text
stringlengths
14
7.51M
subset
stringclasses
3 values
source
stringclasses
2 values
Given the equation $7 x^2+6 x+9 y^2-5 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-5 y+7 x^2+6 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 9 y^2-5 y+7 x^2+6 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+6 x+\underline{\text{ }}\right)+\left(9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2-5 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{9}{7}=\frac{65}{7}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{65}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{65}{7}+\frac{25}{36}=\frac{2515}{252}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2-\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$\frac{2515}{252}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\ 7 \fbox{$\left(x+\frac{3}{7}\right)^2$}+9 \left(y^2-\frac{5 y}{9}+\frac{25}{324}\right)=\frac{2515}{252} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{9}+\frac{25}{324}=\left(y-\frac{5}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{3}{7}\right)^2+9 \fbox{$\left(y-\frac{5}{18}\right)^2$}=\frac{2515}{252} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-9 x-2 y^2+2 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+2 y-7 x^2-9 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -2 y^2+2 y-7 x^2-9 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2-9 x+\underline{\text{ }}\right)+\left(-2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2-9 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(-2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+2 y+\underline{\text{ }}\right)=-2 \left(y^2-y+\underline{\text{ }}\right): \\ -7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{81}{196}=-\frac{81}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{81}{28}=-\frac{249}{28}: \\ -7 \left(x^2+\frac{9 x}{7}+\frac{81}{196}\right)-2 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{249}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{249}{28}-\frac{1}{2}=-\frac{263}{28}: \\ -7 \left(x^2+\frac{9 x}{7}+\frac{81}{196}\right)-2 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{263}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{7}+\frac{81}{196}=\left(x+\frac{9}{14}\right)^2: \\ -7 \fbox{$\left(x+\frac{9}{14}\right)^2$}-2 \left(y^2-y+\frac{1}{4}\right)=-\frac{263}{28} \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x+\frac{9}{14}\right)^2-2 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{263}{28} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+5 x-10 y^2+4 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+4 y+9 x^2+5 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ -10 y^2+4 y+9 x^2+5 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2+5 x+\underline{\text{ }}\right)+\left(-10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2+5 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)$}+\left(-10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2+4 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right): \\ 9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{36}-8=-\frac{263}{36}: \\ 9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{263}{36}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{263}{36}-\frac{2}{5}=-\frac{1387}{180}: \\ 9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=\fbox{$-\frac{1387}{180}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{9}+\frac{25}{324}=\left(x+\frac{5}{18}\right)^2: \\ 9 \fbox{$\left(x+\frac{5}{18}\right)^2$}-10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=-\frac{1387}{180} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{2 y}{5}+\frac{1}{25}=\left(y-\frac{1}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x+\frac{5}{18}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{5}\right)^2$}=-\frac{1387}{180} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+5 x+9 y^2+2 y-4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+2 y+4 x^2+5 x-4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }4 \text{to }\text{both }\text{sides}: \\ 9 y^2+2 y+4 x^2+5 x=4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+5 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+2 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{64}=\frac{25}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 4+\frac{25}{16}=\frac{89}{16}: \\ 4 \left(x^2+\frac{5 x}{4}+\frac{25}{64}\right)+9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{89}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{89}{16}+\frac{1}{9}=\frac{817}{144}: \\ 4 \left(x^2+\frac{5 x}{4}+\frac{25}{64}\right)+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{817}{144}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{4}+\frac{25}{64}=\left(x+\frac{5}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{5}{8}\right)^2$}+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{817}{144} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{5}{8}\right)^2+9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{817}{144} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-5 x-8 y^2-7 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-7 y-x^2-5 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ -8 y^2-7 y-x^2-5 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2-5 x+\underline{\text{ }}\right)+\left(-8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2-5 x+\underline{\text{ }}\right)=-\left(x^2+5 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2+5 x+\underline{\text{ }}\right)$}+\left(-8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2-7 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right): \\ -\left(x^2+5 x+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{5}{2}\right)^2=\frac{25}{4} \text{on }\text{the }\text{left }\text{and }-\frac{25}{4}=-\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-\frac{25}{4}=\frac{11}{4}: \\ -\left(x^2+5 x+\frac{25}{4}\right)-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{49}{256}=-\frac{49}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{4}-\frac{49}{32}=\frac{39}{32}: \\ -\left(x^2+5 x+\frac{25}{4}\right)-8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\fbox{$\frac{39}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^2: \\ -\fbox{$\left(x+\frac{5}{2}\right)^2$}-8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\frac{39}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{8}+\frac{49}{256}=\left(y+\frac{7}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x+\frac{5}{2}\right)^2-8 \fbox{$\left(y+\frac{7}{16}\right)^2$}=\frac{39}{32} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-5 x+9 y^2+10 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+10 y+2 x^2-5 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 9 y^2+10 y+2 x^2-5 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-5 x+\underline{\text{ }}\right)+\left(9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-5 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+10 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{8}-4=-\frac{7}{8}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{81}=\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{9}-\frac{7}{8}=\frac{137}{72}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$\frac{137}{72}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{5}{4}\right)^2$}+9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\frac{137}{72} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{10 y}{9}+\frac{25}{81}=\left(y+\frac{5}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{5}{4}\right)^2+9 \fbox{$\left(y+\frac{5}{9}\right)^2$}=\frac{137}{72} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-4 x-10 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 x^2-4 x+(6-10 y)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-10 y-3 x^2-4 x+6 \text{from }\text{both }\text{sides}: \\ 3 x^2+4 x+(10 y-6)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }10 y-6 \text{from }\text{both }\text{sides}: \\ 3 x^2+4 x=6-10 y \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(3 x^2+4 x+\underline{\text{ }}\right)=(6-10 y)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(3 x^2+4 x+\underline{\text{ }}\right)=3 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)$}=(6-10 y)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{4}{9}=\frac{4}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (6-10 y)+\frac{4}{3}=\frac{22}{3}-10 y: \\ 3 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)=\fbox{$\frac{22}{3}-10 y$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{4 