ClaudeHu05 commited on
Commit
9f22ed7
1 Parent(s): bc07301

Upload 10 files

Browse files
Files changed (4) hide show
  1. README.md +432 -1
  2. config.json +26 -0
  3. config_sentence_transformers.json +10 -0
  4. model.safetensors +3 -0
README.md CHANGED
@@ -1 +1,432 @@
1
- fine tuend `sentence-transformers/all-MiniLM-L6-v2`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1128
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: connective tissue cell
12
+ sentences:
13
+ - GM18507
14
+ - GM18526
15
+ - GM08714
16
+ - source_sentence: blood
17
+ sentences:
18
+ - AG04449
19
+ - T cell
20
+ - GM12868
21
+ - source_sentence: mammary gland
22
+ sentences:
23
+ - MCF-7
24
+ - leukocyte
25
+ - GM10847
26
+ - source_sentence: GM18526
27
+ sentences:
28
+ - digestive system
29
+ - CMK
30
+ - KOPT-K1
31
+ - source_sentence: GM12873
32
+ sentences:
33
+ - KOPT-K1
34
+ - pancreas
35
+ - leukocyte
36
+ datasets:
37
+ - databio/mock-stsb
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - pearson_cosine
42
+ - spearman_cosine
43
+ model-index:
44
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
45
+ results:
46
+ - task:
47
+ type: semantic-similarity
48
+ name: Semantic Similarity
49
+ dataset:
50
+ name: sts dev
51
+ type: sts-dev
52
+ metrics:
53
+ - type: pearson_cosine
54
+ value: 0.7058652030883807
55
+ name: Pearson Cosine
56
+ - type: spearman_cosine
57
+ value: 0.69543787652822
58
+ name: Spearman Cosine
59
+ ---
60
+
61
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
62
+
63
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ - **Model Type:** Sentence Transformer
69
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
70
+ - **Maximum Sequence Length:** 256 tokens
71
+ - **Output Dimensionality:** 384 dimensions
72
+ - **Similarity Function:** Cosine Similarity
73
+ - **Training Dataset:**
74
+ - [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb)
75
+ <!-- - **Language:** Unknown -->
76
+ <!-- - **License:** Unknown -->
77
+
78
+ ### Model Sources
79
+
80
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
81
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
82
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
83
+
84
+ ### Full Model Architecture
85
+
86
+ ```
87
+ SentenceTransformer(
88
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
89
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
90
+ (2): Normalize()
91
+ )
92
+ ```
93
+
94
+ ## Usage
95
+
96
+ ### Direct Usage (Sentence Transformers)
97
+
98
+ First install the Sentence Transformers library:
99
+
100
+ ```bash
101
+ pip install -U sentence-transformers
102
+ ```
103
+
104
+ Then you can load this model and run inference.
105
+ ```python
106
+ from sentence_transformers import SentenceTransformer
107
+
108
+ # Download from the 🤗 Hub
109
+ model = SentenceTransformer("sentence_transformers_model_id")
110
+ # Run inference
111
+ sentences = [
112
+ 'GM12873',
113
+ 'leukocyte',
114
+ 'pancreas',
115
+ ]
116
+ embeddings = model.encode(sentences)
117
+ print(embeddings.shape)
118
+ # [3, 384]
119
+
120
+ # Get the similarity scores for the embeddings
121
+ similarities = model.similarity(embeddings, embeddings)
122
+ print(similarities.shape)
123
+ # [3, 3]
124
+ ```
125
+
126
+ <!--
127
+ ### Direct Usage (Transformers)
128
+
129
+ <details><summary>Click to see the direct usage in Transformers</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Downstream Usage (Sentence Transformers)
136
+
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Out-of-Scope Use
146
+
147
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
148
+ -->
149
+
150
+ ## Evaluation
151
+
152
+ ### Metrics
153
+
154
+ #### Semantic Similarity
155
+
156
+ * Dataset: `sts-dev`
157
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
158
+
159
+ | Metric | Value |
160
+ |:--------------------|:-----------|
161
+ | pearson_cosine | 0.7059 |
162
+ | **spearman_cosine** | **0.6954** |
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Dataset
179
+
180
+ #### mock-stsb
181
+
182
+ * Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86)
183
+ * Size: 1,128 training samples
184
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | sentence1 | sentence2 | score |
187
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
188
+ | type | string | string | float |
189
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.46 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.55 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.9</li></ul> |
190
+ * Samples:
191
