text
stringlengths
14
7.51M
subset
stringclasses
3 values
source
stringclasses
2 values
Given the equation $-3 x^2+3 x-9 y^2+9 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+9 y-3 x^2+3 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -9 y^2+9 y-3 x^2+3 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+3 x+\underline{\text{ }}\right)+\left(-9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+3 x+\underline{\text{ }}\right)=-3 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+9 y+\underline{\text{ }}\right)=-9 \left(y^2-y+\underline{\text{ }}\right): \\ -3 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-3}{4}=-\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{3}{4}=-\frac{27}{4}: \\ -3 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{27}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{27}{4}-\frac{9}{4}=-9: \\ -3 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-9$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -3 \fbox{$\left(x-\frac{1}{2}\right)^2$}-9 \left(y^2-y+\frac{1}{4}\right)=-9 \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{1}{2}\right)^2-9 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-9 \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+9 x+y^2+2 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2+2 y+2 x^2+9 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ y^2+2 y+2 x^2+9 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+9 x+\underline{\text{ }}\right)+\left(y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+9 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)$}+\left(y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{81}{8}-8=\frac{17}{8}: \\ 2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)+\left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$\frac{17}{8}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{2}{2}\right)^2=1 \text{to }\text{both }\text{sides}: \\ \end{array} Step 8: \begin{array}{l} \frac{17}{8}+1=\frac{25}{8}: \\ 2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)+\left(y^2+2 y+1\right)=\fbox{$\frac{25}{8}$} \\ \end{array} Step 9: \begin{array}{l} x^2+\frac{9 x}{2}+\frac{81}{16}=\left(x+\frac{9}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{9}{4}\right)^2$}+\left(y^2+2 y+1\right)=\frac{25}{8} \\ \end{array} Step 10: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{9}{4}\right)^2+\fbox{$(y+1)^2$}=\frac{25}{8} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+9 x+2 y^2-8 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-8 y+4 x^2+9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ 2 y^2-8 y+4 x^2+9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+9 x+\underline{\text{ }}\right)+\left(2 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+9 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(2 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-8 y+\underline{\text{ }}\right)=2 \left(y^2-4 y+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5+\frac{81}{16}=\frac{161}{16}: \\ 4 \left(x^2+\frac{9 x}{4}+\frac{81}{64}\right)+2 \left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$\frac{161}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }2\times 4=8 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{161}{16}+8=\frac{289}{16}: \\ 4 \left(x^2+\frac{9 x}{4}+\frac{81}{64}\right)+2 \left(y^2-4 y+4\right)=\fbox{$\frac{289}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{4}+\frac{81}{64}=\left(x+\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x+\frac{9}{8}\right)^2$}+2 \left(y^2-4 y+4\right)=\frac{289}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{9}{8}\right)^2+2 \fbox{$(y-2)^2$}=\frac{289}{16} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+8 x-y^2+10 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+10 y+6 x^2+8 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ -y^2+10 y+6 x^2+8 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+8 x+\underline{\text{ }}\right)+\left(-y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+8 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)$}+\left(-y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+10 y+\underline{\text{ }}\right)=-\left(y^2-10 y+\underline{\text{ }}\right): \\ 6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-10 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }6\times \frac{4}{9}=\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6+\frac{8}{3}=\frac{26}{3}: \\ 6 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)-\left(y^2-10 y+\underline{\text{ }}\right)=\fbox{$\frac{26}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-10}{2}\right)^2=25 \text{on }\text{the }\text{left }\text{and }-25=-25 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{26}{3}-25=-\frac{49}{3}: \\ 6 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)-\left(y^2-10 y+25\right)=\fbox{$-\frac{49}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{3}+\frac{4}{9}=\left(x+\frac{2}{3}\right)^2: \\ 6 \fbox{$\left(x+\frac{2}{3}\right)^2$}-\left(y^2-10 y+25\right)=-\frac{49}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-10 y+25=(y-5)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{2}{3}\right)^2-\fbox{$(y-5)^2$}=-\frac{49}{3} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2-3 x+2 y^2-8 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-8 y+5 x^2-3 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 2 y^2-8 y+5 x^2-3 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2-3 x+\underline{\text{ }}\right)+\left(2 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2-3 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(2 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-8 y+\underline{\text{ }}\right)=2 \left(y^2-4 y+\underline{\text{ }}\right): \\ 5 \left(x^2-\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{20}-4=-\frac{71}{20}: \\ 5 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)+2 \left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$-\frac{71}{20}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }2\times 4=8 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 8-\frac{71}{20}=\frac{89}{20}: \\ 5 \left(x^2-\frac{3 x}{5}+\frac{9}{100}\right)+2 \left(y^2-4 y+4\right)=\fbox{$\frac{89}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{5}+\frac{9}{100}=\left(x-\frac{3}{10}\right)^2: \\ 5 \fbox{$\left(x-\frac{3}{10}\right)^2$}+2 \left(y^2-4 y+4\right)=\frac{89}{20} \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x-\frac{3}{10}\right)^2+2 \fbox{$(y-2)^2$}=\frac{89}{20} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2-7 x+7 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 x^2-7 x+(7 y-8)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 y-8 \text{from }\text{both }\text{sides}: \\ 10 x^2-7 x=8-7 y \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(10 x^2-7 x+\underline{\text{ }}\right)=(8-7 y)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2-7 x+\underline{\text{ }}\right)=10 \left(x^2-\frac{7 x}{10}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2-\frac{7 x}{10}+\underline{\text{ }}\right)$}=(8-7 y)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{49}{400}=\frac{49}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (8-7 y)+\frac{49}{40}=\frac{369}{40}-7 y: \\ 10 \left(x^2-\frac{7 x}{10}+\frac{49}{400}\right)=\fbox{$\frac{369}{40}-7 y$} \\ \end{array} Step 7: \begin{array}{l} x^2-\frac{7 x}{10}+\frac{49}{400}=\left(x-\frac{7}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \text{10 }\fbox{$\left(x-\frac{7}{20}\right)^2$}=\frac{369}{40}-7 y \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+9 x-6 y^2-3 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-3 y+10 x^2+9 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -6 y^2-3 y+10 x^2+9 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+9 x+\underline{\text{ }}\right)+\left(-6 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+9 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-6 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-3 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{81}{400}=\frac{81}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{40}-7=-\frac{199}{40}: \\ 10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-6 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{199}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-6}{16}=-\frac{3}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{199}{40}-\frac{3}{8}=-\frac{107}{20}: \\ 10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-6 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{107}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{9 x}{10}+\frac{81}{400}=\left(x+\frac{9}{20}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{9}{20}\right)^2$}-6 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{107}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{9}{20}\right)^2-6 \fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{107}{20} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-8 x-4 y^2-y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-y-x^2-8 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -4 y^2-y-x^2-8 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2-8 x+\underline{\text{ }}\right)+\left(-4 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2-8 x+\underline{\text{ }}\right)=-\left(x^2+8 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2+8 x+\underline{\text{ }}\right)$}+\left(-4 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right): \\ -\left(x^2+8 x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -9-16=-25: \\ -\left(x^2+8 x+16\right)-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$-25$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-4}{64}=-\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -25-\frac{1}{16}=-\frac{401}{16}: \\ -\left(x^2+8 x+16\right)-4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\fbox{$-\frac{401}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2+8 x+16=(x+4)^2: \\ -\fbox{$(x+4)^2$}-4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=-\frac{401}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{4}+\frac{1}{64}=\left(y+\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x+4)^2-4 \fbox{$\left(y+\frac{1}{8}\right)^2$}=-\frac{401}{16} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+5 x-4 y^2-y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-y+7 x^2+5 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ -4 y^2-y+7 x^2+5 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+5 x+\underline{\text{ }}\right)+\left(-4 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+5 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(-4 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3+\frac{25}{28}=\frac{109}{28}: \\ 7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)-4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{109}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-4}{64}=-\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{109}{28}-\frac{1}{16}=\frac{429}{112}: \\ 7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)-4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\fbox{$\frac{429}{112}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{7}+\frac{25}{196}=\left(x+\frac{5}{14}\right)^2: \\ 7 \fbox{$\left(x+\frac{5}{14}\right)^2$}-4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\frac{429}{112} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{4}+\frac{1}{64}=\left(y+\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{5}{14}\right)^2-4 \fbox{$\left(y+\frac{1}{8}\right)^2$}=\frac{429}{112} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+8 x-4 y^2+7 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+7 y-x^2+8 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -4 y^2+7 y-x^2+8 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+8 x+\underline{\text{ }}\right)+\left(-4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+8 x+\underline{\text{ }}\right)=-\left(x^2-8 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-8 x+\underline{\text{ }}\right)$}+\left(-4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2+7 y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{7 y}{4}+\underline{\text{ }}\right): \\ -\left(x^2-8 x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-16=-11: \\ -\left(x^2-8 x+16\right)-4 \left(y^2-\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$-11$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -11-\frac{49}{16}=-\frac{225}{16}: \\ -\left(x^2-8 x+16\right)-4 \left(y^2-\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$-\frac{225}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-8 x+16=(x-4)^2: \\ -\fbox{$(x-4)^2$}-4 \left(y^2-\frac{7 y}{4}+\frac{49}{64}\right)=-\frac{225}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{4}+\frac{49}{64}=\left(y-\frac{7}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x-4)^2-4 \fbox{$\left(y-\frac{7}{8}\right)^2$}=-\frac{225}{16} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+7 y^2-5 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-5 y+\left(10 x^2+9\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ 7 y^2-5 y+10 x^2=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(7 y^2-5 y+\underline{\text{ }}\right)+10 x^2=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(7 y^2-5 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right)$}+10 x^2=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{25}{28}-9=-\frac{227}{28}: \\ 7 \left(y^2-\frac{5 y}{7}+\frac{25}{196}\right)+10 x^2=\fbox{$-\frac{227}{28}$} \\ \end{array} Step 7: \begin{array}{l} y^2-\frac{5 y}{7}+\frac{25}{196}=\left(y-\frac{5}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \fbox{$\left(y-\frac{5}{14}\right)^2$}+10 x^2=-\frac{227}{28} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-8 y^2-y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-y+\left(-9 x^2-3\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 y^2+y+9 x^2+3 \text{to }\text{both }\text{sides}: \\ 8 y^2+y+\left(9 x^2+3\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 8 y^2+y+9 x^2=-3 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(8 y^2+y+\underline{\text{ }}\right)+9 x^2=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2+y+\underline{\text{ }}\right)=8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)$}+9 x^2=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{8}}{2}\right)^2=\frac{1}{256} \text{on }\text{the }\text{left }\text{and }\frac{8}{256}=\frac{1}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{32}-3=-\frac{95}{32}: \\ 8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)+9 x^2=\fbox{$-\frac{95}{32}$} \\ \end{array} Step 8: \begin{array}{l} y^2+\frac{y}{8}+\frac{1}{256}=\left(y+\frac{1}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \fbox{$\left(y+\frac{1}{16}\right)^2$}+9 x^2=-\frac{95}{32} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+5 x+y^2-7 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2-7 y-8 x^2+5 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ y^2-7 y-8 x^2+5 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+5 x+\underline{\text{ }}\right)+\left(y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+5 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} -5-\frac{25}{32}=-\frac{185}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+\left(y^2-7 y+\underline{\text{ }}\right)=\fbox{$-\frac{185}{32}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 8: \begin{array}{l} \frac{49}{4}-\frac{185}{32}=\frac{207}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+\left(y^2-7 y+\frac{49}{4}\right)=\fbox{$\frac{207}{32}$} \\ \end{array} Step 9: \begin{array}{l} x^2-\frac{5 x}{8}+\frac{25}{256}=\left(x-\frac{5}{16}\right)^2: \\ -8 \fbox{$\left(x-\frac{5}{16}\right)^2$}+\left(y^2-7 y+\frac{49}{4}\right)=\frac{207}{32} \\ \end{array} Step 10: \begin{array}{l} y^2-7 y+\frac{49}{4}=\left(y-\frac{7}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{5}{16}\right)^2+\fbox{$\left(y-\frac{7}{2}\right)^2$}=\frac{207}{32} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+9 x+3 y^2-8 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 y^2-8 y+6 x^2+9 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ 3 y^2-8 y+6 x^2+9 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+9 x+\underline{\text{ }}\right)+\left(3 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+9 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(3 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(3 y^2-8 y+\underline{\text{ }}\right)=3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right): \\ 6 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }6\times \frac{9}{16}=\frac{27}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{27}{8}-2=\frac{11}{8}: \\ 6 \left(x^2+\frac{3 