File size: 2,732 Bytes
8525949
 
 
 
 
 
420c3f5
5e90af9
 
7e6519b
 
 
 
 
 
420c3f5
7e6519b
420c3f5
 
 
 
 
 
 
7e6519b
420c3f5
 
 
 
 
 
 
 
669caf1
 
 
420c3f5
 
 
 
669caf1
 
 
420c3f5
 
 
669caf1
 
 
420c3f5
 
 
 
 
7e6519b
420c3f5
7e6519b
 
420c3f5
 
 
 
669caf1
420c3f5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
language:
- en
size_categories:
- 100B<n<1T
---
# WebOrganizer/Corpus-200B
[[Paper](https://arxiv.org/abs/2502.10341)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)]

This dataset is a pre-processed version of the `1b-1x` CommonCrawl pool from DataComps-LM cleaned with
(1) [RefinedWeb filters](https://github.com/mlfoundations/dclm/blob/main/baselines/baselines_configs/dclm_baseline_refinedweb.yaml) and
(2) [BFF deduplication](https://github.com/mlfoundations/dclm/tree/main/dedup/bff).

We provide the resulting 200B token corpus annotated with two quality scores, WebOrganizer domains, and k-means scores.

__Download the dataset by cloning the repository with Git LFS instead of HuggingFace's `load_dataset()`.__

The dataset has the following folder structure:
```bash
Corpus-200B/
    documents/  # Pre-processed web documents
        - CC_shard_00000000_processed.jsonl.zst
        - CC_shard_00000001_processed.jsonl.zst
        - ...
    tokens/  # number of tokens per document (GPT-NeoX tokenizer)
        - CC_shard_00000000_processed.npy
        - CC_shard_00000001_processed.npy
        - ...
    scores_dclm-fasttext/  # DCLM-fasttext score
        - CC_shard_00000000_processed.npy
        - ...
    scores_fineweb-edu/  # FineWeb-Edu score
        - CC_shard_00000000_processed.npy
        - ...
    scores_fineweb-edu__rounded/  # Rounded FineWeb-Edu score
        - CC_shard_00000000_processed__rounded.npy
        - ...
    domains_topics/  # TopicClassifier annotations
        - CC_shard_00000000_processed__choice.npy  # index of top choice
        - ...
    domain_topics__logits/
        - CC_shard_00000000_processed__logits.npy  # logits for each topic
        - ...
    domains_formats/  # FormatClassifier annotations
        - CC_shard_00000000_processed__choice.npy  # index of top choice
        - ...
      domains_formats/  # FormatClassifier annotations
        - CC_shard_00000000_processed__logits.npy  # logits for each format
        - ...
    domains_clusters-k24/  # K-means clusters
        - CC_shard_00000000_processed.npy  # cluster assignment for each document
        - ...
```
We also include statistics about the presence and co-occurence of domains in the `domain_statistics/` folder, computed with the `domain_statistics.py` script.

## Citation

If you make use of this pre-processed corpus in your work, please cite:
```bibtex
@article{wettig2025organize,
  title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
  author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
  journal={arXiv preprint arXiv:2502.10341},
  year={2025}
}
```