bhlim's picture
Add new SentenceTransformer model.
8be2049 verified
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      As of December 31, 2023, Hilton franchised 6,679 hotels and resorts, with
      914,974 rooms.
    sentences:
      - What does Google's new model 'Gemini' aim to achieve?
      - >-
        What is the total number of rooms in Hilton's franchised hotels as of
        December 31, 2023?
      - >-
        How much is the Company agreed to pay under the opioid settlement to
        resolve all lawsuits and future claims by government entities
        nationwide?
  - source_sentence: >-
      Under the Biologics Price Competition and Innovation Act, innovator
      biologics are granted a regulatory exclusivity period of 12 years.
    sentences:
      - >-
        What are the primary goals of the asset allocation strategy for USRIP's
        plan, and what standards must investment managers follow?
      - >-
        How long is the regulatory exclusivity period for innovator biologics
        under the Biologics Price Competition and Innovation Act?
      - >-
        By what percentage did the office loans increase in exposure during
        2023?
  - source_sentence: >-
      Amounts recorded in a business combination may change during the
      measurement period, which is a period not to exceed one year from the date
      of acquisition, as additional information about conditions that existed at
      the acquisition date becomes available.
    sentences:
      - >-
        What is considered during the measurement period in a business
        combination?
      - >-
        What was the primary reason for the increase in other costs of $15.3
        million reported?
      - >-
        How is the stock-based compensation expense determined for service-based
        and performance or market condition awards at Hewlett Packard
        Enterprise?
  - source_sentence: >-
      The Be Human pillar of our Impact Agenda sets out our focus areas with
      respect to human capital, including: •Inclusion, Diversity, Equity, and
      Action (“IDEA”); •Employee empowerment; and •Fair labor practices and the
      well-being of the people who make our products.
    sentences:
      - >-
        How did Hilton Worldwide Holdings Inc.'s accumulated deficit change from
        December 31, 2022, to December 31, 2023?
      - >-
        What primarily caused the decrease in the Company's effective income tax
        rate in 2023?
      - >-
        What is the objective of the Be Human pillar in the company's Impact
        Agenda?
  - source_sentence: >-
      Our revenue consists of service fees, net of incentives and refunds,
      charged to our customers. For stays, service fees, which are charged to
      customers as a percentage of the value of the booking, excluding taxes,
      vary based on factors specific to the booking, such as booking value, the
      duration of the booking, geography, and Host type.
    sentences:
      - >-
        What are some factors that affect the percentage of service fees charged
        to customers?
      - >-
        What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning
        the firm's financial statements?
      - What were the net revenues for Global Banking & Markets in 2023?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6957142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8485714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6957142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16971428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6957142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8485714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7935293220413043
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.759959183673469
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7639893123837201
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7057142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8014285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8528571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9028571428571428
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7057142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2671428571428571
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17057142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09028571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7057142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8014285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8528571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9028571428571428
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7983926017556883
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7656269841269838
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7693363291720529
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.79
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8471428571428572
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8914285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2633333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16942857142857143
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08914285714285713
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.79
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8471428571428572
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8914285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7878064776962901
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7549427437641724
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7595543581664418
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6885714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7928571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8385714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8914285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6885714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2642857142857143
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1677142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08914285714285713
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6885714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7928571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8385714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8914285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7855455284623294
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.752206916099773
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7560619398777708
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.64
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7642857142857142
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8114285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8671428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.64
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25476190476190474
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16228571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0867142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.64
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7642857142857142
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8114285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8671428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7491977147487785
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.711975623582766
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7167882776968978
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bhlim/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Our revenue consists of service fees, net of incentives and refunds, charged to our customers. For stays, service fees, which are charged to customers as a percentage of the value of the booking, excluding taxes, vary based on factors specific to the booking, such as booking value, the duration of the booking, geography, and Host type.',
    'What are some factors that affect the percentage of service fees charged to customers?',
    "What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning the firm's financial statements?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6957
cosine_accuracy@3 0.8
cosine_accuracy@5 0.8486
cosine_accuracy@10 0.9
cosine_precision@1 0.6957
cosine_precision@3 0.2667
cosine_precision@5 0.1697
cosine_precision@10 0.09
cosine_recall@1 0.6957
cosine_recall@3 0.8
cosine_recall@5 0.8486
cosine_recall@10 0.9
cosine_ndcg@10 0.7935
cosine_mrr@10 0.76
cosine_map@100 0.764

Information Retrieval

Metric Value
cosine_accuracy@1 0.7057
cosine_accuracy@3 0.8014
cosine_accuracy@5 0.8529
cosine_accuracy@10 0.9029
cosine_precision@1 0.7057
cosine_precision@3 0.2671
cosine_precision@5 0.1706
cosine_precision@10 0.0903
cosine_recall@1 0.7057
cosine_recall@3 0.8014
cosine_recall@5 0.8529
cosine_recall@10 0.9029
cosine_ndcg@10 0.7984
cosine_mrr@10 0.7656
cosine_map@100 0.7693

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.79
cosine_accuracy@5 0.8471
cosine_accuracy@10 0.8914
cosine_precision@1 0.6914
cosine_precision@3 0.2633
cosine_precision@5 0.1694
cosine_precision@10 0.0891
cosine_recall@1 0.6914
cosine_recall@3 0.79
cosine_recall@5 0.8471
cosine_recall@10 0.8914
cosine_ndcg@10 0.7878
cosine_mrr@10 0.7549
cosine_map@100 0.7596

Information Retrieval

Metric Value
cosine_accuracy@1 0.6886
cosine_accuracy@3 0.7929
cosine_accuracy@5 0.8386
cosine_accuracy@10 0.8914
cosine_precision@1 0.6886
cosine_precision@3 0.2643
cosine_precision@5 0.1677
cosine_precision@10 0.0891
cosine_recall@1 0.6886
cosine_recall@3 0.7929
cosine_recall@5 0.8386
cosine_recall@10 0.8914
cosine_ndcg@10 0.7855
cosine_mrr@10 0.7522
cosine_map@100 0.7561

Information Retrieval

Metric Value
cosine_accuracy@1 0.64
cosine_accuracy@3 0.7643
cosine_accuracy@5 0.8114
cosine_accuracy@10 0.8671
cosine_precision@1 0.64
cosine_precision@3 0.2548
cosine_precision@5 0.1623
cosine_precision@10 0.0867
cosine_recall@1 0.64
cosine_recall@3 0.7643
cosine_recall@5 0.8114
cosine_recall@10 0.8671
cosine_ndcg@10 0.7492
cosine_mrr@10 0.712
cosine_map@100 0.7168

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 46.18 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 20.64 tokens
    • max: 42 tokens
  • Samples:
    positive anchor
    Within the contiguous U.S., FedEx Freight offers FedEx Freight Priority, when speed is critical to meet a customer’s supply chain needs. How does FedEx Freight accommodate rapid delivery needs?
    For purposes of our goodwill impairment evaluation, the reporting units are Family Dollar, Dollar Tree and Dollar Tree Canada. What reporting units are used for the goodwill impairment evaluation?
    In 2024, AT&T Inc. expects a long-term rate of return of 7.75% on pension plan assets, reflecting an increase of 0.25%. This adjustment in expected returns is based on economic forecasts and changes in the asset mix. What will AT&T Inc.'s expected long-term rate of return be on pension plan assets in 2024?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5825 - - - - -
0.9746 12 - 0.7349 0.7502 0.7566 0.6910 0.7566
1.6244 20 0.6595 - - - - -
1.9492 24 - 0.7508 0.7583 0.7648 0.7142 0.7615
2.4365 30 0.4717 - - - - -
2.9239 36 - 0.7562 0.7616 0.7692 0.7178 0.7622
3.2487 40 0.4059 - - - - -
3.8985 48 - 0.7561 0.7596 0.7693 0.7168 0.7640
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}