x}{2}+\frac{9}{16}\right)+3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{11}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{3}}{2}\right)^2=\frac{16}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{16}{9}=\frac{16}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{8}+\frac{16}{3}=\frac{161}{24}: \\ 6 \left(x^2+\frac{3 x}{2}+\frac{9}{16}\right)+3 \left(y^2-\frac{8 y}{3}+\frac{16}{9}\right)=\fbox{$\frac{161}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{2}+\frac{9}{16}=\left(x+\frac{3}{4}\right)^2: \\ 6 \fbox{$\left(x+\frac{3}{4}\right)^2$}+3 \left(y^2-\frac{8 y}{3}+\frac{16}{9}\right)=\frac{161}{24} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{8 y}{3}+\frac{16}{9}=\left(y-\frac{4}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{3}{4}\right)^2+3 \fbox{$\left(y-\frac{4}{3}\right)^2$}=\frac{161}{24} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2-3 x+6 y^2+y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+y-6 x^2-3 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ 6 y^2+y-6 x^2-3 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2-3 x+\underline{\text{ }}\right)+\left(6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2-3 x+\underline{\text{ }}\right)=-6 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+y+\underline{\text{ }}\right)=6 \left(y^2+\frac{y}{6}+\underline{\text{ }}\right): \\ -6 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-6}{16}=-\frac{3}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-\frac{3}{8}=\frac{69}{8}: \\ -6 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+6 \left(y^2+\frac{y}{6}+\underline{\text{ }}\right)=\fbox{$\frac{69}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{69}{8}+\frac{1}{24}=\frac{26}{3}: \\ -6 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+6 \left(y^2+\frac{y}{6}+\frac{1}{144}\right)=\fbox{$\frac{26}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ -6 \fbox{$\left(x+\frac{1}{4}\right)^2$}+6 \left(y^2+\frac{y}{6}+\frac{1}{144}\right)=\frac{26}{3} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{6}+\frac{1}{144}=\left(y+\frac{1}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x+\frac{1}{4}\right)^2+6 \fbox{$\left(y+\frac{1}{12}\right)^2$}=\frac{26}{3} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-8 x-2 y^2+9 y-4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+9 y-9 x^2-8 x-4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }4 \text{to }\text{both }\text{sides}: \\ -2 y^2+9 y-9 x^2-8 x=4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-8 x+\underline{\text{ }}\right)+\left(-2 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-8 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)$}+\left(-2 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+9 y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right): \\ -9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 4-\frac{16}{9}=\frac{20}{9}: \\ -9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{20}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{81}{16}=-\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{20}{9}-\frac{81}{8}=-\frac{569}{72}: \\ -9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=\fbox{$-\frac{569}{72}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{8 x}{9}+\frac{16}{81}=\left(x+\frac{4}{9}\right)^2: \\ -9 \fbox{$\left(x+\frac{4}{9}\right)^2$}-2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=-\frac{569}{72} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{9 y}{2}+\frac{81}{16}=\left(y-\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{4}{9}\right)^2-2 \fbox{$\left(y-\frac{9}{4}\right)^2$}=-\frac{569}{72} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2-6 x-6 y^2+y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+y+7 x^2-6 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ -6 y^2+y+7 x^2-6 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2-6 x+\underline{\text{ }}\right)+\left(-6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2-6 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{6 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2-\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(-6 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right): \\ 7 \left(x^2-\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+\frac{9}{7}=\frac{23}{7}: \\ 7 \left(x^2-\frac{6 x}{7}+\frac{9}{49}\right)-6 \left(y^2-\frac{y}{6}+\underline{\text{ }}\right)=\fbox{$\frac{23}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{-6}{144}=-\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{23}{7}-\frac{1}{24}=\frac{545}{168}: \\ 7 \left(x^2-\frac{6 x}{7}+\frac{9}{49}\right)-6 \left(y^2-\frac{y}{6}+\frac{1}{144}\right)=\fbox{$\frac{545}{168}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{6 x}{7}+\frac{9}{49}=\left(x-\frac{3}{7}\right)^2: \\ 7 \fbox{$\left(x-\frac{3}{7}\right)^2$}-6 \left(y^2-\frac{y}{6}+\frac{1}{144}\right)=\frac{545}{168} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{6}+\frac{1}{144}=\left(y-\frac{1}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x-\frac{3}{7}\right)^2-6 \fbox{$\left(y-\frac{1}{12}\right)^2$}=\frac{545}{168} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+x+5 y^2+3 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+3 y-x^2+x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ 5 y^2+3 y-x^2+x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+x+\underline{\text{ }}\right)+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+x+\underline{\text{ }}\right)=-\left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-x+\underline{\text{ }}\right)$}+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+3 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right): \\ -\left(x^2-x+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -2-\frac{1}{4}=-\frac{9}{4}: \\ -\left(x^2-x+\frac{1}{4}\right)+5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{9}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{20}-\frac{9}{4}=-\frac{9}{5}: \\ -\left(x^2-x+\frac{1}{4}\right)+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$-\frac{9}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -\fbox{$\left(x-\frac{1}{2}\right)^2$}+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=-\frac{9}{5} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{5}+\frac{9}{100}=\left(y+\frac{3}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x-\frac{1}{2}\right)^2+5 \fbox{$\left(y+\frac{3}{10}\right)^2$}=-\frac{9}{5} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2-2 x+8 y^2-7 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2-7 y-4 x^2-2 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ 8 y^2-7 y-4 x^2-2 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2-2 x+\underline{\text{ }}\right)+\left(8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2-2 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2-7 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{7 y}{8}+\underline{\text{ }}\right): \\ -4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{7 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-4}{16}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9-\frac{1}{4}=\frac{35}{4}: \\ -4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+8 \left(y^2-\frac{7 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{35}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{49}{256}=\frac{49}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{35}{4}+\frac{49}{32}=\frac{329}{32}: \\ -4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+8 \left(y^2-\frac{7 y}{8}+\frac{49}{256}\right)=\fbox{$\frac{329}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\ -4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+8 \left(y^2-\frac{7 y}{8}+\frac{49}{256}\right)=\frac{329}{32} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{8}+\frac{49}{256}=\left(y-\frac{7}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x+\frac{1}{4}\right)^2+8 \fbox{$\left(y-\frac{7}{16}\right)^2$}=\frac{329}{32} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+3 x-3 y^2-2 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-2 y-x^2+3 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -3 y^2-2 y-x^2+3 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+3 x+\underline{\text{ }}\right)+\left(-3 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+3 x+\underline{\text{ }}\right)=-\left(x^2-3 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-3 x+\underline{\text{ }}\right)$}+\left(-3 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2-2 y+\underline{\text{ }}\right)=-3 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right): \\ -\left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-\frac{9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{9}{4}=-\frac{37}{4}: \\ -\left(x^2-3 x+\frac{9}{4}\right)-3 \left(y^2+\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{37}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-3}{9}=-\frac{1}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{37}{4}-\frac{1}{3}=-\frac{115}{12}: \\ -\left(x^2-3 x+\frac{9}{4}\right)-3 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$-\frac{115}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\ -\fbox{$\left(x-\frac{3}{2}\right)^2$}-3 \left(y^2+\frac{2 y}{3}+\frac{1}{9}\right)=-\frac{115}{12} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{3}+\frac{1}{9}=\left(y+\frac{1}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x-\frac{3}{2}\right)^2-3 \fbox{$\left(y+\frac{1}{3}\right)^2$}=-\frac{115}{12} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-2 x-7 y^2-5 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 y^2-5 y-2 x^2-2 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ -7 y^2-5 y-2 x^2-2 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-2 x+\underline{\text{ }}\right)+\left(-7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-2 x+\underline{\text{ }}\right)=-2 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(-7 y^2-5 y+\underline{\text{ }}\right)=-7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right): \\ -2 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{1}{2}=-\frac{17}{2}: \\ -2 \left(x^2+x+\frac{1}{4}\right)-7 \left(y^2+\frac{5 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{17}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{17}{2}-\frac{25}{28}=-\frac{263}{28}: \\ -2 \left(x^2+x+\frac{1}{4}\right)-7 \left(y^2+\frac{5 y}{7}+\frac{25}{196}\right)=\fbox{$-\frac{263}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ -2 \fbox{$\left(x+\frac{1}{2}\right)^2$}-7 \left(y^2+\frac{5 y}{7}+\frac{25}{196}\right)=-\frac{263}{28} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{7}+\frac{25}{196}=\left(y+\frac{5}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 \left(x+\frac{1}{2}\right)^2-7 \fbox{$\left(y+\frac{5}{14}\right)^2$}=-\frac{263}{28} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-9 x-7 y^2-8 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 y^2-8 y-3 x^2-9 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -7 y^2-8 y-3 x^2-9 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2-9 x+\underline{\text{ }}\right)+\left(-7 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2-9 x+\underline{\text{ }}\right)=-3 \left(x^2+3 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2+3 x+\underline{\text{ }}\right)$}+\left(-7 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(-7 y^2-8 y+\underline{\text{ }}\right)=-7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right): \\ -3 \left(x^2+3 x+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{27}{4}=-\frac{31}{4}: \\ -3 \left(x^2+3 x+\frac{9}{4}\right)-7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{31}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{16}{49}=-\frac{16}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{31}{4}-\frac{16}{7}=-\frac{281}{28}: \\ -3 \left(x^2+3 x+\frac{9}{4}\right)-7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\fbox{$-\frac{281}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\ -3 \fbox{$\left(x+\frac{3}{2}\right)^2$}-7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=-\frac{281}{28} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{8 y}{7}+\frac{16}{49}=\left(y+\frac{4}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x+\frac{3}{2}\right)^2-7 \fbox{$\left(y+\frac{4}{7}\right)^2$}=-\frac{281}{28} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-8 x-3 y^2-3 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2-3 y-x^2-8 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ -3 y^2-3 y-x^2-8 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2-8 x+\underline{\text{ }}\right)+\left(-3 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2-8 x+\underline{\text{ }}\right)=-\left(x^2+8 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2+8 x+\underline{\text{ }}\right)$}+\left(-3 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2-3 y+\underline{\text{ }}\right)=-3 \left(y^2+y+\underline{\text{ }}\right): \\ -\left(x^2+8 x+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-16=-6: \\ -\left(x^2+8 x+16\right)-3 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$-6$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-3}{4}=-\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -6-\frac{3}{4}=-\frac{27}{4}: \\ -\left(x^2+8 x+16\right)-3 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{27}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2+8 x+16=(x+4)^2: \\ -\fbox{$(x+4)^2$}-3 \left(y^2+y+\frac{1}{4}\right)=-\frac{27}{4} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x+4)^2-3 \fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{27}{4} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2+10 x-5 y^2-10 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2-10 y-5 x^2+10 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -5 y^2-10 y-5 x^2+10 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2+10 x+\underline{\text{ }}\right)+\left(-5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2+10 x+\underline{\text{ }}\right)=-5 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(-5 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2-10 y+\underline{\text{ }}\right)=-5 \left(y^2+2 y+\underline{\text{ }}\right): \\ -5 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-5=0: \\ -5 \left(x^2-2 x+1\right)-5 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$0$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -5 \fbox{$(x-1)^2$}-5 \left(y^2+2 y+1\right)=-5 \\ \end{array} Step 10: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 (x-1)^2-5 \fbox{$(y+1)^2$}=-5 \\ \end{array}
khanacademy
amps
