|
--- |
|
language: |
|
- en |
|
size_categories: |
|
- 100B<n<1T |
|
--- |
|
# WebOrganizer/Corpus-200B |
|
[[Paper](https://arxiv.org/abs/2502.10341)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)] |
|
|
|
This dataset is a pre-processed version of the `1b-1x` CommonCrawl pool from DataComps-LM cleaned with |
|
(1) [RefinedWeb filters](https://github.com/mlfoundations/dclm/blob/main/baselines/baselines_configs/dclm_baseline_refinedweb.yaml) and |
|
(2) [BFF deduplication](https://github.com/mlfoundations/dclm/tree/main/dedup/bff). |
|
|
|
We provide the resulting 200B token corpus annotated with two quality scores, WebOrganizer domains, and k-means scores. |
|
|
|
__Download the dataset by cloning the repository with Git LFS instead of HuggingFace's `load_dataset()`.__ |
|
|
|
The dataset has the following folder structure: |
|
```bash |
|
Corpus-200B/ |
|
documents/ # Pre-processed web documents |
|
- CC_shard_00000000_processed.jsonl.zst |
|
- CC_shard_00000001_processed.jsonl.zst |
|
- ... |
|
tokens/ # number of tokens per document (GPT-NeoX tokenizer) |
|
- CC_shard_00000000_processed.npy |
|
- CC_shard_00000001_processed.npy |
|
- ... |
|
scores_dclm-fasttext/ # DCLM-fasttext score |
|
- CC_shard_00000000_processed.npy |
|
- ... |
|
scores_fineweb-edu/ # FineWeb-Edu score |
|
- CC_shard_00000000_processed.npy |
|
- ... |
|
scores_fineweb-edu__rounded/ # Rounded FineWeb-Edu score |
|
- CC_shard_00000000_processed__rounded.npy |
|
- ... |
|
domains_topics/ # TopicClassifier annotations |
|
- CC_shard_00000000_processed__choice.npy # index of top choice |
|
- ... |
|
domain_topics__logits/ |
|
- CC_shard_00000000_processed__logits.npy # logits for each topic |
|
- ... |
|
domains_formats/ # FormatClassifier annotations |
|
- CC_shard_00000000_processed__choice.npy # index of top choice |
|
- ... |
|
domains_formats/ # FormatClassifier annotations |
|
- CC_shard_00000000_processed__logits.npy # logits for each format |
|
- ... |
|
domains_clusters-k24/ # K-means clusters |
|
- CC_shard_00000000_processed.npy # cluster assignment for each document |
|
- ... |
|
``` |
|
We also include statistics about the presence and co-occurence of domains in the `domain_statistics/` folder, computed with the `domain_statistics.py` script. |
|
|
|
## Citation |
|
|
|
If you make use of this pre-processed corpus in your work, please cite: |
|
```bibtex |
|
@article{wettig2025organize, |
|
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation}, |
|
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini}, |
|
journal={arXiv preprint arXiv:2502.10341}, |
|
year={2025} |
|
} |
|
``` |