x}{3}+\frac{4}{9}=\left(x+\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \fbox{$\left(x+\frac{2}{3}\right)^2$}=\frac{22}{3}-10 y \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2+4 x+10 y^2-7 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2-7 y-10 x^2+4 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ 10 y^2-7 y-10 x^2+4 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2+4 x+\underline{\text{ }}\right)+\left(10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2+4 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2-7 y+\underline{\text{ }}\right)=10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right): \\ -10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -2-\frac{2}{5}=-\frac{12}{5}: \\ -10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{12}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{49}{400}=\frac{49}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{40}-\frac{12}{5}=-\frac{47}{40}: \\ -10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=\fbox{$-\frac{47}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{2 x}{5}+\frac{1}{25}=\left(x-\frac{1}{5}\right)^2: \\ -10 \fbox{$\left(x-\frac{1}{5}\right)^2$}+10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=-\frac{47}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{10}+\frac{49}{400}=\left(y-\frac{7}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x-\frac{1}{5}\right)^2+\text{10 }\fbox{$\left(y-\frac{7}{20}\right)^2$}=-\frac{47}{40} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-9 x+8 y^2+8 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+8 y+4 x^2-9 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 8 y^2+8 y+4 x^2-9 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-9 x+\underline{\text{ }}\right)+\left(8 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+8 y+\underline{\text{ }}\right)=8 \left(y^2+y+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{16}-4=\frac{17}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)+8 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{17}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{17}{16}+2=\frac{49}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)+8 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{49}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{9}{8}\right)^2$}+8 \left(y^2+y+\frac{1}{4}\right)=\frac{49}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{9}{8}\right)^2+8 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{49}{16} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+2 x-9 y^2+4 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+4 y+10 x^2+2 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ -9 y^2+4 y+10 x^2+2 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+2 x+\underline{\text{ }}\right)+\left(-9 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+2 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)$}+\left(-9 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+4 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{10}{100}=\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7+\frac{1}{10}=\frac{71}{10}: \\ 10 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{71}{10}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{4}{81}=-\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{71}{10}-\frac{4}{9}=\frac{599}{90}: \\ 10 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$\frac{599}{90}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{5}+\frac{1}{100}=\left(x+\frac{1}{10}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{1}{10}\right)^2$}-9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\frac{599}{90} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{1}{10}\right)^2-9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=\frac{599}{90} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2+10 x-7 y^2+6 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 y^2+6 y+3 x^2+10 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ -7 y^2+6 y+3 x^2+10 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2+10 x+\underline{\text{ }}\right)+\left(-7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2+10 x+\underline{\text{ }}\right)=3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right)$}+\left(-7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(-7 y^2+6 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\ 3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{3}}{2}\right)^2=\frac{25}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{9}=\frac{25}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{25}{3}=\frac{28}{3}: \\ 3 \left(x^2+\frac{10 x}{3}+\frac{25}{9}\right)-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{28}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{49}=-\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{28}{3}-\frac{9}{7}=\frac{169}{21}: \\ 3 \left(x^2+\frac{10 x}{3}+\frac{25}{9}\right)-7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{169}{21}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{10 x}{3}+\frac{25}{9}=\left(x+\frac{5}{3}\right)^2: \\ 3 \fbox{$\left(x+\frac{5}{3}\right)^2$}-7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\frac{169}{21} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x+\frac{5}{3}\right)^2-7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=\frac{169}{21} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-5 x+7 y^2-2 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-2 y-10 x^2-5 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ 7 y^2-2 y-10 x^2-5 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-5 x+\underline{\text{ }}\right)+\left(7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-5 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-2 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-10}{16}=-\frac{5}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{5}{8}=-\frac{53}{8}: \\ -10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{53}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{7}{49}=\frac{1}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{7}-\frac{53}{8}=-\frac{363}{56}: \\ -10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=\fbox{$-\frac{363}{56}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ -10 \fbox{$\left(x+\frac{1}{4}\right)^2$}+7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=-\frac{363}{56} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{2 y}{7}+\frac{1}{49}=\left(y-\frac{1}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{1}{4}\right)^2+7 \fbox{$\left(y-\frac{1}{7}\right)^2$}=-\frac{363}{56} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2+9 x-5 y^2+10 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+10 y-10 x^2+9 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ -5 y^2+10 y-10 x^2+9 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2+9 x+\underline{\text{ }}\right)+\left(-5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2+9 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+10 y+\underline{\text{ }}\right)=-5 \left(y^2-2 y+\underline{\text{ }}\right): \\ -10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{81}{400}=-\frac{81}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7-\frac{81}{40}=\frac{199}{40}: \\ -10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-5 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{199}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{199}{40}-5=-\frac{1}{40}: \\ -10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-5 \left(y^2-2 y+1\right)=\fbox{$-\frac{1}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{10}+\frac{81}{400}=\left(x-\frac{9}{20}\right)^2: \\ -10 \fbox{$\left(x-\frac{9}{20}\right)^2$}-5 \left(y^2-2 y+1\right)=-\frac{1}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x-\frac{9}{20}\right)^2-5 \fbox{$(y-1)^2$}=-\frac{1}{40} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+10 x-10 y^2-2 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-2 y+9 x^2+10 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -10 y^2-2 y+9 x^2+10 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2+10 x+\underline{\text{ }}\right)+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2+10 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-2 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\ 9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{81}=\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{9}-6=-\frac{29}{9}: \\ 