Given the equation $-x^2-9 x-10 y^2-2 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-2 y-x^2-9 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -10 y^2-2 y-x^2-9 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2-9 x+\underline{\text{ }}\right)+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2-9 x+\underline{\text{ }}\right)=-\left(x^2+9 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2+9 x+\underline{\text{ }}\right)$}+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-2 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\ -\left(x^2+9 x+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{9}{2}\right)^2=\frac{81}{4} \text{on }\text{the }\text{left }\text{and }-\frac{81}{4}=-\frac{81}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -5-\frac{81}{4}=-\frac{101}{4}: \\ -\left(x^2+9 x+\frac{81}{4}\right)-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{101}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{101}{4}-\frac{1}{10}=-\frac{507}{20}: \\ -\left(x^2+9 x+\frac{81}{4}\right)-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{507}{20}$} \\ \end{array} Step 10: \begin{array}{l} x^2+9 x+\frac{81}{4}=\left(x+\frac{9}{2}\right)^2: \\ -\fbox{$\left(x+\frac{9}{2}\right)^2$}-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=-\frac{507}{20} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x+\frac{9}{2}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{10}\right)^2$}=-\frac{507}{20} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+2 x-6 y^2+2 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2+2 y+2 x^2+2 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -6 y^2+2 y+2 x^2+2 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+2 x+\underline{\text{ }}\right)+\left(-6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+2 x+\underline{\text{ }}\right)=2 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-6 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2+2 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\ 2 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{2}{4}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5+\frac{1}{2}=\frac{11}{2}: \\ 2 \left(x^2+x+\frac{1}{4}\right)-6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{11}{2}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-6}{36}=-\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{11}{2}-\frac{1}{6}=\frac{16}{3}: \\ 2 \left(x^2+x+\frac{1}{4}\right)-6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{16}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 2 \fbox{$\left(x+\frac{1}{2}\right)^2$}-6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\frac{16}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{1}{2}\right)^2-6 \fbox{$\left(y-\frac{1}{6}\right)^2$}=\frac{16}{3} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+3 x-5 y^2+y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+y+2 x^2+3 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -5 y^2+y+2 x^2+3 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+3 x+\underline{\text{ }}\right)+\left(-5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+3 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(-5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right): \\ 2 \left(x^2+\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{8}-2=-\frac{7}{8}: \\ 2 \left(x^2+\frac{3 x}{2}+\frac{9}{16}\right)-5 \left(y^2-\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-5}{100}=-\frac{1}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{7}{8}-\frac{1}{20}=-\frac{37}{40}: \\ 2 \left(x^2+\frac{3 x}{2}+\frac{9}{16}\right)-5 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{37}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{2}+\frac{9}{16}=\left(x+\frac{3}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{3}{4}\right)^2$}-5 \left(y^2-\frac{y}{5}+\frac{1}{100}\right)=-\frac{37}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{5}+\frac{1}{100}=\left(y-\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{3}{4}\right)^2-5 \fbox{$\left(y-\frac{1}{10}\right)^2$}=-\frac{37}{40} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-7 x+5 y^2+10 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+10 y-10 x^2-7 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 5 y^2+10 y-10 x^2-7 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-7 x+\underline{\text{ }}\right)+\left(5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-7 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right)$}+\left(5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+10 y+\underline{\text{ }}\right)=5 \left(y^2+2 y+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{7 x}{10}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{49}{400}=-\frac{49}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-\frac{49}{40}=\frac{271}{40}: \\ -10 \left(x^2+\frac{7 x}{10}+\frac{49}{400}\right)+5 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$\frac{271}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{271}{40}+5=\frac{471}{40}: \\ -10 \left(x^2+\frac{7 x}{10}+\frac{49}{400}\right)+5 \left(y^2+2 y+1\right)=\fbox{$\frac{471}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{7 x}{10}+\frac{49}{400}=\left(x+\frac{7}{20}\right)^2: \\ -10 \fbox{$\left(x+\frac{7}{20}\right)^2$}+5 \left(y^2+2 y+1\right)=\frac{471}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{7}{20}\right)^2+5 \fbox{$(y+1)^2$}=\frac{471}{40} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+3 x-10 y^2+10 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+10 y+8 x^2+3 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -10 y^2+10 y+8 x^2+3 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+3 x+\underline{\text{ }}\right)+\left(-10 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+3 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right)$}+\left(-10 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2+10 y+\underline{\text{ }}\right)=-10 \left(y^2-y+\underline{\text{ }}\right): \\ 8 \left(x^2+\frac{3 x}{8}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{256}=\frac{9}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{32}-7=-\frac{215}{32}: \\ 8 \left(x^2+\frac{3 x}{8}+\frac{9}{256}\right)-10 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{215}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-10}{4}=-\frac{5}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{215}{32}-\frac{5}{2}=-\frac{295}{32}: \\ 8 \left(x^2+\frac{3 x}{8}+\frac{9}{256}\right)-10 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{295}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{8}+\frac{9}{256}=\left(x+\frac{3}{16}\right)^2: \\ 8 \fbox{$\left(x+\frac{3}{16}\right)^2$}-10 \left(y^2-y+\frac{1}{4}\right)=-\frac{295}{32} \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{3}{16}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{295}{32} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2-5 x-7 y^2-y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 y^2-y-8 x^2-5 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ -7 y^2-y-8 x^2-5 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2-5 x+\underline{\text{ }}\right)+\left(-7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2-5 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(-7 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(-7 y^2-y+\underline{\text{ }}\right)=-7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right): \\ -8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1-\frac{25}{32}=\frac{7}{32}: \\ -8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)-7 \left(y^2+\frac{y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{7}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{-7}{196}=-\frac{1}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{7}{32}-\frac{1}{28}=\frac{41}{224}: \\ -8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)-7 \left(y^2+\frac{y}{7}+\frac{1}{196}\right)=\fbox{$\frac{41}{224}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{8}+\frac{25}{256}=\left(x+\frac{5}{16}\right)^2: \\ -8 \fbox{$\left(x+\frac{5}{16}\right)^2$}-7 \left(y^2+\frac{y}{7}+\frac{1}{196}\right)=\frac{41}{224} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{7}+\frac{1}{196}=\left(y+\frac{1}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x+\frac{5}{16}\right)^2-7 \fbox{$\left(y+\frac{1}{14}\right)^2$}=\frac{41}{224} \\ \end{array}
khanacademy
amps
Given the equation $-x^2+4 x+7 y^2-5 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-5 y-x^2+4 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ 7 y^2-5 y-x^2+4 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+4 x+\underline{\text{ }}\right)+\left(7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+4 x+\underline{\text{ }}\right)=-\left(x^2-4 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-4 x+\underline{\text{ }}\right)$}+\left(7 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-5 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right): \\ -\left(x^2-4 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-4=-4 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-4=-14: \\ -\left(x^2-4 x+4\right)+7 \left(y^2-\frac{5 y}{7}+\underline{\text{ }}\right)=\fbox{$-14$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{25}{196}=\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{28}-14=-\frac{367}{28}: \\ -\left(x^2-4 x+4\right)+7 \left(y^2-\frac{5 y}{7}+\frac{25}{196}\right)=\fbox{$-\frac{367}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2-4 x+4=(x-2)^2: \\ -\fbox{$(x-2)^2$}+7 \left(y^2-\frac{5 y}{7}+\frac{25}{196}\right)=-\frac{367}{28} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{7}+\frac{25}{196}=\left(y-\frac{5}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x-2)^2+7 \fbox{$\left(y-\frac{5}{14}\right)^2$}=-\frac{367}{28} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2-10 x+5 y^2+3 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+3 y+9 x^2-10 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ 5 y^2+3 y+9 x^2-10 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2-10 x+\underline{\text{ }}\right)+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2-10 x+\underline{\text{ }}\right)=9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+3 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right): \\ 9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{81}=\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6+\frac{25}{9}=\frac{79}{9}: \\ 9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)+5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{79}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{79}{9}+\frac{9}{20}=\frac{1661}{180}: \\ 9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$\frac{1661}{180}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{10 x}{9}+\frac{25}{81}=\left(x-\frac{5}{9}\right)^2: \\ 9 \fbox{$\left(x-\frac{5}{9}\right)^2$}+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\frac{1661}{180} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{5}+\frac{9}{100}=\left(y+\frac{3}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x-\frac{5}{9}\right)^2+5 \fbox{$\left(y+\frac{3}{10}\right)^2$}=\frac{1661}{180} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+6 x-10 y^2-2 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-2 y+7 x^2+6 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -10 y^2-2 y+7 x^2+6 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+6 x+\underline{\text{ }}\right)+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-2 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{7}-5=-\frac{26}{7}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{26}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{26}{7}-\frac{1}{10}=-\frac{267}{70}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{267}{70}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\ 7 \fbox{$\left(x+\frac{3}{7}\right)^2$}-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=-\frac{267}{70} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{3}{7}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{10}\right)^2$}=-\frac{267}{70} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-9 x-8 y^2-8 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2-8 y+4 x^2-9 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -8 y^2-8 y+4 x^2-9 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-9 x+\underline{\text{ }}\right)+\left(-8 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(-8 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2-8 y+\underline{\text{ }}\right)=-8 \left(y^2+y+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5+\frac{81}{16}=\frac{161}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-8 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{161}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-8}{4}=-2 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{161}{16}-2=\frac{129}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-8 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{129}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{9}{8}\right)^2$}-8 \left(y^2+y+\frac{1}{4}\right)=\frac{129}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{9}{8}\right)^2-8 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{129}{16} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-10 x-4 y^2-3 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-3 y+4 x^2-10 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ -4 y^2-3 y+4 x^2-10 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-10 x+\underline{\text{ }}\right)+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-10 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-3 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7+\frac{25}{4}=\frac{53}{4}: \\ 4 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{53}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{53}{4}-\frac{9}{16}=\frac{203}{16}: \\ 4 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{203}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\ 4 \fbox{$\left(x-\frac{5}{4}\right)^2$}-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\frac{203}{16} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{5}{4}\right)^2-4 \fbox{$\left(y+\frac{3}{8}\right)^2$}=\frac{203}{16} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-5 x-4 y^2-7 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-7 y+4 x^2-5 x-1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }1 \text{to }\text{both }\text{sides}: \\ -4 y^2-7 y+4 x^2-5 x=1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-5 x+\underline{\text{ }}\right)+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-5 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-7 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{64}=\frac{25}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 1+\frac{25}{16}=\frac{41}{16}: \\ 4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{41}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{41}{16}-\frac{49}{16}=-\frac{1}{2}: \\ 4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$-\frac{1}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{4}+\frac{25}{64}=\left(x-\frac{5}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{5}{8}\right)^2$}-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=-\frac{1}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{4}+\frac{49}{64}=\left(y+\frac{7}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{5}{8}\right)^2-4 \fbox{$\left(y+\frac{7}{8}\right)^2$}=-\frac{1}{2} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+10 x+5 y^2+3 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+3 y+4 x^2+10 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ 5 y^2+3 y+4 x^2+10 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+10 x+\underline{\text{ }}\right)+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+10 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+3 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right): \\ 4 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{4}-2=\frac{17}{4}: \\ 4 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{17}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{17}{4}+\frac{9}{20}=\frac{47}{10}: \\ 4 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$\frac{47}{10}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\ 4 \fbox{$\left(x+\frac{5}{4}\right)^2$}+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\frac{47}{10} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{5}+\frac{9}{100}=\left(y+\frac{3}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{5}{4}\right)^2+5 \fbox{$\left(y+\frac{3}{10}\right)^2$}=\frac{47}{10} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-9 x-9 y^2-3 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-3 y+4 x^2-9 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-9 x+\underline{\text{ }}\right)+\left(-9 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(-9 y^2-3 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-9}{36}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{16}-\frac{1}{4}=\frac{77}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-9 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{77}{16}$} \\ \end{array} Step 8: \begin{array}{l} x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{9}{8}\right)^2$}-9 \left(y^2+\frac{y}{3}+\frac{1}{36}\right)=\frac{77}{16} \\ \end{array} Step 9: \begin{array}{l} y^2+\frac{y}{3}+\frac{1}{36}=\left(y+\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{9}{8}\right)^2-9 \fbox{$\left(y+\frac{1}{6}\right)^2$}=\frac{77}{16} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2+5 x+y^2+6 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2+6 y-7 x^2+5 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ y^2+6 y-7 x^2+5 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2+5 x+\underline{\text{ }}\right)+\left(y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2+5 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} -2-\frac{25}{28}=-\frac{81}{28}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+\left(y^2+6 y+\underline{\text{ }}\right)=\fbox{$-\frac{81}{28}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\ \end{array} Step 8: \begin{array}{l} 9-\frac{81}{28}=\frac{171}{28}: \\ -7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)+\left(y^2+6 y+9\right)=\fbox{$\frac{171}{28}$} \\ \end{array} Step 9: \begin{array}{l} x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\ -7 \fbox{$\left(x-\frac{5}{14}\right)^2$}+\left(y^2+6 y+9\right)=\frac{171}{28} \\ \end{array} Step 10: \begin{array}{l} y^2+6 y+9=(y+3)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x-\frac{5}{14}\right)^2+\fbox{$(y+3)^2$}=\frac{171}{28} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2-10 x+4 y^2+y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+y-6 x^2-10 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ 4 y^2+y-6 x^2-10 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2-10 x+\underline{\text{ }}\right)+\left(4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2-10 x+\underline{\text{ }}\right)=-6 \left(x^2+\frac{5 