SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the mock-stsb dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'GM12873',
'leukocyte',
'pancreas',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7059 |
spearman_cosine | 0.6954 |
Training Details
Training Dataset
mock-stsb
- Dataset: mock-stsb at d5ba748
- Size: 1,128 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 5.46 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 5.55 tokens
- max: 10 tokens
- min: 0.0
- mean: 0.44
- max: 0.9
- Samples:
sentence1 sentence2 score OVCAR3
pancreas
0.05
L1-S8
respiratory system
0.001
peripheral nervous system
22Rv1
0.001
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
mock-stsb
- Dataset: mock-stsb at d5ba748
- Size: 284 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 284 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 5.6 tokens
- max: 9 tokens
- min: 3 tokens
- mean: 5.71 tokens
- max: 9 tokens
- min: 0.0
- mean: 0.45
- max: 0.9
- Samples:
sentence1 sentence2 score SJCRH30
cancer cell
0.9
CWRU1
exocrine gland
0.05
epithelial cell
Caki2
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 4learning_rate
: 1e-05num_train_epochs
: 50warmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
---|---|---|---|---|
1.0 | 282 | 0.2157 | 0.1413 | 0.4340 |
2.0 | 564 | 0.1402 | 0.1207 | 0.6198 |
3.0 | 846 | 0.1239 | 0.0973 | 0.6541 |
4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 |
5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 |
6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 |
7.0 | 1974 | 0.076 | 0.0842 | 0.6660 |
8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 |
9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 |
10.0 | 2820 | 0.046 | 0.0884 | 0.6424 |
11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 |
12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 |
13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 |
14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 |
15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 |
16.0 | 4512 | 0.026 | 0.0843 | 0.6933 |
17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 |
18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 |
19.0 | 5358 | 0.022 | 0.0867 | 0.6629 |
20.0 | 5640 | 0.021 | 0.0809 | 0.6815 |
21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 |
22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 |
23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 |
24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 |
25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 66
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for databio/sbert-encode-cellines-tuned
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train databio/sbert-encode-cellines-tuned
Evaluation results
- Pearson Cosine on sts devself-reported0.706
- Spearman Cosine on sts devself-reported0.695