9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{29}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{29}{9}-\frac{1}{10}=-\frac{299}{90}: \\ 9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{299}{90}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{10 x}{9}+\frac{25}{81}=\left(x+\frac{5}{9}\right)^2: \\ 9 \fbox{$\left(x+\frac{5}{9}\right)^2$}-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=-\frac{299}{90} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x+\frac{5}{9}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{10}\right)^2$}=-\frac{299}{90} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+x-8 y^2-9 y-4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-9 y+4 x^2+x-4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }4 \text{to }\text{both }\text{sides}: \\ -8 y^2-9 y+4 x^2+x=4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+x+\underline{\text{ }}\right)+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2-9 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 4+\frac{1}{16}=\frac{65}{16}: \\ 4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{65}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{65}{16}-\frac{81}{32}=\frac{49}{32}: \\ 4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\fbox{$\frac{49}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{1}{8}\right)^2$}-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\frac{49}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{9 y}{8}+\frac{81}{256}=\left(y+\frac{9}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{1}{8}\right)^2-8 \fbox{$\left(y+\frac{9}{16}\right)^2$}=\frac{49}{32} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+3 x+9 y^2+9 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+9 y-9 x^2+3 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ 9 y^2+9 y-9 x^2+3 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+3 x+\underline{\text{ }}\right)+\left(9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+3 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}+\left(9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+9 y+\underline{\text{ }}\right)=9 \left(y^2+y+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-9}{36}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{1}{4}=\frac{11}{4}: \\ -9 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{9}{4}=\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{4}+\frac{9}{4}=5: \\ -9 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+y+\frac{1}{4}\right)=\fbox{$5$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\ -9 \fbox{$\left(x-\frac{1}{6}\right)^2$}+9 \left(y^2+y+\frac{1}{4}\right)=5 \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{1}{6}\right)^2+9 \fbox{$\left(y+\frac{1}{2}\right)^2$}=5 \\ \end{array}
khanacademy
amps
Given the equation $-x^2+x+8 y^2+10 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+10 y-x^2+x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 8 y^2+10 y-x^2+x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+x+\underline{\text{ }}\right)+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+x+\underline{\text{ }}\right)=-\left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-x+\underline{\text{ }}\right)$}+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+10 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right): \\ -\left(x^2-x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1-\frac{1}{4}=\frac{3}{4}: \\ -\left(x^2-x+\frac{1}{4}\right)+8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{3}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{3}{4}+\frac{25}{8}=\frac{31}{8}: \\ -\left(x^2-x+\frac{1}{4}\right)+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$\frac{31}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -\fbox{$\left(x-\frac{1}{2}\right)^2$}+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\frac{31}{8} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{4}+\frac{25}{64}=\left(y+\frac{5}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x-\frac{1}{2}\right)^2+8 \fbox{$\left(y+\frac{5}{8}\right)^2$}=\frac{31}{8} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+5 x-3 y^2-9 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-9 y-7 x^2+5 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -3 y^2-9 y-7 x^2+5 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+5 x+\underline{\text{ }}\right)+\left(-3 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+5 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(-3 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2-9 y+\underline{\text{ }}\right)=-3 \left(y^2+3 y+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+3 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{25}{28}=-\frac{53}{28}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-3 \left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$-\frac{53}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{53}{28}-\frac{27}{4}=-\frac{121}{14}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-3 \left(y^2+3 y+\frac{9}{4}\right)=\fbox{$-\frac{121}{14}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{5}{14}\right)^2$}-3 \left(y^2+3 y+\frac{9}{4}\right)=-\frac{121}{14} \\ \end{array} Step 11: \begin{array}{l} y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{5}{14}\right)^2-3 \fbox{$\left(y+\frac{3}{2}\right)^2$}=-\frac{121}{14} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2+4 x-4 y^2+8 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+8 y-6 x^2+4 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ -4 y^2+8 y-6 x^2+4 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2+4 x+\underline{\text{ }}\right)+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2+4 x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+8 y+\underline{\text{ }}\right)=-4 \left(y^2-2 y+\underline{\text{ }}\right): \\ -6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-6}{9}=-\frac{2}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-\frac{2}{3}=\frac{25}{3}: \\ -6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{25}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{3}-4=\frac{13}{3}: \\ -6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2-2 y+1\right)=\fbox{$\frac{13}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\ -6 \fbox{$\left(x-\frac{1}{3}\right)^2$}-4 \left(y^2-2 y+1\right)=\frac{13}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x-\frac{1}{3}\right)^2-4 \fbox{$(y-1)^2$}=\frac{13}{3} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+5 x+9 y^2+7 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2+7 y+8 x^2+5 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ 9 y^2+7 y+8 x^2+5 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+5 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2+7 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right): \\ 8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{32}-1=-\frac{7}{32}: \\ 8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{49}{324}=\frac{49}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{36}-\frac{7}{32}=\frac{329}{288}: \\ 8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\fbox{$\frac{329}{288}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{8}+\frac{25}{256}=\left(x+\frac{5}{16}\right)^2: \\ 8 \fbox{$\left(x+\frac{5}{16}\right)^2$}+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\frac{329}{288} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{9}+\frac{49}{324}=\left(y+\frac{7}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{5}{16}\right)^2+9 \fbox{$\left(y+\frac{7}{18}\right)^2$}=\frac{329}{288} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2-10 x+4 y^2-3 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2-3 y+5 x^2-10 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 4 y^2-3 y+5 x^2-10 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2-10 x+\underline{\text{ }}\right)+\left(4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2-10 x+\underline{\text{ }}\right)=5 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2-3 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\ 5 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+5=7: \\ 5 \left(x^2-2 x+1\right)+4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$7$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 7+\frac{9}{16}=\frac{121}{16}: \\ 5 \left(x^2-2 x+1\right)+4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{121}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ 5 \fbox{$(x-1)^2$}+4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\frac{121}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 (x-1)^2+4 \fbox{$\left(y-\frac{3}{8}\right)^2$}=\frac{121}{16} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2-10 x+8 y^2+4 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2+4 y+6 x^2-10 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 8 y^2+4 y+6 x^2-10 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2-10 x+\underline{\text{ }}\right)+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2-10 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+4 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ 6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{36}=\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{6}-4=\frac{1}{6}: \\ 6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{1}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{6}+\frac{1}{2}=\frac{2}{3}: \\ 6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{2}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\ 6 \fbox{$\left(x-\frac{5}{6}\right)^2$}+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{2}{3} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x-\frac{5}{6}\right)^2+8 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{2}{3} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-10 x-4 y^2+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 x^2-10 x+\left(6-4 y^2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -4 y^2+4 x^2-10 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(4 x^2-10 x+\underline{\text{ }}\right)-4 y^2=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-10 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}-4 y^2=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{25}{4}-6=\frac{1}{4}: \\ 4 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-4 y^2=\fbox{$\frac{1}{4}$} \\ \end{array} Step 7: \begin{array}{l} x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \fbox{$\left(x-\frac{5}{4}\right)^2$}-4 y^2=\frac{1}{4} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+2 x+5 y^2+3 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+3 y+4 x^2+2 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 5 y^2+3 y+4 x^2+2 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+2 x+\underline{\text{ }}\right)+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+2 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+3 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{4}-4=-\frac{15}{4}: \\ 4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{15}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{20}-\frac{15}{4}=-\frac{33}{10}: \\ 4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$-\frac{33}{10}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ 4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=-\frac{33}{10} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{5}+\frac{9}{100}=\left(y+\frac{3}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{1}{4}\right)^2+5 \fbox{$\left(y+\frac{3}{10}\right)^2$}=-\frac{33}{10} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+3 x-9 y^2-7 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-7 y-4 x^2+3 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -9 y^2-7 y-4 x^2+3 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+3 x+\underline{\text{ }}\right)+\left(-9 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+3 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-7 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right): \\ -4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{9}{16}=-\frac{25}{16}: \\ -4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{25}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{25}{16}-\frac{49}{36}=-\frac{421}{144}: \\ -4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\fbox{$-\frac{421}{144}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\ -4 \fbox{$\left(x-\frac{3}{8}\right)^2$}-9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=-\frac{421}{144} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{9}+\frac{49}{324}=\left(y+\frac{7}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x-\frac{3}{8}\right)^2-9 \fbox{$\left(y+\frac{7}{18}\right)^2$}=-\frac{421}{144} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-7 x-6 y^2+8 y-4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+8 y+2 x^2-7 x-4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }4 \text{to }\text{both }\text{sides}: \\ -6 y^2+8 y+2 x^2-7 x=4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-7 x+\underline{\text{ }}\right)+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-7 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+8 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{2}}{2}\right)^2=\frac{49}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{49}{16}=\frac{49}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 4+\frac{49}{8}=\frac{81}{8}: \\ 2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{81}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{81}{8}-\frac{8}{3}=\frac{179}{24}: \\ 2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$\frac{179}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{7 x}{2}+\frac{49}{16}=\left(x-\frac{7}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{7}{4}\right)^2$}-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\frac{179}{24} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{3}+\frac{4}{9}=\left(y-\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{7}{4}\right)^2-6 \fbox{$\left(y-\frac{2}{3}\right)^2$}=\frac{179}{24} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-5 x-2 y^2+y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+y-5 x^2-5 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -2 y^2+y-5 x^2-5 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-5 x+\underline{\text{ }}\right)+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-5 x+\underline{\text{ }}\right)=-5 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ -5 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-5}{4}=-\frac{5}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{5}{4}=-\frac{29}{4}: \\ -5 \left(x^2+x+\frac{1}{4}\right)-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{29}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{29}{4}-\frac{1}{8}=-\frac{59}{8}: \\ -5 \left(x^2+x+\frac{1}{4}\right)-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{59}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ -5 \fbox{$\left(x+\frac{1}{2}\right)^2$}-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{59}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{1}{2}\right)^2-2 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{59}{8} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2-6 x-9 y^2-2 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-2 y+6 x^2-6 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -9 y^2-2 y+6 x^2-6 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2-6 x+\underline{\text{ }}\right)+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2-6 x+\underline{\text{ }}\right)=6 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-2 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\ 6 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{6}{4}=\frac{3}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{3}{2}=\frac{19}{2}: \\ 6 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{19}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{-9}{81}=-\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{19}{2}-\frac{1}{9}=\frac{169}{18}: \\ 6 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{169}{18}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ 6 \fbox{$\left(x-\frac{1}{2}\right)^2$}-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{169}{18} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x-\frac{1}{2}\right)^2-9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{169}{18} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-10 x+4 y^2+7 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+7 y-5 x^2-10 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 4 y^2+7 y-5 x^2-10 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-10 x+\underline{\text{ }}\right)+\left(4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-10 x+\underline{\text{ }}\right)=-5 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+7 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right): \\ -5 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -4-5=-9: \\ -5 \left(x^2+2 