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2+\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right): \\ -6 \left(x^2+\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{36}=-\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{25}{6}=-\frac{85}{6}: \\ -6 \left(x^2+\frac{5 x}{3}+\frac{25}{36}\right)+4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{85}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{16}-\frac{85}{6}=-\frac{677}{48}: \\ -6 \left(x^2+\frac{5 x}{3}+\frac{25}{36}\right)+4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\fbox{$-\frac{677}{48}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{3}+\frac{25}{36}=\left(x+\frac{5}{6}\right)^2: \\ -6 \fbox{$\left(x+\frac{5}{6}\right)^2$}+4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=-\frac{677}{48} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{4}+\frac{1}{64}=\left(y+\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x+\frac{5}{6}\right)^2+4 \fbox{$\left(y+\frac{1}{8}\right)^2$}=-\frac{677}{48} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+6 x+10 y^2+8 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2+8 y-8 x^2+6 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ 10 y^2+8 y-8 x^2+6 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+6 x+\underline{\text{ }}\right)+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+6 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2+8 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{64}=-\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{9}{8}=\frac{15}{8}: \\ -8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)+10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{15}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{15}{8}+\frac{8}{5}=\frac{139}{40}: \\ -8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{139}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\ -8 \fbox{$\left(x-\frac{3}{8}\right)^2$}+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{139}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{3}{8}\right)^2+\text{10 }\fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{139}{40} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-8 x-9 y^2-5 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-5 y-9 x^2-8 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -9 y^2-5 y-9 x^2-8 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-8 x+\underline{\text{ }}\right)+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-8 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)$}+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-5 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right): \\ -9 \left(x^2+\frac{8 x}{9}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{16}{9}=-\frac{25}{9}: \\ -9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{25}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{324}=-\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{25}{9}-\frac{25}{36}=-\frac{125}{36}: \\ -9 \left(x^2+\frac{8 x}{9}+\frac{16}{81}\right)-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$-\frac{125}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{8 x}{9}+\frac{16}{81}=\left(x+\frac{4}{9}\right)^2: \\ -9 \fbox{$\left(x+\frac{4}{9}\right)^2$}-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=-\frac{125}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{9}+\frac{25}{324}=\left(y+\frac{5}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{4}{9}\right)^2-9 \fbox{$\left(y+\frac{5}{18}\right)^2$}=-\frac{125}{36} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+5 x-y^2+6 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+6 y-3 x^2+5 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ -y^2+6 y-3 x^2+5 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+5 x+\underline{\text{ }}\right)+\left(-y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+5 x+\underline{\text{ }}\right)=-3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(-y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+6 y+\underline{\text{ }}\right)=-\left(y^2-6 y+\underline{\text{ }}\right): \\ -3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-6 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-3\times \frac{25}{36}=-\frac{25}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2-\frac{25}{12}=-\frac{1}{12}: \\ -3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)-\left(y^2-6 y+\underline{\text{ }}\right)=\fbox{$-\frac{1}{12}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-6}{2}\right)^2=9 \text{on }\text{the }\text{left }\text{and }-9=-9 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{1}{12}-9=-\frac{109}{12}: \\ -3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)-\left(y^2-6 y+9\right)=\fbox{$-\frac{109}{12}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\ -3 \fbox{$\left(x-\frac{5}{6}\right)^2$}-\left(y^2-6 y+9\right)=-\frac{109}{12} \\ \end{array} Step 11: \begin{array}{l} y^2-6 y+9=(y-3)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{5}{6}\right)^2-\fbox{$(y-3)^2$}=-\frac{109}{12} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-5 x+4 y^2-10 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2-10 y+2 x^2-5 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 4 y^2-10 y+2 x^2-5 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-5 x+\underline{\text{ }}\right)+\left(4 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-5 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(4 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2-10 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{25}{8}=\frac{105}{8}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+4 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{105}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{105}{8}+\frac{25}{4}=\frac{155}{8}: \\ 2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+4 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$\frac{155}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{5}{4}\right)^2$}+4 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\frac{155}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{2}+\frac{25}{16}=\left(y-\frac{5}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{5}{4}\right)^2+4 \fbox{$\left(y-\frac{5}{4}\right)^2$}=\frac{155}{8} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-3 x+6 y^2+10 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+10 y-10 x^2-3 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ 6 y^2+10 y-10 x^2-3 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-3 x+\underline{\text{ }}\right)+\left(6 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-3 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(6 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+10 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{9}{40}=-\frac{329}{40}: \\ -10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{329}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{36}=\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{6}-\frac{329}{40}=-\frac{487}{120}: \\ -10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=\fbox{$-\frac{487}{120}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{10}+\frac{9}{400}=\left(x+\frac{3}{20}\right)^2: \\ -10 \fbox{$\left(x+\frac{3}{20}\right)^2$}+6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=-\frac{487}{120} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{3}+\frac{25}{36}=\left(y+\frac{5}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{3}{20}\right)^2+6 \fbox{$\left(y+\frac{5}{6}\right)^2$}=-\frac{487}{120} \\ \end{array}
khanacademy
amps
Given the equation $7 x^2+6 x-8 y^2+5 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -8 y^2+5 y+7 x^2+6 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -8 y^2+5 y+7 x^2+6 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(7 x^2+6 x+\underline{\text{ }}\right)+\left(-8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(-8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-8 y^2+5 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{5 y}{8}+\underline{\text{ }}\right): \\ 7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{5 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{7}-7=-\frac{40}{7}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-8 \left(y^2-\frac{5 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{40}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{40}{7}-\frac{25}{32}=-\frac{1455}{224}: \\ 7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-8 \left(y^2-\frac{5 y}{8}+\frac{25}{256}\right)=\fbox{$-\frac{1455}{224}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\ 7 \fbox{$\left(x+\frac{3}{7}\right)^2$}-8 \left(y^2-\frac{5 y}{8}+\frac{25}{256}\right)=-\frac{1455}{224} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{8}+\frac{25}{256}=\left(y-\frac{5}{16}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \left(x+\frac{3}{7}\right)^2-8 \fbox{$\left(y-\frac{5}{16}\right)^2$}=-\frac{1455}{224} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+3 x-9 y^2-5 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-5 y-3 x^2+3 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ -9 y^2-5 y-3 x^2+3 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+3 x+\underline{\text{ }}\right)+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+3 x+\underline{\text{ }}\right)=-3 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-5 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right): \\ -3 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-3}{4}=-\frac{3}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6-\frac{3}{4}=\frac{21}{4}: \\ -3 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{21}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{324}=-\frac{25}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{21}{4}-\frac{25}{36}=\frac{41}{9}: \\ -3 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$\frac{41}{9}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ -3 \fbox{$\left(x-\frac{1}{2}\right)^2$}-9 \left(y^2+\frac{5 y}{9}+\frac{25}{324}\right)=\frac{41}{9} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{9}+\frac{25}{324}=\left(y+\frac{5}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 \left(x-\frac{1}{2}\right)^2-9 \fbox{$\left(y+\frac{5}{18}\right)^2$}=\frac{41}{9} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2-10 x+7 y^2-4 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-4 y-9 x^2-10 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ 7 y^2-4 y-9 x^2-10 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2-10 x+\underline{\text{ }}\right)+\left(7 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2-10 x+\underline{\text{ }}\right)=-9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(7 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-4 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{4 y}{7}+\underline{\text{ }}\right): \\ -9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{4 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -1-\frac{25}{9}=-\frac{34}{9}: \\ -9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)+7 \left(y^2-\frac{4 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{34}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{7}}{2}\right)^2=\frac{4}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{4}{49}=\frac{4}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{4}{7}-\frac{34}{9}=-\frac{202}{63}: \\ -9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)+7 \left(y^2-\frac{4 y}{7}+\frac{4}{49}\right)=\fbox{$-\frac{202}{63}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{10 x}{9}+\frac{25}{81}=\left(x+\frac{5}{9}\right)^2: \\ -9 \fbox{$\left(x+\frac{5}{9}\right)^2$}+7 \left(y^2-\frac{4 y}{7}+\frac{4}{49}\right)=-\frac{202}{63} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{7}+\frac{4}{49}=\left(y-\frac{2}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x+\frac{5}{9}\right)^2+7 \fbox{$\left(y-\frac{2}{7}\right)^2$}=-\frac{202}{63} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2+5 x+8 y^2-4 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2-4 y-4 x^2+5 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ 8 y^2-4 y-4 x^2+5 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2+5 x+\underline{\text{ }}\right)+\left(8 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-4 x^2+5 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2-4 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ -4 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{25}{64}=-\frac{25}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{25}{16}=-\frac{137}{16}: \\ -4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)+8 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{137}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{2}-\frac{137}{16}=-\frac{129}{16}: \\ -4 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)+8 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{129}{16}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{4}+\frac{25}{64}=\left(x-\frac{5}{8}\right)^2: \\ -4 \fbox{$\left(x-\frac{5}{8}\right)^2$}+8 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{129}{16} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x-\frac{5}{8}\right)^2+8 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{129}{16} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2-3 x+2 y^2-9 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-9 y+6 x^2-3 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ 2 y^2-9 y+6 x^2-3 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2-3 x+\underline{\text{ }}\right)+\left(2 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2-3 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(2 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-9 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right): \\ 6 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{6}{16}=\frac{3}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{3}{8}-5=-\frac{37}{8}: \\ 6 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+2 \left(y^2-\frac{9 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{37}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{81}{8}-\frac{37}{8}=\frac{11}{2}: \\ 6 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=\fbox{$\frac{11}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\ 6 \fbox{$\left(x-\frac{1}{4}\right)^2$}+2 \left(y^2-\frac{9 y}{2}+\frac{81}{16}\right)=\frac{11}{2} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{9 y}{2}+\frac{81}{16}=\left(y-\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x-\frac{1}{4}\right)^2+2 \fbox{$\left(y-\frac{9}{4}\right)^2$}=\frac{11}{2} \\ \end{array}
khanacademy
amps
Given the equation $x^2+7 x-4 y^2+6 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2+6 y+x^2+7 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ -4 y^2+6 y+x^2+7 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2+7 x+\underline{\text{ }}\right)+\left(-4 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(-4 y^2+6 y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\ \left(x^2+7 x+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 6: \begin{array}{l} \frac{49}{4}-5=\frac{29}{4}: \\ \left(x^2+7 x+\frac{49}{4}\right)-4 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{29}{4}$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 8: \begin{array}{l} \frac{29}{4}-\frac{9}{4}=5: \\ \left(x^2+7 x+\frac{49}{4}\right)-4 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$5$} \\ \end{array} Step 9: \begin{array}{l} x^2+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^2: \\ \fbox{$\left(x+\frac{7}{2}\right)^2$}-4 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)=5 \\ \end{array} Step 10: \begin{array}{l} y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x+\frac{7}{2}\right)^2-4 \fbox{$\left(y-\frac{3}{4}\right)^2$}=5 \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+6 x+y^2-9 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2-9 y-3 x^2+6 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ y^2-9 y-3 x^2+6 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+6 x+\underline{\text{ }}\right)+\left(y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+6 x+\underline{\text{ }}\right)=-3 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} 8-3=5: \\ -3 \left(x^2-2 x+1\right)+\left(y^2-9 y+\underline{\text{ }}\right)=\fbox{$5$} \\ \end{array} Step 7: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-9}{2}\right)^2=\frac{81}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 8: \begin{array}{l} 5+\frac{81}{4}=\frac{101}{4}: \\ -3 \left(x^2-2 x+1\right)+\left(y^2-9 y+\frac{81}{4}\right)=\fbox{$\frac{101}{4}$} \\ \end{array} Step 9: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -3 \fbox{$(x-1)^2$}+\left(y^2-9 y+\frac{81}{4}\right)=\frac{101}{4} \\ \end{array} Step 10: \begin{array}{l} y^2-9 y+\frac{81}{4}=\left(y-\frac{9}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 (x-1)^2+\fbox{$\left(y-\frac{9}{2}\right)^2$}=\frac{101}{4} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2-6 x+3 y^2+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 x^2-6 x+\left(3 y^2+4\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 3 y^2+8 x^2-6 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(8 x^2-6 x+\underline{\text{ }}\right)+3 y^2=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2-6 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+3 y^2=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{9}{64}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \frac{9}{8}-4=-\frac{23}{8}: \\ 8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)+3 y^2=\fbox{$-\frac{23}{8}$} \\ \end{array} Step 7: \begin{array}{l} x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \fbox{$\left(x-\frac{3}{8}\right)^2$}+3 y^2=-\frac{23}{8} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-x-3 y^2+2 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+2 y+4 x^2-x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -3 y^2+2 y+4 x^2-x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-x+\underline{\text{ }}\right)+\left(-3 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-x+\underline{\text{ }}\right)=4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-3 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2+2 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{16}-6=-\frac{95}{16}: \\ 4 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-3 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{95}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-3}{9}=-\frac{1}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{95}{16}-\frac{1}{3}=-\frac{301}{48}: \\ 4 \left(x^2-\frac{x}{4}+\frac{1}{64}\right)-3 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$-\frac{301}{48}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{4}+\frac{1}{64}=\left(x-\frac{1}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{1}{8}\right)^2$}-3 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=-\frac{301}{48} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{1}{8}\right)^2-3 \fbox{$\left(y-\frac{1}{3}\right)^2$}=-\frac{301}{48} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+5 x+4 y^2+2 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2+2 y-8 x^2+5 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ 4 y^2+2 y-8 x^2+5 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+5 x+\underline{\text{ }}\right)+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+5 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2+2 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6-\frac{25}{32}=\frac{167}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{167}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{167}{32}+\frac{1}{4}=\frac{175}{32}: \\ -8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{175}{32}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{8}+\frac{25}{256}=\left(x-\frac{5}{16}\right)^2: \\ -8 \fbox{$\left(x-\frac{5}{16}\right)^2$}+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{175}{32} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{5}{16}\right)^2+4 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{175}{32} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2+5 x+10 y^2+5 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2+5 y+2 x^2+5 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 10 y^2+5 y+2 x^2+5 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2+5 x+\underline{\text{ }}\right)+\left(10 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2+5 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(10 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2+5 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\ 2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{25}{8}-4=-\frac{7}{8}: \\ 2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+10 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{10}{16}=\frac{5}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{5}{8}-\frac{7}{8}=-\frac{1}{4}: \\ 2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+10 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{1}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\ 2 \fbox{$\left(x+\frac{5}{4}\right)^2$}+10 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{1}{4} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x+\frac{5}{4}\right)^2+\text{10 }\fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{1}{4} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2-x+4 y^2-2 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 4 y^2-2 y+3 x^2-x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ 4 y^2-2 y+3 x^2-x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2-x+\underline{\text{ }}\right)+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2-x+\underline{\text{ }}\right)=3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(4 y^2-2 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ 3 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{3}{36}=\frac{1}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6+\frac{1}{12}=\frac{73}{12}: \\ 3 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{73}{12}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{73}{12}+\frac{1}{4}=\frac{19}{3}: \\ 3 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{19}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\ 3 \fbox{$\left(x-\frac{1}{6}\right)^2$}+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\frac{19}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x-\frac{1}{6}\right)^2+4 \fbox{$\left(y-\frac{1}{4}\right)^2$}=\frac{19}{3} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+8 x-3 y^2+6 y+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+6 y+10 x^2+8 x+2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 \text{from }\text{both }\text{sides}: \\ -3 y^2+6 y+10 x^2+8 x=-2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+8 x+\underline{\text{ }}\right)+\left(-3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+8 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2+6 y+\underline{\text{ }}\right)=-3 \left(y^2-2 y+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{8}{5}-2=-\frac{2}{5}: \\ 10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$-\frac{2}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{2}{5}-3=-\frac{17}{5}: \\ 10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-2 y+1\right)=\fbox{$-\frac{17}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{5}+\frac{4}{25}=\left(x+\frac{2}{5}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{2}{5}\right)^2$}-3 \left(y^2-2 y+1\right)=-\frac{17}{5} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{2}{5}\right)^2-3 \fbox{$(y-1)^2$}=-\frac{17}{5} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2+x+7 y^2-6 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-6 y-6 x^2+x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 7 y^2-6 y-6 x^2+x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2+x+\underline{\text{ }}\right)+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2+x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)$}+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-6 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\ -6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{-6}{144}=-\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -3-\frac{1}{24}=-\frac{73}{24}: \\ -6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)+7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{73}{24}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{7}-\frac{73}{24}=-\frac{295}{168}: \\ -6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$-\frac{295}{168}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{6}+\frac{1}{144}=\left(x-\frac{1}{12}\right)^2: \\ -6 \fbox{$\left(x-\frac{1}{12}\right)^2$}+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=-\frac{295}{168} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x-\frac{1}{12}\right)^2+7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=-\frac{295}{168} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+2 x+8 y^2-10 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2-10 y-9 x^2+2 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ 8 y^2-10 y-9 x^2+2 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+2 x+\underline{\text{ }}\right)+\left(8 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+2 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{2 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{2 x}{9}+\underline{\text{ }}\right)$}+\left(8 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2-10 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{2 x}{9}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{-9}{81}=-\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{1}{9}=-\frac{64}{9}: \\ -9 \left(x^2-\frac{2 x}{9}+\frac{1}{81}\right)+8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{64}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{8}-\frac{64}{9}=-\frac{287}{72}: \\ -9 \left(x^2-\frac{2 x}{9}+\frac{1}{81}\right)+8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$-\frac{287}{72}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{2 x}{9}+\frac{1}{81}=\left(x-\frac{1}{9}\right)^2: \\ -9 \fbox{$\left(x-\frac{1}{9}\right)^2$}+8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=-\frac{287}{72} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{5 y}{4}+\frac{25}{64}=\left(y-\frac{5}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{1}{9}\right)^2+8 \fbox{$\left(y-\frac{5}{8}\right)^2$}=-\frac{287}{72} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2+8 x+3 y^2+6 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 y^2+6 y+5 x^2+8 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 3 y^2+6 y+5 x^2+8 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2+8 x+\underline{\text{ }}\right)+\left(3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2+8 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(3 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(3 y^2+6 y+\underline{\text{ }}\right)=3 \left(y^2+2 y+\underline{\text{ }}\right): \\ 5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$3 \left(y^2+2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{16}{5}=\frac{66}{5}: \\ 5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)+3 \left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$\frac{66}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }3\times 1=3 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{66}{5}+3=\frac{81}{5}: \\ 5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)+3 \left(y^2+2 y+1\right)=\fbox{$\frac{81}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\ 5 \fbox{$\left(x+\frac{4}{5}\right)^2$}+3 \left(y^2+2 y+1\right)=\frac{81}{5} \\ \end{array} Step 11: \begin{array}{l} y^2+2 y+1=(y+1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x+\frac{4}{5}\right)^2+3 \fbox{$(y+1)^2$}=\frac{81}{5} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2-2 x-9 y^2-2 y+8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-2 y-8 x^2-2 x+8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ -9 y^2-2 y-8 x^2-2 x=-8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2-2 x+\underline{\text{ }}\right)+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2-2 x+\underline{\text{ }}\right)=-8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-2 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\ -8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-8}{64}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -8-\frac{1}{8}=-\frac{65}{8}: \\ -8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{65}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{-9}{81}=-\frac{1}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{65}{8}-\frac{1}{9}=-\frac{593}{72}: \\ -8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$-\frac{593}{72}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\ -8 \fbox{$\left(x+\frac{1}{8}\right)^2$}-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=-\frac{593}{72} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x+\frac{1}{8}\right)^2-9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=-\frac{593}{72} \\ \end{array}
khanacademy
amps
Given the equation $-9 x^2+10 x-4 y^2-3 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-3 y-9 x^2+10 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -4 y^2-3 y-9 x^2+10 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-9 x^2+10 x+\underline{\text{ }}\right)+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-9 x^2+10 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right): \\ \fbox{$-9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(-4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-3 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\ -9 \left(x^2-\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-\frac{25}{9}=\frac{47}{9}: \\ -9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)-4 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{47}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{47}{9}-\frac{9}{16}=\frac{671}{144}: \\ -9 \left(x^2-\frac{10 x}{9}+\frac{25}{81}\right)-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{671}{144}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{10 x}{9}+\frac{25}{81}=\left(x-\frac{5}{9}\right)^2: \\ -9 \fbox{$\left(x-\frac{5}{9}\right)^2$}-4 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\frac{671}{144} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -9 \left(x-\frac{5}{9}\right)^2-4 \fbox{$\left(y+\frac{3}{8}\right)^2$}=\frac{671}{144} \\ \end{array}
khanacademy
amps
Given the equation $-x^2-7 x-9 y^2+10 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2+10 y-x^2-7 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ -9 y^2+10 y-x^2-7 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2-7 x+\underline{\text{ }}\right)+\left(-9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2-7 x+\underline{\text{ }}\right)=-\left(x^2+7 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2+7 x+\underline{\text{ }}\right)$}+\left(-9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2+10 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right): \\ -\left(x^2+7 x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{on }\text{the }\text{left }\text{and }-\frac{49}{4}=-\frac{49}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{49}{4}=-\frac{73}{4}: \\ -\left(x^2+7 x+\frac{49}{4}\right)-9 \left(y^2-\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{73}{4}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{25}{81}=-\frac{25}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{73}{4}-\frac{25}{9}=-\frac{757}{36}: \\ -\left(x^2+7 x+\frac{49}{4}\right)-9 \left(y^2-\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$-\frac{757}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2+7 x+\frac{49}{4}=\left(x+\frac{7}{2}\right)^2: \\ -\fbox{$\left(x+\frac{7}{2}\right)^2$}-9 \left(y^2-\frac{10 y}{9}+\frac{25}{81}\right)=-\frac{757}{36} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{10 y}{9}+\frac{25}{81}=\left(y-\frac{5}{9}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -\left(x+\frac{7}{2}\right)^2-9 \fbox{$\left(y-\frac{5}{9}\right)^2$}=-\frac{757}{36} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2-4 x-y^2+2 y+1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -y^2+2 y+3 x^2-4 x+1=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }1 \text{from }\text{both }\text{sides}: \\ -y^2+2 y+3 x^2-4 x=-1 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2-4 x+\underline{\text{ }}\right)+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2-4 x+\underline{\text{ }}\right)=3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right)$}+\left(-y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\ \end{array} Step 5: \begin{array}{l} \left(-y^2+2 y+\underline{\text{ }}\right)=-\left(y^2-2 y+\underline{\text{ }}\right): \\ 3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{4}{9}=\frac{4}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{4}{3}-1=\frac{1}{3}: \\ 3 \left(x^2-\frac{4 x}{3}+\frac{4}{9}\right)-\left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{1}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-1=-1 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{3}-1=-\frac{2}{3}: \\ 3 \left(x^2-\frac{4 x}{3}+\frac{4}{9}\right)-\left(y^2-2 y+1\right)=\fbox{$-\frac{2}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{4 x}{3}+\frac{4}{9}=\left(x-\frac{2}{3}\right)^2: \\ 3 \fbox{$\left(x-\frac{2}{3}\right)^2$}-\left(y^2-2 y+1\right)=-\frac{2}{3} \\ \end{array} Step 11: \begin{array}{l} y^2-2 y+1=(y-1)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x-\frac{2}{3}\right)^2-\fbox{$(y-1)^2$}=-\frac{2}{3} \\ \end{array}