+ | sentence1 | sentence2 | score |
192
+ |:---------------------------------------|:--------------------------------|:-------------------|
193
+ | <code>OVCAR3</code> | <code>pancreas</code> | <code>0.05</code> |
194
+ | <code>L1-S8</code> | <code>respiratory system</code> | <code>0.001</code> |
195
+ | <code>peripheral nervous system</code> | <code>22Rv1</code> | <code>0.001</code> |
196
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
197
+ ```json
198
+ {
199
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
200
+ }
201
+ ```
202
+
203
+ ### Evaluation Dataset
204
+
205
+ #### mock-stsb
206
+
207
+ * Dataset: [mock-stsb](https://huggingface.co/datasets/databio/mock-stsb) at [d5ba748](https://huggingface.co/datasets/databio/mock-stsb/tree/d5ba748c12ecb4eb2178b42c9735506a50de9f86)
208
+ * Size: 284 evaluation samples
209
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
210
+ * Approximate statistics based on the first 284 samples:
211
+ | | sentence1 | sentence2 | score |
212
+ |:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
213
+ | type | string | string | float |
214
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.6 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.71 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 0.9</li></ul> |
215
+ * Samples:
216
+ | sentence1 | sentence2 | score |
217
+ |:-----------------------------|:----------------------------|:------------------|
218
+ | <code>SJCRH30</code> | <code>cancer cell</code> | <code>0.9</code> |
219
+ | <code>CWRU1</code> | <code>exocrine gland</code> | <code>0.05</code> |
220
+ | <code>epithelial cell</code> | <code>Caki2</code> | <code>0.9</code> |
221
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
222
+ ```json
223
+ {
224
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
225
+ }
226
+ ```
227
+
228
+ ### Training Hyperparameters
229
+ #### Non-Default Hyperparameters
230
+
231
+ - `eval_strategy`: epoch
232
+ - `per_device_train_batch_size`: 4
233
+ - `per_device_eval_batch_size`: 4
234
+ - `learning_rate`: 1e-05
235
+ - `num_train_epochs`: 50
236
+ - `warmup_ratio`: 0.1
237
+ - `load_best_model_at_end`: True
238
+
239
+ #### All Hyperparameters
240
+ <details><summary>Click to expand</summary>
241
+
242
+ - `overwrite_output_dir`: False
243
+ - `do_predict`: False
244
+ - `eval_strategy`: epoch
245
+ - `prediction_loss_only`: True
246
+ - `per_device_train_batch_size`: 4
247
+ - `per_device_eval_batch_size`: 4
248
+ - `per_gpu_train_batch_size`: None
249
+ - `per_gpu_eval_batch_size`: None
250
+ - `gradient_accumulation_steps`: 1
251
+ - `eval_accumulation_steps`: None
252
+ - `torch_empty_cache_steps`: None
253
+ - `learning_rate`: 1e-05
254
+ - `weight_decay`: 0.0
255
+ - `adam_beta1`: 0.9
256
+ - `adam_beta2`: 0.999
257
+ - `adam_epsilon`: 1e-08
258
+ - `max_grad_norm`: 1.0
259
+ - `num_train_epochs`: 50
260
+ - `max_steps`: -1
261
+ - `lr_scheduler_type`: linear
262
+ - `lr_scheduler_kwargs`: {}
263
+ - `warmup_ratio`: 0.1
264
+ - `warmup_steps`: 0
265
+ - `log_level`: passive
266
+ - `log_level_replica`: warning
267
+ - `log_on_each_node`: True
268
+ - `logging_nan_inf_filter`: True
269
+ - `save_safetensors`: True
270
+ - `save_on_each_node`: False
271
+ - `save_only_model`: False
272
+ - `restore_callback_states_from_checkpoint`: False
273
+ - `no_cuda`: False
274
+ - `use_cpu`: False
275
+ - `use_mps_device`: False
276
+ - `seed`: 42
277
+ - `data_seed`: None
278
+ - `jit_mode_eval`: False
279
+ - `use_ipex`: False
280
+ - `bf16`: False
281
+ - `fp16`: False
282
+ - `fp16_opt_level`: O1
283
+ - `half_precision_backend`: auto
284
+ - `bf16_full_eval`: False
285
+ - `fp16_full_eval`: False
286
+ - `tf32`: None
287
+ - `local_rank`: 0
288
+ - `ddp_backend`: None
289
+ - `tpu_num_cores`: None
290
+ - `tpu_metrics_debug`: False
291
+ - `debug`: []
292
+ - `dataloader_drop_last`: False
293
+ - `dataloader_num_workers`: 0
294
+ - `dataloader_prefetch_factor`: None
295
+ - `past_index`: -1
296
+ - `disable_tqdm`: False
297
+ - `remove_unused_columns`: True
298
+ - `label_names`: None
299
+ - `load_best_model_at_end`: True
300
+ - `ignore_data_skip`: False
301
+ - `fsdp`: []
302
+ - `fsdp_min_num_params`: 0
303
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
304
+ - `fsdp_transformer_layer_cls_to_wrap`: None
305
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
306
+ - `deepspeed`: None
307
+ - `label_smoothing_factor`: 0.0
308
+ - `optim`: adamw_torch
309
+ - `optim_args`: None
310
+ - `adafactor`: False
311
+ - `group_by_length`: False
312