x+1\right)+4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$-9$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{49}{64}=\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{49}{16}-9=-\frac{95}{16}: \\ -5 \left(x^2+2 x+1\right)+4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$-\frac{95}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -5 \fbox{$(x+1)^2$}+4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=-\frac{95}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{4}+\frac{49}{64}=\left(y+\frac{7}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 (x+1)^2+4 \fbox{$\left(y+\frac{7}{8}\right)^2$}=-\frac{95}{16} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-9 x-9 y^2+8 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+8 y+4 x^2-9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -9 y^2+8 y+4 x^2-9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-9 x+\underline{\text{ }}\right)+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+8 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5+\frac{81}{16}=\frac{161}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{161}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{161}{16}-\frac{16}{9}=\frac{1193}{144}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=\fbox{$\frac{1193}{144}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{9}{8}\right)^2$}-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=\frac{1193}{144} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{8 y}{9}+\frac{16}{81}=\left(y-\frac{4}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{9}{8}\right)^2-9 \fbox{$\left(y-\frac{4}{9}\right)^2$}=\frac{1193}{144} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+4 x-6 y^2-10 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-10 y+6 x^2+4 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -6 y^2-10 y+6 x^2+4 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+4 x+\underline{\text{ }}\right)+\left(-6 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+4 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-6 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-10 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right): \\ 6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{2}{3}-5=-\frac{13}{3}: \\ 6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{13}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{36}=-\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{13}{3}-\frac{25}{6}=-\frac{17}{2}: \\ 6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=\fbox{$-\frac{17}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\ 6 \fbox{$\left(x+\frac{1}{3}\right)^2$}-6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=-\frac{17}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{3}+\frac{25}{36}=\left(y+\frac{5}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{1}{3}\right)^2-6 \fbox{$\left(y+\frac{5}{6}\right)^2$}=-\frac{17}{2} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-6 x-6 y^2-8 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-8 y-10 x^2-6 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ -6 y^2-8 y-10 x^2-6 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-6 x+\underline{\text{ }}\right)+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-6 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-8 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{100}=-\frac{9}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-\frac{9}{10}=\frac{91}{10}: \\ -10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{91}{10}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{91}{10}-\frac{8}{3}=\frac{193}{30}: \\ -10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$\frac{193}{30}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\ -10 \fbox{$\left(x+\frac{3}{10}\right)^2$}-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\frac{193}{30} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{3}{10}\right)^2-6 \fbox{$\left(y+\frac{2}{3}\right)^2$}=\frac{193}{30} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+5 x+4 y^2-2 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2-2 y-8 x^2+5 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ 4 y^2-2 y-8 x^2+5 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+5 x+\underline{\text{ }}\right)+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+5 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2-2 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{25}{32}=-\frac{281}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{281}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{4}-\frac{281}{32}=-\frac{273}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{273}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{8}+\frac{25}{256}=\left(x-\frac{5}{16}\right)^2: \\ -8 \fbox{$\left(x-\frac{5}{16}\right)^2$}+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{273}{32} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{5}{16}\right)^2+4 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{273}{32} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2+2 x+5 y^2-8 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2-8 y-10 x^2+2 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 5 y^2-8 y-10 x^2+2 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2+2 x+\underline{\text{ }}\right)+\left(5 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2+2 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)$}+\left(5 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2-8 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right): \\ -10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-\frac{1}{10}=\frac{99}{10}: \\ -10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)+5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{99}{10}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{99}{10}+\frac{16}{5}=\frac{131}{10}: \\ -10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)+5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\fbox{$\frac{131}{10}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{5}+\frac{1}{100}=\left(x-\frac{1}{10}\right)^2: \\ -10 \fbox{$\left(x-\frac{1}{10}\right)^2$}+5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\frac{131}{10} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{8 y}{5}+\frac{16}{25}=\left(y-\frac{4}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x-\frac{1}{10}\right)^2+5 \fbox{$\left(y-\frac{4}{5}\right)^2$}=\frac{131}{10} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+5 x+9 y^2-4 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-4 y+2 x^2+5 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 9 y^2-4 y+2 x^2+5 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+5 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2-4 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\ 2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{8}-4=-\frac{7}{8}: \\ 2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{4}{81}=\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{4}{9}-\frac{7}{8}=-\frac{31}{72}: \\ 2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$-\frac{31}{72}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{5}{4}\right)^2$}+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=-\frac{31}{72} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{5}{4}\right)^2+9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=-\frac{31}{72} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2-8 x+7 y^2+8 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+8 y+5 x^2-8 x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 7 y^2+8 y+5 x^2-8 x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2-8 x+\underline{\text{ }}\right)+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2-8 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2+8 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right): \\ 5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{16}{5}-3=\frac{1}{5}: \\ 5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{1}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{5}+\frac{16}{7}=\frac{87}{35}: \\ 5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\fbox{$\frac{87}{35}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\ 5 \fbox{$\left(x-\frac{4}{5}\right)^2$}+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\frac{87}{35} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{8 y}{7}+\frac{16}{49}=\left(y+\frac{4}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x-\frac{4}{5}\right)^2+7 \fbox{$\left(y+\frac{4}{7}\right)^2$}=\frac{87}{35} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-6 x+7 y^2+6 