Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# WebOrganizer/Corpus-200B
|
2 |
+
[[Paper](ARXIV_TBD)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)]
|
3 |
+
We pre-process the `1b-1x` pool from DataComps-LM using [RefinedWeb filters](https://github.com/mlfoundations/dclm/blob/main/baselines/baselines_configs/dclm_baseline_refinedweb.yaml) and [BFF deduplication](https://github.com/mlfoundations/dclm/tree/main/dedup/bff).
|
4 |
+
The resulting 200B token corpus is available here together with quality scores and domain annotations.
|
5 |
+
__Download the dataset by cloning the repository with Git LFS instead of HuggingFace's `load_dataset()`.__
|
6 |
+
The dataset has the following folder structure:
|
7 |
+
```bash
|
8 |
+
Corpus-200B/
|
9 |
+
documents/ # Pre-processed web documents
|
10 |
+
- CC_shard_00000000_processed.jsonl.zst
|
11 |
+
- CC_shard_00000001_processed.jsonl.zst
|
12 |
+
- ...
|
13 |
+
tokens/ # number of tokens per document
|
14 |
+
- CC_shard_00000000_processed.npy
|
15 |
+
- CC_shard_00000001_processed.npy
|
16 |
+
- ...
|
17 |
+
scores_dclm-fasttext/ # DCLM-fasttext score
|
18 |
+
- CC_shard_00000000_processed.npy
|
19 |
+
- ...
|
20 |
+
scores_fineweb-edu/ # FineWeb-Edu score
|
21 |
+
- CC_shard_00000000_processed.npy
|
22 |
+
- CC_shard_00000000_processed__rounded.npy # rounded FineWeb-Edu score
|
23 |
+
- ...
|
24 |
+
domains_topics/ # TopicClassifier annotations
|
25 |
+
- CC_shard_00000000_processed__logits.npy # logits for each topic
|
26 |
+
- CC_shard_00000000_processed__choice.npy # index of top choice
|
27 |
+
- ...
|
28 |
+
domains_formats/ # FormatClassifier annotations
|
29 |
+
- CC_shard_00000000_processed__logits.npy # logits for each format
|
30 |
+
- CC_shard_00000000_processed__choice.npy # index of top choice
|
31 |
+
- ...
|
32 |
+
domains_clusters-k24/ # K-means clusters
|
33 |
+
- CC_shard_00000000_processed.npy # cluster assignment for each document
|
34 |
+
- ...
|
35 |
+
```
|
36 |
+
We also include statistics about the presence and co-occurence of domains in the `domain_statistics/` folder, computed with the `domain_statistics.py` script.
|
37 |
+
## Citation
|
38 |
+
```bibtex
|
39 |
+
@article{wettig2025organize,
|
40 |
+
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
|
41 |
+
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
|
42 |
+
year={2025}
|
43 |
+
}
|
44 |
+
```
|