\text{ }}\right)$}+\left(4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+3 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ -5 \left(x^2+\frac{7 x}{5}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1-\frac{49}{20}=-\frac{29}{20}: \\ -5 \left(x^2+\frac{7 x}{5}+\frac{49}{100}\right)+4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{29}{20}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{16}-\frac{29}{20}=-\frac{71}{80}: \\ -5 \left(x^2+\frac{7 x}{5}+\frac{49}{100}\right)+4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$-\frac{71}{80}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{7 x}{5}+\frac{49}{100}=\left(x+\frac{7}{10}\right)^2: \\ -5 \fbox{$\left(x+\frac{7}{10}\right)^2$}+4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=-\frac{71}{80} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{7}{10}\right)^2+4 \fbox{$\left(y+\frac{3}{8}\right)^2$}=-\frac{71}{80} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+7 x+9 y^2+5 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+5 y-7 x^2+7 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 9 y^2+5 y-7 x^2+7 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+7 x+\underline{\text{ }}\right)+\left(9 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+7 x+\underline{\text{ }}\right)=-7 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-x+\underline{\text{ }}\right)$}+\left(9 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+5 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right): \\ -7 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-7}{4}=-\frac{7}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -4-\frac{7}{4}=-\frac{23}{4}: \\ -7 \left(x^2-x+\frac{1}{4}\right)+9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{23}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{36}-\frac{23}{4}=-\frac{91}{18}: \\ -7 \left(x^2-x+\frac{1}{4}\right)+9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$-\frac{91}{18}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -7 \fbox{$\left(x-\frac{1}{2}\right)^2$}+9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=-\frac{91}{18} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{9}+\frac{25}{324}=\left(y+\frac{5}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{1}{2}\right)^2+9 \fbox{$\left(y+\frac{5}{18}\right)^2$}=-\frac{91}{18} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2-x-4 y^2+3 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+3 y+3 x^2-x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -4 y^2+3 y+3 x^2-x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2-x+\underline{\text{ }}\right)+\left(-4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2-x+\underline{\text{ }}\right)=3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}+\left(-4 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+3 y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\ 3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{3}{36}=\frac{1}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{12}-2=-\frac{23}{12}: \\ 3 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)-4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{23}{12}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{23}{12}-\frac{9}{16}=-\frac{119}{48}: \\ 3 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)-4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$-\frac{119}{48}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\ 3 \fbox{$\left(x-\frac{1}{6}\right)^2$}-4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=-\frac{119}{48} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x-\frac{1}{6}\right)^2-4 \fbox{$\left(y-\frac{3}{8}\right)^2$}=-\frac{119}{48} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+7 x-10 y^2+2 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+2 y-9 x^2+7 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -10 y^2+2 y-9 x^2+7 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+7 x+\underline{\text{ }}\right)+\left(-10 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+7 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)$}+\left(-10 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2+2 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{49}{36}=\frac{59}{36}: \\ -9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-10 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{59}{36}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{59}{36}-\frac{1}{10}=\frac{277}{180}: \\ -9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-10 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=\fbox{$\frac{277}{180}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{7 x}{9}+\frac{49}{324}=\left(x-\frac{7}{18}\right)^2: \\ -9 \fbox{$\left(x-\frac{7}{18}\right)^2$}-10 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=\frac{277}{180} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{5}+\frac{1}{100}=\left(y-\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{7}{18}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{10}\right)^2$}=\frac{277}{180} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-4 x-9 y^2-5 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-5 y-2 x^2-4 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ -9 y^2-5 y-2 x^2-4 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-4 x+\underline{\text{ }}\right)+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-4 x+\underline{\text{ }}\right)=-2 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-5 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right): \\ -2 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-2\times 1=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-2=7: \\ -2 \left(x^2+2 x+1\right)-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$7$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{324}=-\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 7-\frac{25}{36}=\frac{227}{36}: \\ -2 \left(x^2+2 x+1\right)-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$\frac{227}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -2 \fbox{$(x+1)^2$}-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\frac{227}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{9}+\frac{25}{324}=\left(y+\frac{5}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 (x+1)^2-9 \fbox{$\left(y+\frac{5}{18}\right)^2$}=\frac{227}{36} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-9 x+10 y^2+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 x^2-9 x+\left(10 y^2+8\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }10 y^2-2 x^2-9 x+8 \text{from }\text{both }\text{sides}: \\ 2 x^2+9 x+\left(-10 y^2-8\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -10 y^2+2 x^2+9 x=8 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 x^2+9 x+\underline{\text{ }}\right)-10 y^2=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(2 x^2+9 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)$}-10 y^2=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{81}{8}=\frac{145}{8}: \\ 2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)-10 y^2=\fbox{$\frac{145}{8}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{9 x}{2}+\frac{81}{16}=\left(x+\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$\left(x+\frac{9}{4}\right)^2$}-10 y^2=\frac{145}{8} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-3 x-8 y^2+10 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2+10 y-5 x^2-3 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -8 y^2+10 y-5 x^2-3 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-3 x+\underline{\text{ }}\right)+\left(-8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-3 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2+10 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right): \\ -5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{100}=-\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{9}{20}=-\frac{149}{20}: \\ -5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{149}{20}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{64}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{149}{20}-\frac{25}{8}=-\frac{423}{40}: \\ -5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$-\frac{423}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\ -5 \fbox{$\left(x+\frac{3}{10}\right)^2$}-8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=-\frac{423}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{4}+\frac{25}{64}=\left(y-\frac{5}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{3}{10}\right)^2-8 \fbox{$\left(y-\frac{5}{8}\right)^2$}=-\frac{423}{40} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2-9 x+7 y^2+4 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+4 y-4 x^2-9 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ 7 y^2+4 y-4 x^2-9 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2-9 x+\underline{\text{ }}\right)+\left(7 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2-9 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(7 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2+4 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{4 y}{7}+\underline{\text{ }}\right): \\ -4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{4 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{81}{64}=-\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{81}{16}=-\frac{209}{16}: \\ -4 \left(x^2+\frac{9 x}{4}+\frac{81}{64}\right)+7 \left(y^2+\frac{4 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{209}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{7}}{2}\right)^2=\frac{4}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{4}{49}=\frac{4}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{4}{7}-\frac{209}{16}=-\frac{1399}{112}: \\ -4 \left(x^2+\frac{9 x}{4}+\frac{81}{64}\right)+7 \left(y^2+\frac{4 y}{7}+\frac{4}{49}\right)=\fbox{$-\frac{1399}{112}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{4}+\frac{81}{64}=\left(x+\frac{9}{8}\right)^2: \\ -4 \fbox{$\left(x+\frac{9}{8}\right)^2$}+7 \left(y^2+\frac{4 y}{7}+\frac{4}{49}\right)=-\frac{1399}{112} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{7}+\frac{4}{49}=\left(y+\frac{2}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x+\frac{9}{8}\right)^2+7 \fbox{$\left(y+\frac{2}{7}\right)^2$}=-\frac{1399}{112} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2-5 x+2 y^2+8 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+8 y+7 x^2-5 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 2 y^2+8 y+7 x^2-5 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2-5 x+\underline{\text{ }}\right)+\left(2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2-5 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+8 y+\underline{\text{ }}\right)=2 \left(y^2+4 y+\underline{\text{ }}\right): \\ 7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{25}{28}=\frac{305}{28}: \\ 7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+2 \left(y^2+4 y+\underline{\text{ }}\right)=\fbox{$\frac{305}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }2\times 4=8 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{305}{28}+8=\frac{529}{28}: \\ 7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+2 \left(y^2+4 y+4\right)=\fbox{$\frac{529}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\ 7 \fbox{$\left(x-\frac{5}{14}\right)^2$}+2 \left(y^2+4 y+4\right)=\frac{529}{28} \\ \end{array} Step 11: \begin{array}{l} y^2+4 y+4=(y+2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x-\frac{5}{14}\right)^2+2 \fbox{$(y+2)^2$}=\frac{529}{28} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-9 x-10 y^2-3 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-3 y-5 x^2-9 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ -10 y^2-3 y-5 x^2-9 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-9 x+\underline{\text{ }}\right)+\left(-10 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-9 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{9 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+\frac{9 x}{5}+\underline{\text{ }}\right)$}+\left(-10 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-3 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{3 y}{10}+\underline{\text{ }}\right): \\ -5 \left(x^2+\frac{9 x}{5}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{3 