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+6 y-3 x^2-6 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 7 y^2+6 y-3 x^2-6 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2-6 x+\underline{\text{ }}\right)+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2-6 x+\underline{\text{ }}\right)=-3 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2+6 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right): \\ -3 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-3=7: \\ -3 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$7$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 7+\frac{9}{7}=\frac{58}{7}: \\ -3 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{58}{7}$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -3 \fbox{$(x+1)^2$}+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\frac{58}{7} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{6 y}{7}+\frac{9}{49}=\left(y+\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 (x+1)^2+7 \fbox{$\left(y+\frac{3}{7}\right)^2$}=\frac{58}{7} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-x-y^2+4 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+4 y-10 x^2-x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -y^2+4 y-10 x^2-x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-x+\underline{\text{ }}\right)+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)$}+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+4 y+\underline{\text{ }}\right)=-\left(y^2-4 y+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{10}}{2}\right)^2=\frac{1}{400} \text{on }\text{the }\text{left }\text{and }\frac{-10}{400}=-\frac{1}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -5-\frac{1}{40}=-\frac{201}{40}: \\ -10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-\left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$-\frac{201}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-4=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{201}{40}-4=-\frac{361}{40}: \\ -10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-\left(y^2-4 y+4\right)=\fbox{$-\frac{361}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{10}+\frac{1}{400}=\left(x+\frac{1}{20}\right)^2: \\ -10 \fbox{$\left(x+\frac{1}{20}\right)^2$}-\left(y^2-4 y+4\right)=-\frac{361}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{1}{20}\right)^2-\fbox{$(y-2)^2$}=-\frac{361}{40} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+3 x+10 y^2-10 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2-10 y-3 x^2+3 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 10 y^2-10 y-3 x^2+3 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+3 x+\underline{\text{ }}\right)+\left(10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+3 x+\underline{\text{ }}\right)=-3 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-x+\underline{\text{ }}\right)$}+\left(10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2-10 y+\underline{\text{ }}\right)=10 \left(y^2-y+\underline{\text{ }}\right): \\ -3 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-3}{4}=-\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -4-\frac{3}{4}=-\frac{19}{4}: \\ -3 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{19}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{10}{4}=\frac{5}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{5}{2}-\frac{19}{4}=-\frac{9}{4}: \\ -3 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{9}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -3 \fbox{$\left(x-\frac{1}{2}\right)^2$}+10 \left(y^2-y+\frac{1}{4}\right)=-\frac{9}{4} \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{1}{2}\right)^2+\text{10 }\fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{9}{4} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+x-2 y^2+8 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+8 y+4 x^2+x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -2 y^2+8 y+4 x^2+x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+x+\underline{\text{ }}\right)+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+8 y+\underline{\text{ }}\right)=-2 \left(y^2-4 y+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{16}-5=-\frac{79}{16}: \\ 4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-2 \left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$-\frac{79}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-2\times 4=-8 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{79}{16}-8=-\frac{207}{16}: \\ 4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-2 \left(y^2-4 y+4\right)=\fbox{$-\frac{207}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{1}{8}\right)^2$}-2 \left(y^2-4 y+4\right)=-\frac{207}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{1}{8}\right)^2-2 \fbox{$(y-2)^2$}=-\frac{207}{16} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-2 y^2-3 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2-3 y+\left(5-x^2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-2 y^2-3 y-x^2+5 \text{from }\text{both }\text{sides}: \\ 2 y^2+3 y+\left(x^2-5\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ 2 y^2+3 y+x^2=5 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 y^2+3 y+\underline{\text{ }}\right)+x^2=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+3 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}+x^2=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5+\frac{9}{8}=\frac{49}{8}: \\ 2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)+x^2=\fbox{$\frac{49}{8}$} \\ \end{array} Step 8: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$\left(y+\frac{3}{4}\right)^2$}+x^2=\frac{49}{8} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+7 x+7 y^2-6 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-6 y-4 x^2+7 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 7 y^2-6 y-4 x^2+7 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+7 x+\underline{\text{ }}\right)+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+7 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right)$}+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-6 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\ -4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1-\frac{49}{16}=-\frac{33}{16}: \\ -4 \left(x^2-\frac{7 x}{4}+\frac{49}{64}\right)+7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{33}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{7}-\frac{33}{16}=-\frac{87}{112}: \\ -4 \left(x^2-\frac{7 x}{4}+\frac{49}{64}\right)+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$-\frac{87}{112}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{7 x}{4}+\frac{49}{64}=\left(x-\frac{7}{8}\right)^2: \\ -4 \fbox{$\left(x-\frac{7}{8}\right)^2$}+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=-\frac{87}{112} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x-\frac{7}{8}\right)^2+7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=-\frac{87}{112} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-2 x+10 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 x^2-2 x+(10 y+6)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }10 y+6 \text{from }\text{both }\text{sides}: \\ 4 x^2-2 x=-10 y-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(4 x^2-2 x+\underline{\text{ }}\right)=(-10 y-6)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-2 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}=(-10 y-6)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (-10 y-6)+\frac{1}{4}=-10 y-\frac{23}{4}: \\ 4 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)=\fbox{$-10 y-\frac{23}{4}$} \\ \end{array} Step 7: \begin{array}{l} x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \fbox{$\left(x-\frac{1}{4}\right)^2$}=-10 y-\frac{23}{4} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-8 x-4 y^2-6 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-6 y-5 x^2-8 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -4 y^2-6 y-5 x^2-8 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-8 x+\underline{\text{ }}\right)+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-8 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-6 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ -5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{16}{5}=-\frac{51}{5}: \\ -5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{51}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{51}{5}-\frac{9}{4}=-\frac{249}{20}: \\ -5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{249}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\ -5 \fbox{$\left(x+\frac{4}{5}\right)^2$}-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{249}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{4}{5}\right)^2-4 \fbox{$\left(y+\frac{3}{4}\right)^2$}=-\frac{249}{20} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2+3 x-9 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 x^2+3 x+(6-9 y)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6-9 y \text{from }\text{both }\text{sides}: \\ 3 x^2+3 x=9 y-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(3 x^2+3 x+\underline{\text{ }}\right)=(9 y-6)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2+3 x+\underline{\text{ }}\right)=3 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2+x+\underline{\text{ }}\right)$}=(9 y-6)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{3}{4}=\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (9 y-6)+\frac{3}{4}=9 y-\frac{21}{4}: \\ 3 \left(x^2+x+\frac{1}{4}\right)=\fbox{$9 y-\frac{21}{4}$} \\ \end{array} Step 7: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \fbox{$\left(x+\frac{1}{2}\right)^2$}=9 y-\frac{21}{4} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2-2 x+y^2+9 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2+9 y+5 x^2-2 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ y^2+9 y+5 x^2-2 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2-2 x+\underline{\text{ }}\right)+\left(y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2-2 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{5}{25}=\frac{1}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} 8+\frac{1}{5}=\frac{41}{5}: \\ 5 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+9 y+\underline{\text{ }}\right)=\fbox{$\frac{41}{5}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{9}{2}\right)^2=\frac{81}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 8: \begin{array}{l} \frac{41}{5}+\frac{81}{4}=\frac{569}{20}: \\ 5 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+9 y+\frac{81}{4}\right)=\fbox{$\frac{569}{20}$} \\ \end{array} Step 9: \begin{array}{l} x^2-\frac{2 x}{5}+\frac{1}{25}=\left(x-\frac{1}{5}\right)^2: \\ 5 \fbox{$\left(x-\frac{1}{5}\right)^2$}+\left(y^2+9 y+\frac{81}{4}\right)=\frac{569}{20} \\ \end{array} Step 10: \begin{array}{l} y^2+9 y+\frac{81}{4}=\left(y+\frac{9}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x-\frac{1}{5}\right)^2+\fbox{$\left(y+\frac{9}{2}\right)^2$}=\frac{569}{20} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+2 y^2-3 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-3 y+\left(6-4 x^2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ 2 y^2-3 y-4 x^2=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 y^2-3 y+\underline{\text{ }}\right)-4 x^2=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(2 y^2-3 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}-4 x^2=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{9}{8}-6=-\frac{39}{8}: \\ 2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)-4 x^2=\fbox{$-\frac{39}{8}$} \\ \end{array} Step 7: \begin{array}{l} y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$\left(y-\frac{3}{4}\right)^2$}-4 x^2=-\frac{39}{8} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+x-2 y^2+5 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+5 y+6 x^2+x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ -2 y^2+5 y+6 x^2+x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+x+\underline{\text{ }}\right)+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+x+\underline{\text{ }}\right)=6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right)$}+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+5 y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right): \\ 6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{24}-4=-\frac{95}{24}: \\ 6 \left(x^2+\frac{x}{6}+\frac{1}{144}\right)-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{95}{24}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{25}{16}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{95}{24}-\frac{25}{8}=-\frac{85}{12}: \\ 6 \left(x^2+\frac{x}{6}+\frac{1}{144}\right)-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{85}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{6}+\frac{1}{144}=\left(x+\frac{1}{12}\right)^2: \\ 6 \fbox{$\left(x+\frac{1}{12}\right)^2$}-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{85}{12} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{2}+\frac{25}{16}=\left(y-\frac{5}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{1}{12}\right)^2-2 \fbox{$\left(y-\frac{5}{4}\right)^2$}=-\frac{85}{12} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2+5 x-5 y^2-7 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2-7 y+5 x^2+5 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -5 y^2-7 y+5 x^2+5 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2+5 x+\underline{\text{ }}\right)+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2+5 x+\underline{\text{ }}\right)=5 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2-7 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right): \\ 5 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{5}{4}=\frac{5}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{5}{4}-9=-\frac{31}{4}: \\ 5 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{31}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{31}{4}-\frac{49}{20}=-\frac{51}{5}: \\ 5 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$-\frac{51}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 5 \fbox{$\left(x+\frac{1}{2}\right)^2$}-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=-\frac{51}{5} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{5}+\frac{49}{100}=\left(y+\frac{7}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x+\frac{1}{2}\right)^2-5 \fbox{$\left(y+\frac{7}{10}\right)^2$}=-\frac{51}{5} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2+8 x-3 y^2+10 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+10 y-10 x^2+8 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -3 y^2+10 y-10 x^2+8 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2+8 x+\underline{\text{ }}\right)+\left(-3 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2+8 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-3 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2+10 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right): \\ -10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-10\times \frac{4}{25}=-\frac{8}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{8}{5}=-\frac{58}{5}: \\ -10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{58}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-10}{3}}{2}\right)^2=\frac{25}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{25}{9}=-\frac{25}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{58}{5}-\frac{25}{3}=-\frac{299}{15}: \\ -10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=\fbox{$-\frac{299}{15}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{4 x}{5}+\frac{4}{25}=\left(x-\frac{2}{5}\right)^2: \\ -10 \fbox{$\left(x-\frac{2}{5}\right)^2$}-3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=-\frac{299}{15} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{10 y}{3}+\frac{25}{9}=\left(y-\frac{5}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x-\frac{2}{5}\right)^2-3 \fbox{$\left(y-\frac{5}{3}\right)^2$}=-\frac{299}{15} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+2 x+4 y^2+10 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+10 y+4 x^2+2 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 4 y^2+10 y+4 x^2+2 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+2 x+\underline{\text{ }}\right)+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+2 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+10 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{1}{4}=\frac{5}{4}: \\ 4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{5}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{5}{4}+\frac{25}{4}=\frac{15}{2}: \\ 4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$\frac{15}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ 4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\frac{15}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{2}+\frac{25}{16}=\left(y+\frac{5}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{1}{4}\right)^2+4 \fbox{$\left(y+\frac{5}{4}\right)^2$}=\frac{15}{2} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2-8 x+4 y^2+2 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+2 y+5 x^2-8 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ 4 y^2+2 y+5 x^2-8 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2-8 x+\underline{\text{ }}\right)+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2-8 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+2 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ 5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{16}{5}-7=-\frac{19}{5}: \\ 5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{4}-\frac{19}{5}=-\frac{71}{20}: \\ 5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{71}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\ 5 \fbox{$\left(x-\frac{4}{5}\right)^2$}+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{71}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x-\frac{4}{5}\right)^2+4 \fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{71}{20} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+9 x-y^2-7 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2-7 y+10 x^2+9 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -y^2-7 y+10 x^2+9 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+9 x+\underline{\text{ }}\right)+\left(-y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+9 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2-7 y+\underline{\text{ }}\right)=-\left(y^2+7 y+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+7 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{81}{400}=\frac{81}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{81}{40}=\frac{401}{40}: \\ 10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-\left(y^2+7 y+\underline{\text{ }}\right)=\fbox{$\frac{401}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{on }\text{the }\text{left }\text{and }-\frac{49}{4}=-\frac{49}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{401}{40}-\frac{49}{4}=-\frac{89}{40}: \\ 10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-\left(y^2+7 y+\frac{49}{4}\right)=\fbox{$-\frac{89}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{10}+\frac{81}{400}=\left(x+\frac{9}{20}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{9}{20}\right)^2$}-\left(y^2+7 y+\frac{49}{4}\right)=-\frac{89}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+7 y+\frac{49}{4}=\left(y+\frac{7}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{9}{20}\right)^2-\fbox{$\left(y+\frac{7}{2}\right)^2$}=-\frac{89}{40} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-3 x+2 y^2+2 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+2 y-10 x^2-3 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ 2 y^2+2 y-10 x^2-3 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-3 x+\underline{\text{ }}\right)+\left(2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-3 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+2 y+\underline{\text{ }}\right)=2 \left(y^2+y+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1-\frac{9}{40}=\frac{31}{40}: \\ -10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+2 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{31}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{2}{4}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{31}{40}+\frac{1}{2}=\frac{51}{40}: \\ -10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+2 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{51}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{10}+\frac{9}{400}=\left(x+\frac{3}{20}\right)^2: \\ -10 \fbox{$\left(x+\frac{3}{20}\right)^2$}+2 \left(y^2+y+\frac{1}{4}\right)=\frac{51}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{3}{20}\right)^2+2 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{51}{40} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2+8 x-y^2-y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2-y+5 x^2+8 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -y^2-y+5 x^2+8 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2+8 x+\underline{\text{ }}\right)+\left(-y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2+8 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2-y+\underline{\text{ }}\right)=-\left(y^2+y+\underline{\text{ }}\right): \\ 5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{16}{5}=\frac{56}{5}: \\ 5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{56}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{56}{5}-\frac{1}{4}=\frac{219}{20}: \\ 5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{219}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\ 5 \fbox{$\left(x+\frac{4}{5}\right)^2$}-\left(y^2+y+\frac{1}{4}\right)=\frac{219}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x+\frac{4}{5}\right)^2-\fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{219}{20} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+9 x-8 y^2-6 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-6 y-7 x^2+9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -8 y^2-6 y-7 x^2+9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+9 x+\underline{\text{ }}\right)+\left(-8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+9 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(-8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2-6 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ -7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{81}{196}=-\frac{81}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-\frac{81}{28}=\frac{59}{28}: \\ -7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{59}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{64}=-\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{59}{28}-\frac{9}{8}=\frac{55}{56}: \\ -7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-8 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{55}{56}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{7}+\frac{81}{196}=\left(x-\frac{9}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{9}{14}\right)^2$}-8 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\frac{55}{56} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{9}{14}\right)^2-8 \fbox{$\left(y+\frac{3}{8}\right)^2$}=\frac{55}{56} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+7 x-4 y^2+y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+y-9 x^2+7 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -4 y^2+y-9 x^2+7 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+7 x+\underline{\text{ }}\right)+\left(-4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+7 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)$}+\left(-4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -9-\frac{49}{36}=-\frac{373}{36}: \\ -9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{373}{36}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-4}{64}=-\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{373}{36}-\frac{1}{16}=-\frac{1501}{144}: \\ -9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-4 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=\fbox{$-\frac{1501}{144}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{7 x}{9}+\frac{49}{324}=\left(x-\frac{7}{18}\right)^2: \\ -9 \fbox{$\left(x-\frac{7}{18}\right)^2$}-4 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=-\frac{1501}{144} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{4}+\frac{1}{64}=\left(y-\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{7}{18}\right)^2-4 \fbox{$\left(y-\frac{1}{8}\right)^2$}=-\frac{1501}{144} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+8 x-5 y^2-4 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2-4 y+8 x^2+8 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ -5 y^2-4 y+8 x^2+8 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+8 x+\underline{\text{ }}\right)+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+8 x+\underline{\text{ }}\right)=8 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2-4 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\ 8 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+2=4: \\ 8 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$4$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{4}{25}=-\frac{4}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 4-\frac{4}{5}=\frac{16}{5}: \\ 8 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{16}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 8 \fbox{$\left(x+\frac{1}{2}\right)^2$}-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{16}{5} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{1}{2}\right)^2-5 \fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{16}{5} \\ \end{array}
khanacademy
amps
README.md exists but content is empty.
Downloads last month
200