khanacademy
amps
Given the equation $10 x^2+8 x-6 y^2-5 y-7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-5 y+10 x^2+8 x-7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }7 \text{to }\text{both }\text{sides}: \\ -6 y^2-5 y+10 x^2+8 x=7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(10 x^2+8 x+\underline{\text{ }}\right)+\left(-6 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 4: \begin{array}{l} \left(10 x^2+8 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right): \\ \fbox{$10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-6 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-5 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right): \\ 10 \left(x^2+\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 7+\frac{8}{5}=\frac{43}{5}: \\ 10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)=\fbox{$\frac{43}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{144}=-\frac{25}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{43}{5}-\frac{25}{24}=\frac{907}{120}: \\ 10 \left(x^2+\frac{4 x}{5}+\frac{4}{25}\right)-6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=\fbox{$\frac{907}{120}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{5}+\frac{4}{25}=\left(x+\frac{2}{5}\right)^2: \\ \text{10 }\fbox{$\left(x+\frac{2}{5}\right)^2$}-6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=\frac{907}{120} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{5 y}{6}+\frac{25}{144}=\left(y+\frac{5}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 10 \left(x+\frac{2}{5}\right)^2-6 \fbox{$\left(y+\frac{5}{12}\right)^2$}=\frac{907}{120} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-4 x+7 y^2-9 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-9 y-7 x^2-4 x+6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }6 \text{from }\text{both }\text{sides}: \\ 7 y^2-9 y-7 x^2-4 x=-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2-4 x+\underline{\text{ }}\right)+\left(7 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2-4 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right)$}+\left(7 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-9 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right): \\ -7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{7}}{2}\right)^2=\frac{4}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{4}{49}=-\frac{4}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -6-\frac{4}{7}=-\frac{46}{7}: \\ -7 \left(x^2+\frac{4 x}{7}+\frac{4}{49}\right)+7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{46}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }7\times \frac{81}{196}=\frac{81}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{81}{28}-\frac{46}{7}=-\frac{103}{28}: \\ -7 \left(x^2+\frac{4 x}{7}+\frac{4}{49}\right)+7 \left(y^2-\frac{9 y}{7}+\frac{81}{196}\right)=\fbox{$-\frac{103}{28}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{7}+\frac{4}{49}=\left(x+\frac{2}{7}\right)^2: \\ -7 \fbox{$\left(x+\frac{2}{7}\right)^2$}+7 \left(y^2-\frac{9 y}{7}+\frac{81}{196}\right)=-\frac{103}{28} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{9 y}{7}+\frac{81}{196}=\left(y-\frac{9}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x+\frac{2}{7}\right)^2+7 \fbox{$\left(y-\frac{9}{14}\right)^2$}=-\frac{103}{28} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+2 x+6 y^2+6 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+6 y+8 x^2+2 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ 6 y^2+6 y+8 x^2+2 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(8 x^2+2 x+\underline{\text{ }}\right)+\left(6 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+2 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(6 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+6 y+\underline{\text{ }}\right)=6 \left(y^2+y+\underline{\text{ }}\right): \\ 8 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{8}{64}=\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3+\frac{1}{8}=\frac{25}{8}: \\ 8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)+6 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{25}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{6}{4}=\frac{3}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{25}{8}+\frac{3}{2}=\frac{37}{8}: \\ 8 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)+6 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{37}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\ 8 \fbox{$\left(x+\frac{1}{8}\right)^2$}+6 \left(y^2+y+\frac{1}{4}\right)=\frac{37}{8} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \left(x+\frac{1}{8}\right)^2+6 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{37}{8} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2+x-3 y^2+8 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+8 y-6 x^2+x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -3 y^2+8 y-6 x^2+x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2+x+\underline{\text{ }}\right)+\left(-3 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2+x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)$}+\left(-3 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2+8 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right): \\ -6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{-6}{144}=-\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{1}{24}=-\frac{169}{24}: \\ -6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-3 \left(y^2-\frac{8 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{169}{24}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-8}{3}}{2}\right)^2=\frac{16}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{16}{9}=-\frac{16}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{169}{24}-\frac{16}{3}=-\frac{99}{8}: \\ -6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-3 \left(y^2-\frac{8 y}{3}+\frac{16}{9}\right)=\fbox{$-\frac{99}{8}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{6}+\frac{1}{144}=\left(x-\frac{1}{12}\right)^2: \\ -6 \fbox{$\left(x-\frac{1}{12}\right)^2$}-3 \left(y^2-\frac{8 y}{3}+\frac{16}{9}\right)=-\frac{99}{8} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{8 y}{3}+\frac{16}{9}=\left(y-\frac{4}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x-\frac{1}{12}\right)^2-3 \fbox{$\left(y-\frac{4}{3}\right)^2$}=-\frac{99}{8} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+3 x+y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y+4 x^2+3 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }y \text{from }\text{both }\text{sides}: \\ 4 x^2+3 x=-y \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(4 x^2+3 x+\underline{\text{ }}\right)=\underline{\text{ }}-y \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+3 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+\frac{3 x}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-y \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} x^2+\frac{3 x}{4}+\frac{9}{64}=\left(x+\frac{3}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \fbox{$\left(x+\frac{3}{8}\right)^2$}=\frac{9}{16}-y \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-5 x+10 y^2+4 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 10 y^2+4 y-7 x^2-5 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ 10 y^2+4 y-7 x^2-5 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2-5 x+\underline{\text{ }}\right)+\left(10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2-5 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(10 y^2+4 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{2 y}{5}+\underline{\text{ }}\right): \\ -7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{2 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -9-\frac{25}{28}=-\frac{277}{28}: \\ -7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)+10 \left(y^2+\frac{2 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{277}{28}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{10}{25}=\frac{2}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{2}{5}-\frac{277}{28}=-\frac{1329}{140}: \\ -7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)+10 \left(y^2+\frac{2 y}{5}+\frac{1}{25}\right)=\fbox{$-\frac{1329}{140}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{5 x}{7}+\frac{25}{196}=\left(x+\frac{5}{14}\right)^2: \\ -7 \fbox{$\left(x+\frac{5}{14}\right)^2$}+10 \left(y^2+\frac{2 y}{5}+\frac{1}{25}\right)=-\frac{1329}{140} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{2 y}{5}+\frac{1}{25}=\left(y+\frac{1}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x+\frac{5}{14}\right)^2+\text{10 }\fbox{$\left(y+\frac{1}{5}\right)^2$}=-\frac{1329}{140} \\ \end{array}
khanacademy
amps
Given the equation $3 x^2-4 x+2 y^2+3 y+4=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+3 y+3 x^2-4 x+4=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }4 \text{from }\text{both }\text{sides}: \\ 2 y^2+3 y+3 x^2-4 x=-4 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(3 x^2-4 x+\underline{\text{ }}\right)+\left(2 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 4: \begin{array}{l} \left(3 x^2-4 x+\underline{\text{ }}\right)=3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right): \\ \fbox{$3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right)$}+\left(2 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+3 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ 3 \left(x^2-\frac{4 x}{3}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{4}{9}=\frac{4}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{4}{3}-4=-\frac{8}{3}: \\ 3 \left(x^2-\frac{4 x}{3}+\frac{4}{9}\right)+2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{8}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{8}-\frac{8}{3}=-\frac{37}{24}: \\ 3 \left(x^2-\frac{4 x}{3}+\frac{4}{9}\right)+2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{37}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{4 x}{3}+\frac{4}{9}=\left(x-\frac{2}{3}\right)^2: \\ 3 \fbox{$\left(x-\frac{2}{3}\right)^2$}+2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{37}{24} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 3 \left(x-\frac{2}{3}\right)^2+2 \fbox{$\left(y+\frac{3}{4}\right)^2$}=-\frac{37}{24} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2+9 x-9 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 x^2+9 x+(-9 y-10)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-9 y-2 x^2+9 x-10 \text{from }\text{both }\text{sides}: \\ 2 x^2-9 x+(9 y+10)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }9 y+10 \text{from }\text{both }\text{sides}: \\ 2 x^2-9 x=-9 y-10 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(2 x^2-9 x+\underline{\text{ }}\right)=(-9 y-10)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(2 x^2-9 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{9 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{9 x}{2}+\underline{\text{ }}\right)$}=(-9 y-10)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (-9 y-10)+\frac{81}{8}=\frac{1}{8}-9 y: \\ 2 \left(x^2-\frac{9 x}{2}+\frac{81}{16}\right)=\fbox{$\frac{1}{8}-9 y$} \\ \end{array} Step 8: \begin{array}{l} x^2-\frac{9 x}{2}+\frac{81}{16}=\left(x-\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \fbox{$\left(x-\frac{9}{4}\right)^2$}=\frac{1}{8}-9 y \\ \end{array}
khanacademy
amps
Given the equation $-x^2+8 x-10 y^2-7 y-5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2-7 y-x^2+8 x-5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }5 \text{to }\text{both }\text{sides}: \\ -10 y^2-7 y-x^2+8 x=5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-x^2+8 x+\underline{\text{ }}\right)+\left(-10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 4: \begin{array}{l} \left(-x^2+8 x+\underline{\text{ }}\right)=-\left(x^2-8 x+\underline{\text{ }}\right): \\ \fbox{$-\left(x^2-8 x+\underline{\text{ }}\right)$}+\left(-10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2-7 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right): \\ -\left(x^2-8 x+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-8}{2}\right)^2=16 \text{on }\text{the }\text{left }\text{and }-16=-16 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 5-16=-11: \\ -\left(x^2-8 x+16\right)-10 \left(y^2+\frac{7 y}{10}+\underline{\text{ }}\right)=\fbox{$-11$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{49}{400}=-\frac{49}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -11-\frac{49}{40}=-\frac{489}{40}: \\ -\left(x^2-8 x+16\right)-10 \left(y^2+\frac{7 y}{10}+\frac{49}{400}\right)=\fbox{$-\frac{489}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2-8 x+16=(x-4)^2: \\ -\fbox{$(x-4)^2$}-10 \left(y^2+\frac{7 y}{10}+\frac{49}{400}\right)=-\frac{489}{40} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{7 y}{10}+\frac{49}{400}=\left(y+\frac{7}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -(x-4)^2-\text{10 }\fbox{$\left(y+\frac{7}{20}\right)^2$}=-\frac{489}{40} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2+4 x+6 y^2-2 y-9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2-2 y+4 x^2+4 x-9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }9 \text{to }\text{both }\text{sides}: \\ 6 y^2-2 y+4 x^2+4 x=9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2+4 x+\underline{\text{ }}\right)+\left(6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2+4 x+\underline{\text{ }}\right)=4 \left(x^2+x+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2+x+\underline{\text{ }}\right)$}+\left(6 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2-2 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\ 4 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{4}{4}=1 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 9+1=10: \\ 4 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$10$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 10+\frac{1}{6}=\frac{61}{6}: \\ 4 \left(x^2+x+\frac{1}{4}\right)+6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$\frac{61}{6}$} \\ \end{array} Step 10: \begin{array}{l} x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\ 4 \fbox{$\left(x+\frac{1}{2}\right)^2$}+6 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\frac{61}{6} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x+\frac{1}{2}\right)^2+6 \fbox{$\left(y-\frac{1}{6}\right)^2$}=\frac{61}{6} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2-6 x-2 y^2+8 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+8 y-3 x^2-6 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ -2 y^2+8 y-3 x^2-6 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2-6 x+\underline{\text{ }}\right)+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2-6 x+\underline{\text{ }}\right)=-3 \left(x^2+2 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+8 y+\underline{\text{ }}\right)=-2 \left(y^2-4 y+\underline{\text{ }}\right): \\ -3 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10-3=7: \\ -3 \left(x^2+2 x+1\right)-2 \left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$7$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-2\times 4=-8 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 7-8=-1: \\ -3 \left(x^2+2 x+1\right)-2 \left(y^2-4 y+4\right)=\fbox{$-1$} \\ \end{array} Step 10: \begin{array}{l} x^2+2 x+1=(x+1)^2: \\ -3 \fbox{$(x+1)^2$}-2 \left(y^2-4 y+4\right)=-1 \\ \end{array} Step 11: \begin{array}{l} y^2-4 y+4=(y-2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 (x+1)^2-2 \fbox{$(y-2)^2$}=-1 \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2-x-4 y^2+2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 x^2-x+\left(2-4 y^2\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }-4 y^2-6 x^2-x+2 \text{from }\text{both }\text{sides}: \\ 6 x^2+x+\left(4 y^2-2\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 4 y^2+6 x^2+x=2 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(6 x^2+x+\underline{\text{ }}\right)+4 y^2=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(6 x^2+x+\underline{\text{ }}\right)=6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right)$}+4 y^2=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+\frac{1}{24}=\frac{49}{24}: \\ 6 \left(x^2+\frac{x}{6}+\frac{1}{144}\right)+4 y^2=\fbox{$\frac{49}{24}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{x}{6}+\frac{1}{144}=\left(x+\frac{1}{12}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \fbox{$\left(x+\frac{1}{12}\right)^2$}+4 y^2=\frac{49}{24} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2+4 x-4 y^2-4 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -4 y^2-4 y+6 x^2+4 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -4 y^2-4 y+6 x^2+4 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2+4 x+\underline{\text{ }}\right)+\left(-4 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2+4 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-4 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-4 y^2-4 y+\underline{\text{ }}\right)=-4 \left(y^2+y+\underline{\text{ }}\right): \\ 6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{2}{3}-10=-\frac{28}{3}: \\ 6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$-\frac{28}{3}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-4}{4}=-1 \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{28}{3}-1=-\frac{31}{3}: \\ 6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{31}{3}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\ 6 \fbox{$\left(x+\frac{1}{3}\right)^2$}-4 \left(y^2+y+\frac{1}{4}\right)=-\frac{31}{3} \\ \end{array} Step 11: \begin{array}{l} y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x+\frac{1}{3}\right)^2-4 \fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{31}{3} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-9 x-3 y^2+7 y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -3 y^2+7 y+4 x^2-9 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ -3 y^2+7 y+4 x^2-9 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-9 x+\underline{\text{ }}\right)+\left(-3 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(-3 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(-3 y^2+7 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{7 y}{3}+\underline{\text{ }}\right): \\ 4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{7 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{81}{16}-9=-\frac{63}{16}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-3 \left(y^2-\frac{7 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{63}{16}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-7}{3}}{2}\right)^2=\frac{49}{36} \text{on }\text{the }\text{left }\text{and }-3\times \frac{49}{36}=-\frac{49}{12} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{63}{16}-\frac{49}{12}=-\frac{385}{48}: \\ 4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-3 \left(y^2-\frac{7 y}{3}+\frac{49}{36}\right)=\fbox{$-\frac{385}{48}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\ 4 \fbox{$\left(x-\frac{9}{8}\right)^2$}-3 \left(y^2-\frac{7 y}{3}+\frac{49}{36}\right)=-\frac{385}{48} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{7 y}{3}+\frac{49}{36}=\left(y-\frac{7}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{9}{8}\right)^2-3 \fbox{$\left(y-\frac{7}{6}\right)^2$}=-\frac{385}{48} \\ \end{array}
khanacademy
amps
Given the equation $-8 x^2+9 x+5 y^2-4 y-3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2-4 y-8 x^2+9 x-3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }3 \text{to }\text{both }\text{sides}: \\ 5 y^2-4 y-8 x^2+9 x=3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-8 x^2+9 x+\underline{\text{ }}\right)+\left(5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 4: \begin{array}{l} \left(-8 x^2+9 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{9 x}{8}+\underline{\text{ }}\right): \\ \fbox{$-8 \left(x^2-\frac{9 x}{8}+\underline{\text{ }}\right)$}+\left(5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2-4 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right): \\ -8 \left(x^2-\frac{9 x}{8}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 3-\frac{81}{32}=\frac{15}{32}: \\ -8 \left(x^2-\frac{9 x}{8}+\frac{81}{256}\right)+5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{15}{32}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{4}{25}=\frac{4}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{15}{32}+\frac{4}{5}=\frac{203}{160}: \\ -8 \left(x^2-\frac{9 x}{8}+\frac{81}{256}\right)+5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{203}{160}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{8}+\frac{81}{256}=\left(x-\frac{9}{16}\right)^2: \\ -8 \fbox{$\left(x-\frac{9}{16}\right)^2$}+5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=\frac{203}{160} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{5}+\frac{4}{25}=\left(y-\frac{2}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -8 \left(x-\frac{9}{16}\right)^2+5 \fbox{$\left(y-\frac{2}{5}\right)^2$}=\frac{203}{160} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-x+7 y^2-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -7 x^2-x+\left(7 y^2-8\right)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 y^2-7 x^2-x-8 \text{from }\text{both }\text{sides}: \\ 7 x^2+x+\left(8-7 y^2\right)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }8 \text{from }\text{both }\text{sides}: \\ -7 y^2+7 x^2+x=-8 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(7 x^2+x+\underline{\text{ }}\right)-7 y^2=\underline{\text{ }}-8 \\ \end{array} Step 5: \begin{array}{l} \left(7 x^2+x+\underline{\text{ }}\right)=7 \left(x^2+\frac{x}{7}+\underline{\text{ }}\right): \\ \fbox{$7 \left(x^2+\frac{x}{7}+\underline{\text{ }}\right)$}-7 y^2=\underline{\text{ }}-8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{7}}{2}\right)^2=\frac{1}{196} \text{on }\text{the }\text{left }\text{and }\frac{7}{196}=\frac{1}{28} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{1}{28}-8=-\frac{223}{28}: \\ 7 \left(x^2+\frac{x}{7}+\frac{1}{196}\right)-7 y^2=\fbox{$-\frac{223}{28}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{x}{7}+\frac{1}{196}=\left(x+\frac{1}{14}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 7 \fbox{$\left(x+\frac{1}{14}\right)^2$}-7 y^2=-\frac{223}{28} \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2-x+9 y^2-3 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 y^2-3 y-10 x^2-x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 9 y^2-3 y-10 x^2-x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2-x+\underline{\text{ }}\right)+\left(9 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2-x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)$}+\left(9 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(9 y^2-3 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right): \\ -10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{10}}{2}\right)^2=\frac{1}{400} \text{on }\text{the }\text{left }\text{and }\frac{-10}{400}=-\frac{1}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -3-\frac{1}{40}=-\frac{121}{40}: \\ -10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)+9 \left(y^2-\frac{y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{121}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{9}{36}=\frac{1}{4} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{4}-\frac{121}{40}=-\frac{111}{40}: \\ -10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)+9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=\fbox{$-\frac{111}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{10}+\frac{1}{400}=\left(x+\frac{1}{20}\right)^2: \\ -10 \fbox{$\left(x+\frac{1}{20}\right)^2$}+9 \left(y^2-\frac{y}{3}+\frac{1}{36}\right)=-\frac{111}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{3}+\frac{1}{36}=\left(y-\frac{1}{6}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x+\frac{1}{20}\right)^2+9 \fbox{$\left(y-\frac{1}{6}\right)^2$}=-\frac{111}{40} \\ \end{array}
khanacademy
amps
Given the equation $-2 x^2-7 x-6 y^2-9 y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -6 y^2-9 y-2 x^2-7 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -6 y^2-9 y-2 x^2-7 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-2 x^2-7 x+\underline{\text{ }}\right)+\left(-6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-2 x^2-7 x+\underline{\text{ }}\right)=-2 \left(x^2+\frac{7 x}{2}+\underline{\text{ }}\right): \\ \fbox{$-2 \left(x^2+\frac{7 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-6 y^2-9 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\ -2 \left(x^2+\frac{7 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{2}}{2}\right)^2=\frac{49}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{49}{16}=-\frac{49}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-\frac{49}{8}=-\frac{129}{8}: \\ -2 \left(x^2+\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{129}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-6\times \frac{9}{16}=-\frac{27}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{129}{8}-\frac{27}{8}=-\frac{39}{2}: \\ -2 \left(x^2+\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{39}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{7 x}{2}+\frac{49}{16}=\left(x+\frac{7}{4}\right)^2: \\ -2 \fbox{$\left(x+\frac{7}{4}\right)^2$}-6 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{39}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -2 \left(x+\frac{7}{4}\right)^2-6 \fbox{$\left(y+\frac{3}{4}\right)^2$}=-\frac{39}{2} \\ \end{array}
khanacademy
amps
Given the equation $5 x^2+6 x+7 y^2+8 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2+8 y+5 x^2+6 x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 7 y^2+8 y+5 x^2+6 x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(5 x^2+6 x+\underline{\text{ }}\right)+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(5 x^2+6 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{6 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+\frac{6 x}{5}+\underline{\text{ }}\right)$}+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2+8 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right): \\ 5 \left(x^2+\frac{6 x}{5}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{6}{5}}{2}\right)^2=\frac{9}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{25}=\frac{9}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{9}{5}-3=-\frac{6}{5}: \\ 5 \left(x^2+\frac{6 x}{5}+\frac{9}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{6}{5}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{16}{7}-\frac{6}{5}=\frac{38}{35}: \\ 5 \left(x^2+\frac{6 x}{5}+\frac{9}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\fbox{$\frac{38}{35}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{6 x}{5}+\frac{9}{25}=\left(x+\frac{3}{5}\right)^2: \\ 5 \fbox{$\left(x+\frac{3}{5}\right)^2$}+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\frac{38}{35} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{8 y}{7}+\frac{16}{49}=\left(y+\frac{4}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \left(x+\frac{3}{5}\right)^2+7 \fbox{$\left(y+\frac{4}{7}\right)^2$}=\frac{38}{35} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-7 x+10 y-1=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 x^2-7 x+(10 y-1)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }10 y-5 x^2-7 x-1 \text{from }\text{both }\text{sides}: \\ 5 x^2+7 x+(1-10 y)=0 \\ \end{array} Step 3: \begin{array}{l} \text{Subtract }1-10 y \text{from }\text{both }\text{sides}: \\ 5 x^2+7 x=10 y-1 \\ \end{array} Step 4: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(5 x^2+7 x+\underline{\text{ }}\right)=(10 y-1)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \left(5 x^2+7 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{7 x}{5}+\underline{\text{ }}\right): \\ \fbox{$5 \left(x^2+\frac{7 x}{5}+\underline{\text{ }}\right)$}=(10 y-1)+\underline{\text{ }} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{49}{100}=\frac{49}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} (10 y-1)+\frac{49}{20}=10 y+\frac{29}{20}: \\ 5 \left(x^2+\frac{7 x}{5}+\frac{49}{100}\right)=\fbox{$10 y+\frac{29}{20}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{7 x}{5}+\frac{49}{100}=\left(x+\frac{7}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 5 \fbox{$\left(x+\frac{7}{10}\right)^2$}=10 y+\frac{29}{20} \\ \end{array}
khanacademy
amps
Given the equation $-6 x^2-2 x+6 y^2+8 y+3=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 6 y^2+8 y-6 x^2-2 x+3=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 \text{from }\text{both }\text{sides}: \\ 6 y^2+8 y-6 x^2-2 x=-3 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-6 x^2-2 x+\underline{\text{ }}\right)+\left(6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 4: \begin{array}{l} \left(-6 x^2-2 x+\underline{\text{ }}\right)=-6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right): \\ \fbox{$-6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)$}+\left(6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\ \end{array} Step 5: \begin{array}{l} \left(6 y^2+8 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\ -6 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-6}{36}=-\frac{1}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -3-\frac{1}{6}=-\frac{19}{6}: \\ -6 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)+6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }6\times \frac{4}{9}=\frac{8}{3} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{8}{3}-\frac{19}{6}=-\frac{1}{2}: \\ -6 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)+6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{1}{2}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{x}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2: \\ -6 \fbox{$\left(x+\frac{1}{6}\right)^2$}+6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{1}{2} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -6 \left(x+\frac{1}{6}\right)^2+6 \fbox{$\left(y+\frac{2}{3}\right)^2$}=-\frac{1}{2} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2-10 x+8 y^2-2 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 8 y^2-2 y+6 x^2-10 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ 8 y^2-2 y+6 x^2-10 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2-10 x+\underline{\text{ }}\right)+\left(8 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2-10 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(8 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(8 y^2-2 y+\underline{\text{ }}\right)=8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right): \\ 6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{36}=\frac{25}{6} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+\frac{25}{6}=\frac{37}{6}: \\ 6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{37}{6}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{8}{64}=\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{37}{6}+\frac{1}{8}=\frac{151}{24}: \\ 6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=\fbox{$\frac{151}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\ 6 \fbox{$\left(x-\frac{5}{6}\right)^2$}+8 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=\frac{151}{24} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{4}+\frac{1}{64}=\left(y-\frac{1}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x-\frac{5}{6}\right)^2+8 \fbox{$\left(y-\frac{1}{8}\right)^2$}=\frac{151}{24} \\ \end{array}
khanacademy
amps
Given the equation $x^2-7 x+y^2+4 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ y^2+4 y+x^2-7 x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ y^2+4 y+x^2-7 x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(x^2-7 x+\underline{\text{ }}\right)+\left(y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{-7}{2}\right)^2=\frac{49}{4} \text{to }\text{both }\text{sides}: \\ \end{array} Step 5: \begin{array}{l} 10+\frac{49}{4}=\frac{89}{4}: \\ \left(x^2-7 x+\frac{49}{4}\right)+\left(y^2+4 y+\underline{\text{ }}\right)=\fbox{$\frac{89}{4}$} \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\ \text{Add }\left(\frac{4}{2}\right)^2=4 \text{to }\text{both }\text{sides}: \\ \end{array} Step 7: \begin{array}{l} \frac{89}{4}+4=\frac{105}{4}: \\ \left(x^2-7 x+\frac{49}{4}\right)+\left(y^2+4 y+4\right)=\fbox{$\frac{105}{4}$} \\ \end{array} Step 8: \begin{array}{l} x^2-7 x+\frac{49}{4}=\left(x-\frac{7}{2}\right)^2: \\ \fbox{$\left(x-\frac{7}{2}\right)^2$}+\left(y^2+4 y+4\right)=\frac{105}{4} \\ \end{array} Step 9: \begin{array}{l} y^2+4 y+4=(y+2)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & \left(x-\frac{7}{2}\right)^2+\fbox{$(y+2)^2$}=\frac{105}{4} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2+x+2 y+6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 9 x^2+x+(2 y+6)=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }2 y+6 \text{from }\text{both }\text{sides}: \\ 9 x^2+x=-2 y-6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(9 x^2+x+\underline{\text{ }}\right)=(-2 y-6)+\underline{\text{ }} \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2+x+\underline{\text{ }}\right)=9 \left(x^2+\frac{x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2+\frac{x}{9}+\underline{\text{ }}\right)$}=(-2 y-6)+\underline{\text{ }} \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{9}}{2}\right)^2=\frac{1}{324} \text{on }\text{the }\text{left }\text{and }\frac{9}{324}=\frac{1}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} (-2 y-6)+\frac{1}{36}=-2 y-\frac{215}{36}: \\ 9 \left(x^2+\frac{x}{9}+\frac{1}{324}\right)=\fbox{$-2 y-\frac{215}{36}$} \\ \end{array} Step 7: \begin{array}{l} x^2+\frac{x}{9}+\frac{1}{324}=\left(x+\frac{1}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \fbox{$\left(x+\frac{1}{18}\right)^2$}=-2 y-\frac{215}{36} \\ \end{array}
khanacademy
amps
