|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1128 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
widget: |
|
- source_sentence: connective tissue cell |
|
sentences: |
|
- GM18507 |
|
- GM18526 |
|
- GM08714 |
|
- source_sentence: blood |
|
sentences: |
|
- AG04449 |
|
- T cell |
|
- GM12868 |
|
- source_sentence: mammary gland |
|
sentences: |
|
- MCF-7 |
|
- leukocyte |
|
- GM10847 |
|
- source_sentence: GM18526 |
|
sentences: |
|
- digestive system |
|
- CMK |
|
- KOPT-K1 |
|
- source_sentence: GM12873 |
|
sentences: |
|
- KOPT-K1 |
|
- pancreas |
|
- leukocyte |
|
datasets: |
|
- databio/mock-stsb |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7058652030883807 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.69543787652822 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'GM12873', |
|
'leukocyte', |
|
'pancreas', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7059 | |
|
| **spearman_cosine** | **0.6954** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### mock-stsb |
|
|
|
* Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86) |
|
* Size: 1,128 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.46 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.55 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.9</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------|:--------------------------------|:-------------------| |
|
| <code>OVCAR3</code> | <code>pancreas</code> | <code>0.05</code> | |
|
| <code>L1-S8</code> | <code>respiratory system</code> | <code>0.001</code> | |
|
| <code>peripheral nervous system</code> | <code>22Rv1</code> | <code>0.001</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### mock-stsb |
|
|
|
* Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86) |
|
* Size: 284 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 284 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.6 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.71 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 0.9</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------|:----------------------------|:------------------| |
|
| <code>SJCRH30</code> | <code>cancer cell</code> | <code>0.9</code> | |
|
| <code>CWRU1</code> | <code>exocrine gland</code> | <code>0.05</code> | |
|
| <code>epithelial cell</code> | <code>Caki2</code> | <code>0.9</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `learning_rate`: 1e-05 |
|
- `num_train_epochs`: 50 |
|
- `warmup_ratio`: 0.1 |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 4 |
|
- `per_device_eval_batch_size`: 4 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 50 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | |
|
|:-----:|:----:|:-------------:|:---------------:|:-----------------------:| |
|
| 1.0 | 282 | 0.2157 | 0.1413 | 0.4340 | |
|
| 2.0 | 564 | 0.1402 | 0.1207 | 0.6198 | |
|
| 3.0 | 846 | 0.1239 | 0.0973 | 0.6541 | |
|
| 4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 | |
|
| 5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 | |
|
| 6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 | |
|
| 7.0 | 1974 | 0.076 | 0.0842 | 0.6660 | |
|
| 8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 | |
|
| 9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 | |
|
| 10.0 | 2820 | 0.046 | 0.0884 | 0.6424 | |
|
| 11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 | |
|
| 12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 | |
|
| 13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 | |
|
| 14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 | |
|
| 15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 | |
|
| 16.0 | 4512 | 0.026 | 0.0843 | 0.6933 | |
|
| 17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 | |
|
| 18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 | |
|
| 19.0 | 5358 | 0.022 | 0.0867 | 0.6629 | |
|
| 20.0 | 5640 | 0.021 | 0.0809 | 0.6815 | |
|
| 21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 | |
|
| 22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 | |
|
| 23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 | |
|
| 24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 | |
|
| 25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.5 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.0 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.0 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |