ClaudeHu05's picture
Upload 10 files
9f22ed7 verified
|
raw
history blame
16 kB
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1128
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: connective tissue cell
sentences:
- GM18507
- GM18526
- GM08714
- source_sentence: blood
sentences:
- AG04449
- T cell
- GM12868
- source_sentence: mammary gland
sentences:
- MCF-7
- leukocyte
- GM10847
- source_sentence: GM18526
sentences:
- digestive system
- CMK
- KOPT-K1
- source_sentence: GM12873
sentences:
- KOPT-K1
- pancreas
- leukocyte
datasets:
- databio/mock-stsb
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7058652030883807
name: Pearson Cosine
- type: spearman_cosine
value: 0.69543787652822
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'GM12873',
'leukocyte',
'pancreas',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7059 |
| **spearman_cosine** | **0.6954** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### mock-stsb
* Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86)
* Size: 1,128 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 5.46 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.55 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.9</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:---------------------------------------|:--------------------------------|:-------------------|
| <code>OVCAR3</code> | <code>pancreas</code> | <code>0.05</code> |
| <code>L1-S8</code> | <code>respiratory system</code> | <code>0.001</code> |
| <code>peripheral nervous system</code> | <code>22Rv1</code> | <code>0.001</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### mock-stsb
* Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86)
* Size: 284 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 284 samples:
| | sentence1 | sentence2 | score |
|:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 5.6 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.71 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 0.9</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------|:----------------------------|:------------------|
| <code>SJCRH30</code> | <code>cancer cell</code> | <code>0.9</code> |
| <code>CWRU1</code> | <code>exocrine gland</code> | <code>0.05</code> |
| <code>epithelial cell</code> | <code>Caki2</code> | <code>0.9</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `learning_rate`: 1e-05
- `num_train_epochs`: 50
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 50
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
|:-----:|:----:|:-------------:|:---------------:|:-----------------------:|
| 1.0 | 282 | 0.2157 | 0.1413 | 0.4340 |
| 2.0 | 564 | 0.1402 | 0.1207 | 0.6198 |
| 3.0 | 846 | 0.1239 | 0.0973 | 0.6541 |
| 4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 |
| 5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 |
| 6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 |
| 7.0 | 1974 | 0.076 | 0.0842 | 0.6660 |
| 8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 |
| 9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 |
| 10.0 | 2820 | 0.046 | 0.0884 | 0.6424 |
| 11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 |
| 12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 |
| 13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 |
| 14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 |
| 15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 |
| 16.0 | 4512 | 0.026 | 0.0843 | 0.6933 |
| 17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 |
| 18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 |
| 19.0 | 5358 | 0.022 | 0.0867 | 0.6629 |
| 20.0 | 5640 | 0.021 | 0.0809 | 0.6815 |
| 21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 |
| 22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 |
| 23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 |
| 24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 |
| 25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 |
### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->