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{81}{100}=-\frac{81}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -4-\frac{81}{20}=-\frac{161}{20}: \\ -5 \left(x^2+\frac{9 x}{5}+\frac{81}{100}\right)-10 \left(y^2+\frac{3 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{161}{20}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{161}{20}-\frac{9}{40}=-\frac{331}{40}: \\ -5 \left(x^2+\frac{9 x}{5}+\frac{81}{100}\right)-10 \left(y^2+\frac{3 y}{10}+\frac{9}{400}\right)=\fbox{$-\frac{331}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{5}+\frac{81}{100}=\left(x+\frac{9}{10}\right)^2: \\ -5 \fbox{$\left(x+\frac{9}{10}\right)^2$}-10 \left(y^2+\frac{3 y}{10}+\frac{9}{400}\right)=-\frac{331}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{10}+\frac{9}{400}=\left(y+\frac{3}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{9}{10}\right)^2-\text{10 }\fbox{$\left(y+\frac{3}{20}\right)^2$}=-\frac{331}{40} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-9 x+9 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 x^2-9 x+(9 y-3)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 y-5 x^2-9 x-3 \text{from }\text{both }\text{sides}: \\ 5 x^2+9 x+(3-9 y)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }3-9 y \text{from }\text{both }\text{sides}: \\ 5 x^2+9 x=9 y-3 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(5 x^2+9 x+\underline{\text{ }}\right)=(9 y-3)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(5 x^2+9 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{9 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+\frac{9 x}{5}+\underline{\text{ }}\right)$}=(9 y-3)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{5}}{2}\right)^2=\frac{81}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{81}{100}=\frac{81}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (9 y-3)+\frac{81}{20}=9 y+\frac{21}{20}: \\ 5 \left(x^2+\frac{9 x}{5}+\frac{81}{100}\right)=\fbox{$9 y+\frac{21}{20}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{9 x}{5}+\frac{81}{100}=\left(x+\frac{9}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \fbox{$\left(x+\frac{9}{10}\right)^2$}=9 y+\frac{21}{20} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+10 x-y^2-8 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2-8 y+7 x^2+10 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -y^2-8 y+7 x^2+10 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+10 x+\underline{\text{ }}\right)+\left(-y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+10 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)$}+\left(-y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2-8 y+\underline{\text{ }}\right)=-\left(y^2+8 y+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+8 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{7}}{2}\right)^2=\frac{25}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{49}=\frac{25}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{7}-9=-\frac{38}{7}: \\ 7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)-\left(y^2+8 y+\underline{\text{ }}\right)=\fbox{$-\frac{38}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{38}{7}-16=-\frac{150}{7}: \\ 7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)-\left(y^2+8 y+16\right)=\fbox{$-\frac{150}{7}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{10 x}{7}+\frac{25}{49}=\left(x+\frac{5}{7}\right)^2: \\ 7 \fbox{$\left(x+\frac{5}{7}\right)^2$}-\left(y^2+8 y+16\right)=-\frac{150}{7} \\ \end{array} Step 11: \begin{array}{l} y^2+8 y+16=(y+4)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{5}{7}\right)^2-\fbox{$(y+4)^2$}=-\frac{150}{7} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+2 x-4 y^2-3 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-3 y-7 x^2+2 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -4 y^2-3 y-7 x^2+2 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+2 x+\underline{\text{ }}\right)+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+2 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{2 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{2 x}{7}+\underline{\text{ }}\right)$}+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-3 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{2 x}{7}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{-7}{49}=-\frac{1}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{1}{7}=-\frac{71}{7}: \\ -7 \left(x^2-\frac{2 x}{7}+\frac{1}{49}\right)-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{71}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{71}{7}-\frac{9}{16}=-\frac{1199}{112}: \\ -7 \left(x^2-\frac{2 x}{7}+\frac{1}{49}\right)-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$-\frac{1199}{112}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{2 x}{7}+\frac{1}{49}=\left(x-\frac{1}{7}\right)^2: \\ -7 \fbox{$\left(x-\frac{1}{7}\right)^2$}-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=-\frac{1199}{112} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{1}{7}\right)^2-4 \fbox{$\left(y+\frac{3}{8}\right)^2$}=-\frac{1199}{112} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2-6 x-y^2+9 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+9 y+8 x^2-6 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -y^2+9 y+8 x^2-6 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2-6 x+\underline{\text{ }}\right)+\left(-y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2-6 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+9 y+\underline{\text{ }}\right)=-\left(y^2-9 y+\underline{\text{ }}\right): \\ 8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-9 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{8}-2=-\frac{7}{8}: \\ 8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-\left(y^2-9 y+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-9}{2}\right)^2=\frac{81}{4} \text{on }\text{the }\text{left }\text{and }-\frac{81}{4}=-\frac{81}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{7}{8}-\frac{81}{4}=-\frac{169}{8}: \\ 8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-\left(y^2-9 y+\frac{81}{4}\right)=\fbox{$-\frac{169}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\ 8 \fbox{$\left(x-\frac{3}{8}\right)^2$}-\left(y^2-9 y+\frac{81}{4}\right)=-\frac{169}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-9 y+\frac{81}{4}=\left(y-\frac{9}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x-\frac{3}{8}\right)^2-\fbox{$\left(y-\frac{9}{2}\right)^2$}=-\frac{169}{8} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+8 x-2 y^2-2 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2-2 y-3 x^2+8 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -2 y^2-2 y-3 x^2+8 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+8 x+\underline{\text{ }}\right)+\left(-2 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+8 x+\underline{\text{ }}\right)=-3 \left(x^2-\frac{8 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-\frac{8 x}{3}+\underline{\text{ }}\right)$}+\left(-2 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2-2 y+\underline{\text{ }}\right)=-2 \left(y^2+y+\underline{\text{ }}\right): \\ -3 \left(x^2-\frac{8 x}{3}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{3}}{2}\right)^2=\frac{16}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{16}{9}=-\frac{16}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{16}{3}=-\frac{37}{3}: \\ -3 \left(x^2-\frac{8 x}{3}+\frac{16}{9}\right)-2 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$-\frac{37}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{37}{3}-\frac{1}{2}=-\frac{77}{6}: \\ -3 \left(x^2-\frac{8 x}{3}+\frac{16}{9}\right)-2 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{77}{6}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{8 x}{3}+\frac{16}{9}=\left(x-\frac{4}{3}\right)^2: \\ -3 \fbox{$\left(x-\frac{4}{3}\right)^2$}-2 \left(y^2+y+\frac{1}{4}\right)=-\frac{77}{6} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{4}{3}\right)^2-2 \fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{77}{6} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+8 x+6 y^2-9 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2-9 y-4 x^2+8 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+8 x+\underline{\text{ }}\right)+\left(6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(-4 x^2+8 x+\underline{\text{ }}\right)=-4 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(6 y^2-9 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\ -4 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }6\times \frac{9}{16}=\frac{27}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{27}{8}-4=-\frac{5}{8}: \\ -4 \left(x^2-2 x+1\right)+6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{5}{8}$} \\ \end{array} Step 8: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -4 \fbox{$(x-1)^2$}+6 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{5}{8} \\ \end{array} Step 9: \begin{array}{l} y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 (x-1)^2+6 \fbox{$\left(y-\frac{3}{4}\right)^2$}=-\frac{5}{8} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-5 x-6 y^2+6 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+6 y-2 x^2-5 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -6 y^2+6 y-2 x^2-5 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-5 x+\underline{\text{ }}\right)+\left(-6 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-5 x+\underline{\text{ }}\right)=-2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+6 y+\underline{\text{ }}\right)=-6 \left(y^2-y+\underline{\text{ }}\right): \\ -2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{25}{16}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -9-\frac{25}{8}=-\frac{97}{8}: \\ -2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)-6 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{97}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-6}{4}=-\frac{3}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{97}{8}-\frac{3}{2}=-\frac{109}{8}: \\ -2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)-6 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{109}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\ -2 \fbox{$\left(x+\frac{5}{4}\right)^2$}-6 \left(y^2-y+\frac{1}{4}\right)=-\frac{109}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 \left(x+\frac{5}{4}\right)^2-6 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{109}{8} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-6 x+2 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 x^2-6 x+(2 y+1)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 y-7 x^2-6 x+1 \text{from }\text{both }\text{sides}: \\ 7 x^2+6 x+(-2 y-1)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }2 y+1 \text{to }\text{both }\text{sides}: \\ 7 x^2+6 x=2 y+1 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(7 x^2+6 x+\underline{\text{ }}\right)=(2 y+1)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}=(2 y+1)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (2 y+1)+\frac{9}{7}=2 y+\frac{16}{7}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)=\fbox{$2 y+\frac{16}{7}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \fbox{$\left(x+\frac{3}{7}\right)^2$}=2 y+\frac{16}{7} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+10 x-6 y^2+5 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+5 y+7 x^2+10 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ -6 y^2+5 y+7 x^2+10 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+10 x+\underline{\text{ }}\right)+\left(-6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+10 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)$}+\left(-6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+5 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{5 y}{6}+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{10 x}{7}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{5 y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{7}}{2}\right)^2=\frac{25}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{49}=\frac{25}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{25}{7}=\frac{95}{7}: \\ 7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)-6 \left(y^2-\frac{5 y}{6}+\underline{\text{ }}\right)=\fbox{$\frac{95}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{144}=-\frac{25}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{95}{7}-\frac{25}{24}=\frac{2105}{168}: \\ 7 \left(x^2+\frac{10 x}{7}+\frac{25}{49}\right)-6 \left(y^2-\frac{5 y}{6}+\frac{25}{144}\right)=\fbox{$\frac{2105}{168}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{10 x}{7}+\frac{25}{49}=\left(x+\frac{5}{7}\right)^2: \\ 7 \fbox{$\left(x+\frac{5}{7}\right)^2$}-6 \left(y^2-\frac{5 y}{6}+\frac{25}{144}\right)=\frac{2105}{168} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{6}+\frac{25}{144}=\left(y-\frac{5}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{5}{7}\right)^2-6 \fbox{$\left(y-\frac{5}{12}\right)^2$}=\frac{2105}{168} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+5 x-4 y^2+8 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+8 y+8 x^2+5 x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ -4 y^2+8 y+8 x^2+5 x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+5 x+\underline{\text{ }}\right)+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+5 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+8 y+\underline{\text{ }}\right)=-4 \left(y^2-2 y+\underline{\text{ }}\right): \\ 8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{32}-3=-\frac{71}{32}: \\ 8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)-4 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-\frac{71}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{71}{32}-4=-\frac{199}{32}: \\ 8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)-4 \left(y^2-2 y+1\right)=\fbox{$-\frac{199}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{8}+\frac{25}{256}=\left(x+\frac{5}{16}\right)^2: \\ 8 \fbox{$\left(x+\frac{5}{16}\right)^2$}-4 \left(y^2-2 y+1\right)=-\frac{199}{32} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{5}{16}\right)^2-4 \fbox{$(y-1)^2$}=-\frac{199}{32} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2-10 x+5 y^2-10 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2-10 y+10 x^2-10 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ 5 y^2-10 y+10 x^2-10 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2-10 x+\underline{\text{ }}\right)+\left(5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2-10 x+\underline{\text{ }}\right)=10 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2-x+\underline{\text{ }}\right)$}+\left(5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2-10 y+\underline{\text{ }}\right)=5 \left(y^2-2 y+\underline{\text{ }}\right): \\ 10 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{10}{4}=\frac{5}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{5}{2}-6=-\frac{7}{2}: \\ 10 \left(x^2-x+\frac{1}{4}\right)+5 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-\frac{7}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 5-\frac{7}{2}=\frac{3}{2}: \\ 10 \left(x^2-x+\frac{1}{4}\right)+5 \left(y^2-2 y+1\right)=\fbox{$\frac{3}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ \text{10 }\fbox{$\left(x-\frac{1}{2}\right)^2$}+5 \left(y^2-2 y+1\right)=\frac{3}{2} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x-\frac{1}{2}\right)^2+5 \fbox{$(y-1)^2$}=\frac{3}{2} \\ \end{array}
khanacademy
amps
Given the equation $x^2+4 x+3 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ x^2+4 x+(3 y+1)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 y+1 \text{from }\text{both }\text{sides}: \\ x^2+4 x=-3 y-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(x^2+4 x+\underline{\text{ }}\right)=(-3 y-1)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{4}{2}\right)^2=4 \text{to }\text{both }\text{sides}: \\ \end{array} Step 5: \begin{array}{l} (-3 y-1)+4=3-3 y: \\ \left(x^2+4 x+4\right)=\fbox{$3-3 y$} \\ \end{array} Step 6: \begin{array}{l} x^2+4 x+4=(x+2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \fbox{$(x+2)^2$}=3-3 y \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-8 x-10 y^2+2 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+2 y-3 x^2-8 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2-8 x+\underline{\text{ }}\right)+\left(-10 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(-3 x^2-8 x+\underline{\text{ }}\right)=-3 \left(x^2+\frac{8 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2+\frac{8 x}{3}+\underline{\text{ }}\right)$}+\left(-10 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(-10 y^2+2 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right): \\ -3 \left(x^2+\frac{8 x}{3}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{3}}{2}\right)^2=\frac{16}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{16}{9}=-\frac{16}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -\frac{16}{3}-\frac{1}{10}=-\frac{163}{30}: \\ -3 \left(x^2+\frac{8 x}{3}+\frac{16}{9}\right)-10 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{163}{30}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{8 x}{3}+\frac{16}{9}=\left(x+\frac{4}{3}\right)^2: \\ -3 \fbox{$\left(x+\frac{4}{3}\right)^2$}-10 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=-\frac{163}{30} \\ \end{array} Step 9: \begin{array}{l} y^2-\frac{y}{5}+\frac{1}{100}=\left(y-\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x+\frac{4}{3}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{10}\right)^2$}=-\frac{163}{30} \\ \end{array}
khanacademy
amps