+ - `length_column_name`: length
313
+ - `ddp_find_unused_parameters`: None
314
+ - `ddp_bucket_cap_mb`: None
315
+ - `ddp_broadcast_buffers`: False
316
+ - `dataloader_pin_memory`: True
317
+ - `dataloader_persistent_workers`: False
318
+ - `skip_memory_metrics`: True
319
+ - `use_legacy_prediction_loop`: False
320
+ - `push_to_hub`: False
321
+ - `resume_from_checkpoint`: None
322
+ - `hub_model_id`: None
323
+ - `hub_strategy`: every_save
324
+ - `hub_private_repo`: None
325
+ - `hub_always_push`: False
326
+ - `gradient_checkpointing`: False
327
+ - `gradient_checkpointing_kwargs`: None
328
+ - `include_inputs_for_metrics`: False
329
+ - `include_for_metrics`: []
330
+ - `eval_do_concat_batches`: True
331
+ - `fp16_backend`: auto
332
+ - `push_to_hub_model_id`: None
333
+ - `push_to_hub_organization`: None
334
+ - `mp_parameters`:
335
+ - `auto_find_batch_size`: False
336
+ - `full_determinism`: False
337
+ - `torchdynamo`: None
338
+ - `ray_scope`: last
339
+ - `ddp_timeout`: 1800
340
+ - `torch_compile`: False
341
+ - `torch_compile_backend`: None
342
+ - `torch_compile_mode`: None
343
+ - `dispatch_batches`: None
344
+ - `split_batches`: None
345
+ - `include_tokens_per_second`: False
346
+ - `include_num_input_tokens_seen`: False
347
+ - `neftune_noise_alpha`: None
348
+ - `optim_target_modules`: None
349
+ - `batch_eval_metrics`: False
350
+ - `eval_on_start`: False
351
+ - `use_liger_kernel`: False
352
+ - `eval_use_gather_object`: False
353
+ - `average_tokens_across_devices`: False
354
+ - `prompts`: None
355
+ - `batch_sampler`: batch_sampler
356
+ - `multi_dataset_batch_sampler`: proportional
357
+
358
+ </details>
359
+
360
+ ### Training Logs
361
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
362
+ |:-----:|:----:|:-------------:|:---------------:|:-----------------------:|
363
+ | 1.0 | 282 | 0.2157 | 0.1413 | 0.4340 |
364
+ | 2.0 | 564 | 0.1402 | 0.1207 | 0.6198 |
365
+ | 3.0 | 846 | 0.1239 | 0.0973 | 0.6541 |
366
+ | 4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 |
367
+ | 5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 |
368
+ | 6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 |
369
+ | 7.0 | 1974 | 0.076 | 0.0842 | 0.6660 |
370
+ | 8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 |
371
+ | 9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 |
372
+ | 10.0 | 2820 | 0.046 | 0.0884 | 0.6424 |
373
+ | 11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 |
374
+ | 12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 |
375
+ | 13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 |
376
+ | 14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 |
377
+ | 15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 |
378
+ | 16.0 | 4512 | 0.026 | 0.0843 | 0.6933 |
379
+ | 17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 |
380
+ | 18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 |
381
+ | 19.0 | 5358 | 0.022 | 0.0867 | 0.6629 |
382
+ | 20.0 | 5640 | 0.021 | 0.0809 | 0.6815 |
383
+ | 21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 |
384
+ | 22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 |
385
+ | 23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 |
386
+ | 24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 |
387
+ | 25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 |
388
+
389
+
390
+ ### Framework Versions
391
+ - Python: 3.11.5
392
+ - Sentence Transformers: 3.3.1
393
+ - Transformers: 4.47.0
394
+ - PyTorch: 2.5.1+cu124
395
+ - Accelerate: 1.2.0
396
+ - Datasets: 3.1.0
397
+ - Tokenizers: 0.21.0
398
+
399
+ ## Citation
400
+
401
+ ### BibTeX
402
+
403
+ #### Sentence Transformers
404
+ ```bibtex
405
+ @inproceedings{reimers-2019-sentence-bert,
406
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
407
+ author = "Reimers, Nils and Gurevych, Iryna",
408
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
409
+ month = "11",
410
+ year = "2019",
411
+ publisher = "Association for Computational Linguistics",
412
+ url = "https://arxiv.org/abs/1908.10084",
413
+ }
414
+ ```
415
+
416
+ <!--
417
+ ## Glossary
418
+
419
+ *Clearly define terms in order to be accessible across audiences.*
420
+ -->
421
+
422
+ <!--
423
+ ## Model Card Authors
424
+
425
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
426
+ -->
427
+
428
+ <!--
429
+ ## Model Card Contact
430
+
431
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
432
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e97884b3f01e7d86fa8114d394ce3a4ceae03351916dbf6b988bddcb3d6a34b8
3
+ size 90864192