Given the equation $4 x^2-4 x-5 y^2+4 y-2=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -5 y^2+4 y+4 x^2-4 x-2=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }2 \text{to }\text{both }\text{sides}: \\ -5 y^2+4 y+4 x^2-4 x=2 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(4 x^2-4 x+\underline{\text{ }}\right)+\left(-5 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 4: \begin{array}{l} \left(4 x^2-4 x+\underline{\text{ }}\right)=4 \left(x^2-x+\underline{\text{ }}\right): \\ \fbox{$4 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-5 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\ \end{array} Step 5: \begin{array}{l} \left(-5 y^2+4 y+\underline{\text{ }}\right)=-5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right): \\ 4 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{4}{4}=1 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 2+1=3: \\ 4 \left(x^2-x+\frac{1}{4}\right)-5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$3$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{4}{25}=-\frac{4}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} 3-\frac{4}{5}=\frac{11}{5}: \\ 4 \left(x^2-x+\frac{1}{4}\right)-5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{11}{5}$} \\ \end{array} Step 10: \begin{array}{l} x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\ 4 \fbox{$\left(x-\frac{1}{2}\right)^2$}-5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=\frac{11}{5} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{4 y}{5}+\frac{4}{25}=\left(y-\frac{2}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 4 \left(x-\frac{1}{2}\right)^2-5 \fbox{$\left(y-\frac{2}{5}\right)^2$}=\frac{11}{5} \\ \end{array}
khanacademy
amps
Given the equation $6 x^2-5 x+2 y^2-2 y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2-2 y+6 x^2-5 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ 2 y^2-2 y+6 x^2-5 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(6 x^2-5 x+\underline{\text{ }}\right)+\left(2 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(6 x^2-5 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right): \\ \fbox{$6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)$}+\left(2 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2-2 y+\underline{\text{ }}\right)=2 \left(y^2-y+\underline{\text{ }}\right): \\ 6 \left(x^2-\frac{5 x}{6}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{144}=\frac{25}{24} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8+\frac{25}{24}=\frac{217}{24}: \\ 6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)+2 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$\frac{217}{24}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{2}{4}=\frac{1}{2} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{217}{24}+\frac{1}{2}=\frac{229}{24}: \\ 6 \left(x^2-\frac{5 x}{6}+\frac{25}{144}\right)+2 \left(y^2-y+\frac{1}{4}\right)=\fbox{$\frac{229}{24}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{5 x}{6}+\frac{25}{144}=\left(x-\frac{5}{12}\right)^2: \\ 6 \fbox{$\left(x-\frac{5}{12}\right)^2$}+2 \left(y^2-y+\frac{1}{4}\right)=\frac{229}{24} \\ \end{array} Step 11: \begin{array}{l} y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 6 \left(x-\frac{5}{12}\right)^2+2 \fbox{$\left(y-\frac{1}{2}\right)^2$}=\frac{229}{24} \\ \end{array}
khanacademy
amps
Given the equation $9 x^2-4 x+5 y^2-3 y+5=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2-3 y+9 x^2-4 x+5=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }5 \text{from }\text{both }\text{sides}: \\ 5 y^2-3 y+9 x^2-4 x=-5 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(9 x^2-4 x+\underline{\text{ }}\right)+\left(5 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 4: \begin{array}{l} \left(9 x^2-4 x+\underline{\text{ }}\right)=9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right): \\ \fbox{$9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right)$}+\left(5 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2-3 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right): \\ 9 \left(x^2-\frac{4 x}{9}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{4}{81}=\frac{4}{9} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{4}{9}-5=-\frac{41}{9}: \\ 9 \left(x^2-\frac{4 x}{9}+\frac{4}{81}\right)+5 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{41}{9}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{9}{20}-\frac{41}{9}=-\frac{739}{180}: \\ 9 \left(x^2-\frac{4 x}{9}+\frac{4}{81}\right)+5 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$-\frac{739}{180}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{4 x}{9}+\frac{4}{81}=\left(x-\frac{2}{9}\right)^2: \\ 9 \fbox{$\left(x-\frac{2}{9}\right)^2$}+5 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=-\frac{739}{180} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{5}+\frac{9}{100}=\left(y-\frac{3}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 9 \left(x-\frac{2}{9}\right)^2+5 \fbox{$\left(y-\frac{3}{10}\right)^2$}=-\frac{739}{180} \\ \end{array}
khanacademy
amps
Given the equation $-4 x^2-9 x+5 y^2-4 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2-4 y-4 x^2-9 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-4 x^2-9 x+\underline{\text{ }}\right)+\left(5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 3: \begin{array}{l} \left(-4 x^2-9 x+\underline{\text{ }}\right)=-4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right): \\ \fbox{$-4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\ \end{array} Step 4: \begin{array}{l} \left(5 y^2-4 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right): \\ -4 \left(x^2+\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{81}{64}=-\frac{81}{16} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{4}{25}=\frac{4}{5} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} \frac{4}{5}-\frac{81}{16}=-\frac{341}{80}: \\ -4 \left(x^2+\frac{9 x}{4}+\frac{81}{64}\right)+5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$-\frac{341}{80}$} \\ \end{array} Step 8: \begin{array}{l} x^2+\frac{9 x}{4}+\frac{81}{64}=\left(x+\frac{9}{8}\right)^2: \\ -4 \fbox{$\left(x+\frac{9}{8}\right)^2$}+5 \left(y^2-\frac{4 y}{5}+\frac{4}{25}\right)=-\frac{341}{80} \\ \end{array} Step 9: \begin{array}{l} y^2-\frac{4 y}{5}+\frac{4}{25}=\left(y-\frac{2}{5}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -4 \left(x+\frac{9}{8}\right)^2+5 \fbox{$\left(y-\frac{2}{5}\right)^2$}=-\frac{341}{80} \\ \end{array}
khanacademy
amps
Given the equation $-7 x^2-4 x+5 y^2+y+9=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 5 y^2+y-7 x^2-4 x+9=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }9 \text{from }\text{both }\text{sides}: \\ 5 y^2+y-7 x^2-4 x=-9 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-7 x^2-4 x+\underline{\text{ }}\right)+\left(5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 4: \begin{array}{l} \left(-7 x^2-4 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right): \\ \fbox{$-7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right)$}+\left(5 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\ \end{array} Step 5: \begin{array}{l} \left(5 y^2+y+\underline{\text{ }}\right)=5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\ -7 \left(x^2+\frac{4 x}{7}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{4}{7}}{2}\right)^2=\frac{4}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{4}{49}=-\frac{4}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -9-\frac{4}{7}=-\frac{67}{7}: \\ -7 \left(x^2+\frac{4 x}{7}+\frac{4}{49}\right)+5 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{67}{7}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{5}{100}=\frac{1}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{1}{20}-\frac{67}{7}=-\frac{1333}{140}: \\ -7 \left(x^2+\frac{4 x}{7}+\frac{4}{49}\right)+5 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{1333}{140}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{4 x}{7}+\frac{4}{49}=\left(x+\frac{2}{7}\right)^2: \\ -7 \fbox{$\left(x+\frac{2}{7}\right)^2$}+5 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=-\frac{1333}{140} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -7 \left(x+\frac{2}{7}\right)^2+5 \fbox{$\left(y+\frac{1}{10}\right)^2$}=-\frac{1333}{140} \\ \end{array}
khanacademy
amps
Given the equation $-3 x^2+6 x-9 y^2-y+10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -9 y^2-y-3 x^2+6 x+10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\ -9 y^2-y-3 x^2+6 x=-10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-3 x^2+6 x+\underline{\text{ }}\right)+\left(-9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 4: \begin{array}{l} \left(-3 x^2+6 x+\underline{\text{ }}\right)=-3 \left(x^2-2 x+\underline{\text{ }}\right): \\ \fbox{$-3 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(-9 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\ \end{array} Step 5: \begin{array}{l} \left(-9 y^2-y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right): \\ -3 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -10-3=-13: \\ -3 \left(x^2-2 x+1\right)-9 \left(y^2+\frac{y}{9}+\underline{\text{ }}\right)=\fbox{$-13$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{1}{9}}{2}\right)^2=\frac{1}{324} \text{on }\text{the }\text{left }\text{and }\frac{-9}{324}=-\frac{1}{36} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -13-\frac{1}{36}=-\frac{469}{36}: \\ -3 \left(x^2-2 x+1\right)-9 \left(y^2+\frac{y}{9}+\frac{1}{324}\right)=\fbox{$-\frac{469}{36}$} \\ \end{array} Step 10: \begin{array}{l} x^2-2 x+1=(x-1)^2: \\ -3 \fbox{$(x-1)^2$}-9 \left(y^2+\frac{y}{9}+\frac{1}{324}\right)=-\frac{469}{36} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{y}{9}+\frac{1}{324}=\left(y+\frac{1}{18}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -3 (x-1)^2-9 \fbox{$\left(y+\frac{1}{18}\right)^2$}=-\frac{469}{36} \\ \end{array}
khanacademy
amps
Given the equation $8 x^2+10 x+3 y=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 3 y+8 x^2+10 x=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }3 y \text{from }\text{both }\text{sides}: \\ 8 x^2+10 x=-3 y \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\ \left(8 x^2+10 x+\underline{\text{ }}\right)=\underline{\text{ }}-3 y \\ \end{array} Step 4: \begin{array}{l} \left(8 x^2+10 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right): \\ \fbox{$8 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 y \\ \end{array} Step 5: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 6: \begin{array}{l} x^2+\frac{5 x}{4}+\frac{25}{64}=\left(x+\frac{5}{8}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 8 \fbox{$\left(x+\frac{5}{8}\right)^2$}=\frac{25}{8}-3 y \\ \end{array}
khanacademy
amps
Given the equation $-10 x^2+9 x-10 y^2+3 y+7=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -10 y^2+3 y-10 x^2+9 x+7=0 \\ \end{array} Step 2: \begin{array}{l} \text{Subtract }7 \text{from }\text{both }\text{sides}: \\ -10 y^2+3 y-10 x^2+9 x=-7 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-10 x^2+9 x+\underline{\text{ }}\right)+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 4: \begin{array}{l} \left(-10 x^2+9 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right): \\ \fbox{$-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-10 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\ \end{array} Step 5: \begin{array}{l} \left(-10 y^2+3 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right): \\ -10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{81}{400}=-\frac{81}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} -7-\frac{81}{40}=-\frac{361}{40}: \\ -10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{361}{40}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} -\frac{361}{40}-\frac{9}{40}=-\frac{37}{4}: \\ -10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=\fbox{$-\frac{37}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{10}+\frac{81}{400}=\left(x-\frac{9}{20}\right)^2: \\ -10 \fbox{$\left(x-\frac{9}{20}\right)^2$}-10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=-\frac{37}{4} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{3 y}{10}+\frac{9}{400}=\left(y-\frac{3}{20}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -10 \left(x-\frac{9}{20}\right)^2-\text{10 }\fbox{$\left(y-\frac{3}{20}\right)^2$}=-\frac{37}{4} \\ \end{array}
khanacademy
amps
Given the equation $-5 x^2-3 x-2 y^2+y-8=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ -2 y^2+y-5 x^2-3 x-8=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }8 \text{to }\text{both }\text{sides}: \\ -2 y^2+y-5 x^2-3 x=8 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(-5 x^2-3 x+\underline{\text{ }}\right)+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 4: \begin{array}{l} \left(-5 x^2-3 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\ \fbox{$-5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\ \end{array} Step 5: \begin{array}{l} \left(-2 y^2+y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\ -5 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{100}=-\frac{9}{20} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 8-\frac{9}{20}=\frac{151}{20}: \\ -5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{151}{20}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{151}{20}-\frac{1}{8}=\frac{297}{40}: \\ -5 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{297}{40}$} \\ \end{array} Step 10: \begin{array}{l} x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\ -5 \fbox{$\left(x+\frac{3}{10}\right)^2$}-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\frac{297}{40} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & -5 \left(x+\frac{3}{10}\right)^2-2 \fbox{$\left(y-\frac{1}{4}\right)^2$}=\frac{297}{40} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-x+7 y^2-6 y-10=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 7 y^2-6 y+2 x^2-x-10=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\ 7 y^2-6 y+2 x^2-x=10 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-x+\underline{\text{ }}\right)+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-x+\underline{\text{ }}\right)=2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\ \end{array} Step 5: \begin{array}{l} \left(7 y^2-6 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{2}{16}=\frac{1}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 10+\frac{1}{8}=\frac{81}{8}: \\ 2 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{81}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{81}{8}+\frac{9}{7}=\frac{639}{56}: \\ 2 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{639}{56}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{1}{4}\right)^2$}+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\frac{639}{56} \\ \end{array} Step 11: \begin{array}{l} y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{1}{4}\right)^2+7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=\frac{639}{56} \\ \end{array}
khanacademy
amps
Given the equation $2 x^2-9 x+2 y^2+9 y-6=0$, complete the square. Step 1: \begin{array}{l} \begin{array}{l} \text{Complete the square}: \\ 2 y^2+9 y+2 x^2-9 x-6=0 \\ \end{array} Step 2: \begin{array}{l} \text{Add }6 \text{to }\text{both }\text{sides}: \\ 2 y^2+9 y+2 x^2-9 x=6 \\ \end{array} Step 3: \begin{array}{l} \text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\ \left(2 x^2-9 x+\underline{\text{ }}\right)+\left(2 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 4: \begin{array}{l} \left(2 x^2-9 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{9 x}{2}+\underline{\text{ }}\right): \\ \fbox{$2 \left(x^2-\frac{9 x}{2}+\underline{\text{ }}\right)$}+\left(2 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\ \end{array} Step 5: \begin{array}{l} \left(2 y^2+9 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right): \\ 2 \left(x^2-\frac{9 x}{2}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+6 \\ \end{array} Step 6: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{-9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 7: \begin{array}{l} 6+\frac{81}{8}=\frac{129}{8}: \\ 2 \left(x^2-\frac{9 x}{2}+\frac{81}{16}\right)+2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{129}{8}$} \\ \end{array} Step 8: \begin{array}{l} \begin{array}{l} \text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\ \text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\ \end{array} Step 9: \begin{array}{l} \frac{129}{8}+\frac{81}{8}=\frac{105}{4}: \\ 2 \left(x^2-\frac{9 x}{2}+\frac{81}{16}\right)+2 \left(y^2+\frac{9 y}{2}+\frac{81}{16}\right)=\fbox{$\frac{105}{4}$} \\ \end{array} Step 10: \begin{array}{l} x^2-\frac{9 x}{2}+\frac{81}{16}=\left(x-\frac{9}{4}\right)^2: \\ 2 \fbox{$\left(x-\frac{9}{4}\right)^2$}+2 \left(y^2+\frac{9 y}{2}+\frac{81}{16}\right)=\frac{105}{4} \\ \end{array} Step 11: \begin{array}{l} y^2+\frac{9 y}{2}+\frac{81}{16}=\left(y+\frac{9}{4}\right)^2: \\ \fbox{$ \begin{array}{ll} \text{Answer:} & \\ \text{} & 2 \left(x-\frac{9}{4}\right)^2+2 \fbox{$\left(y+\frac{9}{4}\right)^2$}=\frac{105}{4} \\ \end{array}
khanacademy
amps