metadata
language:
- en
size_categories:
- 100B<n<1T
WebOrganizer/Corpus-200B
This dataset is a pre-processed version of the 1b-1x
CommonCrawl pool from DataComps-LM cleaned with
(1) RefinedWeb filters and
(2) BFF deduplication.
We provide the resulting 200B token corpus annotated with two quality scores, WebOrganizer domains, and k-means scores.
Download the dataset by cloning the repository with Git LFS instead of HuggingFace's load_dataset()
.
The dataset has the following folder structure:
Corpus-200B/
documents/ # Pre-processed web documents
- CC_shard_00000000_processed.jsonl.zst
- CC_shard_00000001_processed.jsonl.zst
- ...
tokens/ # number of tokens per document (GPT-NeoX tokenizer)
- CC_shard_00000000_processed.npy
- CC_shard_00000001_processed.npy
- ...
scores_dclm-fasttext/ # DCLM-fasttext score
- CC_shard_00000000_processed.npy
- ...
scores_fineweb-edu/ # FineWeb-Edu score
- CC_shard_00000000_processed.npy
- ...
scores_fineweb-edu__rounded/ # Rounded FineWeb-Edu score
- CC_shard_00000000_processed__rounded.npy
- ...
domains_topics/ # TopicClassifier annotations
- CC_shard_00000000_processed__choice.npy # index of top choice
- ...
domain_topics__logits/
- CC_shard_00000000_processed__logits.npy # logits for each topic
- ...
domains_formats/ # FormatClassifier annotations
- CC_shard_00000000_processed__choice.npy # index of top choice
- ...
domains_formats/ # FormatClassifier annotations
- CC_shard_00000000_processed__logits.npy # logits for each format
- ...
domains_clusters-k24/ # K-means clusters
- CC_shard_00000000_processed.npy # cluster assignment for each document
- ...
We also include statistics about the presence and co-occurence of domains in the domain_statistics/
folder, computed with the domain_statistics.py
script.
Citation
If you make use of this pre-processed corpus in your work, please cite:
@article{wettig2025organize,
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
journal={arXiv preprint arXiv:2502.10341},
year={2025}
}