Given the equation $x^2-5 x-10 y^2-9 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-9 y+x^2-5 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -10 y^2-9 y+x^2-5 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-5 x+\underline{\text{ }}\right)+\left(-10 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-10 y^2-9 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{9 y}{10}+\underline{\text{ }}\right): \\ \left(x^2-5 x+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{9 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-5}{2}\right)^2=\frac{25}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} \frac{25}{4}-6=\frac{1}{4}: \\ \left(x^2-5 x+\frac{25}{4}\right)-10 \left(y^2+\frac{9 y}{10}+\underline{\text{ }}\right)=\fbox{$\frac{1}{4}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{81}{400}=-\frac{81}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} \frac{1}{4}-\frac{81}{40}=-\frac{71}{40}: \\ \left(x^2-5 x+\frac{25}{4}\right)-10 \left(y^2+\frac{9 y}{10}+\frac{81}{400}\right)=\fbox{$-\frac{71}{40}$} \\ \end{array} Step 9: \begin{array}{l} x^2-5 x+\frac{25}{4}=\left(x-\frac{5}{2}\right)^2: \\ \fbox{$\left(x-\frac{5}{2}\right)^2$}-10 \left(y^2+\frac{9 y}{10}+\frac{81}{400}\right)=-\frac{71}{40} \\ \end{array} Step 10: \begin{array}{l} y^2+\frac{9 y}{10}+\frac{81}{400}=\left(y+\frac{9}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x-\frac{5}{2}\right)^2-\text{10 }\fbox{$\left(y+\frac{9}{20}\right)^2$}=-\frac{71}{40} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2-5 x-5 y^2+7 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+7 y+8 x^2-5 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -5 y^2+7 y+8 x^2-5 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2-5 x+\underline{\text{ }}\right)+\left(-5 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2-5 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(-5 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+7 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right): \\ 8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{32}-6=-\frac{167}{32}: \\ 8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)-5 \left(y^2-\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{167}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{167}{32}-\frac{49}{20}=-\frac{1227}{160}: \\ 8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)-5 \left(y^2-\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$-\frac{1227}{160}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{8}+\frac{25}{256}=\left(x-\frac{5}{16}\right)^2: \\ 8 \fbox{$\left(x-\frac{5}{16}\right)^2$}-5 \left(y^2-\frac{7 y}{5}+\frac{49}{100}\right)=-\frac{1227}{160} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{5}+\frac{49}{100}=\left(y-\frac{7}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x-\frac{5}{16}\right)^2-5 \fbox{$\left(y-\frac{7}{10}\right)^2$}=-\frac{1227}{160} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+4 x+10 y^2+7 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2+7 y-8 x^2+4 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ 10 y^2+7 y-8 x^2+4 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+4 x+\underline{\text{ }}\right)+\left(10 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+4 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(10 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2+7 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-8}{16}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{1}{2}=-\frac{3}{2}: \\ -8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{3}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{49}{400}=\frac{49}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{40}-\frac{3}{2}=-\frac{11}{40}: \\ -8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+10 \left(y^2+\frac{7 y}{10}+\frac{49}{400}\right)=\fbox{$-\frac{11}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\ -8 \fbox{$\left(x-\frac{1}{4}\right)^2$}+10 \left(y^2+\frac{7 y}{10}+\frac{49}{400}\right)=-\frac{11}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{10}+\frac{49}{400}=\left(y+\frac{7}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{1}{4}\right)^2+\text{10 }\fbox{$\left(y+\frac{7}{20}\right)^2$}=-\frac{11}{40} \\ \end{array}
khanacademy
amps
Given the equation $x^2-3 x-3 y^2-4 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-4 y+x^2-3 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -3 y^2-4 y+x^2-3 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-3 x+\underline{\text{ }}\right)+\left(-3 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-3 y^2-4 y+\underline{\text{ }}\right)=-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\ \left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} \frac{9}{4}-7=-\frac{19}{4}: \\ \left(x^2-3 x+\frac{9}{4}\right)-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{4}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{4}{9}=-\frac{4}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} -\frac{19}{4}-\frac{4}{3}=-\frac{73}{12}: \\ \left(x^2-3 x+\frac{9}{4}\right)-3 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{73}{12}$} \\ \end{array} Step 9: \begin{array}{l} x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\ \fbox{$\left(x-\frac{3}{2}\right)^2$}-3 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{73}{12} \\ \end{array} Step 10: \begin{array}{l} y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x-\frac{3}{2}\right)^2-3 \fbox{$\left(y+\frac{2}{3}\right)^2$}=-\frac{73}{12} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+5 x+6 y^2+5 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 x^2+6 y^2+5 x+5 y+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -7 x^2+6 y^2+5 x+5 y=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+5 x+\underline{\text{ }}\right)+\left(6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+5 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{5 x^2}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+5 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{5 y^2}{6}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{25}{28}=-\frac{53}{28}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)=\fbox{$-\frac{53}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{144}=\frac{25}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{24}-\frac{53}{28}=-\frac{143}{168}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=\fbox{$-\frac{143}{168}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{5}{14}\right)^2$}+6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=-\frac{143}{168} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{6}+\frac{25}{144}=\left(y+\frac{5}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{5}{14}\right)^2+6 \fbox{$\left(y+\frac{5}{12}\right)^2$}=-\frac{143}{168} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+7 x+5 y^2+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 x^2+7 x+\left(5 y^2+4\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 5 y^2+9 x^2+7 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(9 x^2+7 x+\underline{\text{ }}\right)+5 y^2=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2+7 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{7 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{7 x}{9}+\underline{\text{ }}\right)$}+5 y^2=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{49}{324}=\frac{49}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{49}{36}-4=-\frac{95}{36}: \\ 9 \left(x^2+\frac{7 x}{9}+\frac{49}{324}\right)+5 y^2=\fbox{$-\frac{95}{36}$} \\ \end{array} Step 7: \begin{array}{l} x^2+\frac{7 x}{9}+\frac{49}{324}=\left(x+\frac{7}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \fbox{$\left(x+\frac{7}{18}\right)^2$}+5 y^2=-\frac{95}{36} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+2 x-2 y^2+y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+y-x^2+2 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -2 y^2+y-x^2+2 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+2 x+\underline{\text{ }}\right)+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+2 x+\underline{\text{ }}\right)=-\left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-2 x+\underline{\text{ }}\right)$}+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ -\left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-1=-1 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -2-1=-3: \\ -\left(x^2-2 x+1\right)-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-3$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -3-\frac{1}{8}=-\frac{25}{8}: \\ -\left(x^2-2 x+1\right)-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{25}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -\fbox{$(x-1)^2$}-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{25}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x-1)^2-2 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{25}{8} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+2 x-y^2+10 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+10 y-8 x^2+2 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ -y^2+10 y-8 x^2+2 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+2 x+\underline{\text{ }}\right)+\left(-y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+2 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+10 y+\underline{\text{ }}\right)=-\left(y^2-10 y+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-10 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-8}{64}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-\frac{1}{8}=\frac{79}{8}: \\ -8 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-\left(y^2-10 y+\underline{\text{ }}\right)=\fbox{$\frac{79}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-10}{2}\right)^2=25 \text{on }\text{the }\text{left }\text{and }-25=-25 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{79}{8}-25=-\frac{121}{8}: \\ -8 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-\left(y^2-10 y+25\right)=\fbox{$-\frac{121}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{4}+\frac{1}{64}=\left(x-\frac{1}{8}\right)^2: \\ -8 \fbox{$\left(x-\frac{1}{8}\right)^2$}-\left(y^2-10 y+25\right)=-\frac{121}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-10 y+25=(y-5)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{1}{8}\right)^2-\fbox{$(y-5)^2$}=-\frac{121}{8} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-4 x+9 y^2-y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-y-2 x^2-4 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ 9 y^2-y-2 x^2-4 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-4 x+\underline{\text{ }}\right)+\left(9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-4 x+\underline{\text{ }}\right)=-2 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2-y+\underline{\text{ }}\right)=9 \left(y^2-\frac{y}{9}+\underline{\text{ }}\right): \\ -2 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-2\times 1=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-2=-3: \\ -2 \left(x^2+2 x+1\right)+9 \left(y^2-\frac{y}{9}+\underline{\text{ }}\right)=\fbox{$-3$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{9}}{2}\right)^2=\frac{1}{324} \text{on }\text{the }\text{left }\text{and }\frac{9}{324}=\frac{1}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{36}-3=-\frac{107}{36}: \\ -2 \left(x^2+2 x+1\right)+9 \left(y^2-\frac{y}{9}+\frac{1}{324}\right)=\fbox{$-\frac{107}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -2 \fbox{$(x+1)^2$}+9 \left(y^2-\frac{y}{9}+\frac{1}{324}\right)=-\frac{107}{36} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{9}+\frac{1}{324}=\left(y-\frac{1}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 (x+1)^2+9 \fbox{$\left(y-\frac{1}{18}\right)^2$}=-\frac{107}{36} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+9 x+3 y^2-5 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 y^2-5 y-9 x^2+9 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 3 y^2-5 y-9 x^2+9 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+9 x+\underline{\text{ }}\right)+\left(3 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+9 x+\underline{\text{ }}\right)=-9 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-x+\underline{\text{ }}\right)$}+\left(3 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(3 y^2-5 y+\underline{\text{ }}\right)=3 \left(y^2-\frac{5 y}{3}+\underline{\text{ }}\right): \\ -9 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$3 \left(y^2-\frac{5 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2-\frac{9}{4}=-\frac{1}{4}: \\ -9 \left(x^2-x+\frac{1}{4}\right)+3 \left(y^2-\frac{5 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{1}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{36}=\frac{25}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{12}-\frac{1}{4}=\frac{11}{6}: \\ -9 \left(x^2-x+\frac{1}{4}\right)+3 \left(y^2-\frac{5 y}{3}+\frac{25}{36}\right)=\fbox{$\frac{11}{6}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -9 \fbox{$\left(x-\frac{1}{2}\right)^2$}+3 \left(y^2-\frac{5 y}{3}+\frac{25}{36}\right)=\frac{11}{6} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{3}+\frac{25}{36}=\left(y-\frac{5}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{1}{2}\right)^2+3 \fbox{$\left(y-\frac{5}{6}\right)^2$}=\frac{11}{6} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+x+3 y^2-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 x^2+x+\left(3 y^2-10\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 3 y^2+7 x^2+x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(7 x^2+x+\underline{\text{ }}\right)+3 y^2=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+x+\underline{\text{ }}\right)=7 \left(x^2+\frac{x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{x}{7}+\underline{\text{ }}\right)$}+3 y^2=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{7}{196}=\frac{1}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} 10+\frac{1}{28}=\frac{281}{28}: \\ 7 \left(x^2+\frac{x}{7}+\frac{1}{196}\right)+3 y^2=\fbox{$\frac{281}{28}$} \\ \end{array} Step 7: \begin{array}{l} x^2+\frac{x}{7}+\frac{1}{196}=\left(x+\frac{1}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \fbox{$\left(x+\frac{1}{14}\right)^2$}+3 y^2=\frac{281}{28} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2+8 x-y^2+2 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+2 y-5 x^2+8 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ -y^2+2 y-5 x^2+8 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2+8 x+\underline{\text{ }}\right)+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2+8 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+2 y+\underline{\text{ }}\right)=-\left(y^2-2 y+\underline{\text{ }}\right): \\ -5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-\frac{16}{5}=\frac{29}{5}: \\ -5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{29}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-1=-1 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{29}{5}-1=\frac{24}{5}: \\ -5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2-2 y+1\right)=\fbox{$\frac{24}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\ -5 \fbox{$\left(x-\frac{4}{5}\right)^2$}-\left(y^2-2 y+1\right)=\frac{24}{5} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x-\frac{4}{5}\right)^2-\fbox{$(y-1)^2$}=\frac{24}{5} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+10 x-4 y^2+9 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+9 y-x^2+10 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -4 y^2+9 y-x^2+10 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+10 x+\underline{\text{ }}\right)+\left(-4 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+10 x+\underline{\text{ }}\right)=-\left(x^2-10 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-10 x+\underline{\text{ }}\right)$}+\left(-4 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+9 y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{9 y}{4}+\underline{\text{ }}\right): \\ -\left(x^2-10 x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{9 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-10}{2}\right)^2=25 \text{on }\text{the }\text{left }\text{and }-25=-25 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-25=-17: \\ -\left(x^2-10 x+25\right)-4 \left(y^2-\frac{9 y}{4}+\underline{\text{ }}\right)=\fbox{$-17$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{81}{64}=-\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -17-\frac{81}{16}=-\frac{353}{16}: \\ -\left(x^2-10 x+25\right)-4 \left(y^2-\frac{9 y}{4}+\frac{81}{64}\right)=\fbox{$-\frac{353}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-10 x+25=(x-5)^2: \\ -\fbox{$(x-5)^2$}-4 \left(y^2-\frac{9 y}{4}+\frac{81}{64}\right)=-\frac{353}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{9 y}{4}+\frac{81}{64}=\left(y-\frac{9}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x-5)^2-4 \fbox{$\left(y-\frac{9}{8}\right)^2$}=-\frac{353}{16} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-6 x+5 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 x^2-6 x+(5 y-1)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 y-2 x^2-6 x-1 \text{from }\text{both }\text{sides}: \\ 2 x^2+6 x+(1-5 y)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }1-5 y \text{from }\text{both }\text{sides}: \\ 2 x^2+6 x=5 y-1 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 x^2+6 x+\underline{\text{ }}\right)=(5 y-1)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(2 x^2+6 x+\underline{\text{ }}\right)=2 \left(x^2+3 x+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+3 x+\underline{\text{ }}\right)$}=(5 y-1)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{4}=\frac{9}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (5 y-1)+\frac{9}{2}=5 y+\frac{7}{2}: \\ 2 \left(x^2+3 x+\frac{9}{4}\right)=\fbox{$5 y+\frac{7}{2}$} \\ \end{array} Step 8: \begin{array}{l} x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$\left(x+\frac{3}{2}\right)^2$}=5 y+\frac{7}{2} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+9 x-10 y^2+3 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+3 y+2 x^2+9 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -10 y^2+3 y+2 x^2+9 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+9 x+\underline{\text{ }}\right)+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+9 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)$}+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2+3 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right): \\ 2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{8}-10=\frac{1}{8}: \\ 2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)=\fbox{$\frac{1}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{8}-\frac{9}{40}=-\frac{1}{10}: \\ 2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=\fbox{$-\frac{1}{10}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{2}+\frac{81}{16}=\left(x+\frac{9}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{9}{4}\right)^2$}-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=-\frac{1}{10} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{10}+\frac{9}{400}=\left(y-\frac{3}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{9}{4}\right)^2-\text{10 }\fbox{$\left(y-\frac{3}{20}\right)^2$}=-\frac{1}{10} \\ \end{array}
khanacademy
amps