bhlim commited on
Commit
8be2049
1 Parent(s): a731a71

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,811 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: As of December 31, 2023, Hilton franchised 6,679 hotels and resorts,
35
+ with 914,974 rooms.
36
+ sentences:
37
+ - What does Google's new model 'Gemini' aim to achieve?
38
+ - What is the total number of rooms in Hilton's franchised hotels as of December
39
+ 31, 2023?
40
+ - How much is the Company agreed to pay under the opioid settlement to resolve all
41
+ lawsuits and future claims by government entities nationwide?
42
+ - source_sentence: Under the Biologics Price Competition and Innovation Act, innovator
43
+ biologics are granted a regulatory exclusivity period of 12 years.
44
+ sentences:
45
+ - What are the primary goals of the asset allocation strategy for USRIP's plan,
46
+ and what standards must investment managers follow?
47
+ - How long is the regulatory exclusivity period for innovator biologics under the
48
+ Biologics Price Competition and Innovation Act?
49
+ - By what percentage did the office loans increase in exposure during 2023?
50
+ - source_sentence: Amounts recorded in a business combination may change during the
51
+ measurement period, which is a period not to exceed one year from the date of
52
+ acquisition, as additional information about conditions that existed at the acquisition
53
+ date becomes available.
54
+ sentences:
55
+ - What is considered during the measurement period in a business combination?
56
+ - What was the primary reason for the increase in other costs of $15.3 million reported?
57
+ - How is the stock-based compensation expense determined for service-based and performance
58
+ or market condition awards at Hewlett Packard Enterprise?
59
+ - source_sentence: 'The Be Human pillar of our Impact Agenda sets out our focus areas
60
+ with respect to human capital, including: •Inclusion, Diversity, Equity, and Action
61
+ (“IDEA”); •Employee empowerment; and •Fair labor practices and the well-being
62
+ of the people who make our products.'
63
+ sentences:
64
+ - How did Hilton Worldwide Holdings Inc.'s accumulated deficit change from December
65
+ 31, 2022, to December 31, 2023?
66
+ - What primarily caused the decrease in the Company's effective income tax rate
67
+ in 2023?
68
+ - What is the objective of the Be Human pillar in the company's Impact Agenda?
69
+ - source_sentence: Our revenue consists of service fees, net of incentives and refunds,
70
+ charged to our customers. For stays, service fees, which are charged to customers
71
+ as a percentage of the value of the booking, excluding taxes, vary based on factors
72
+ specific to the booking, such as booking value, the duration of the booking, geography,
73
+ and Host type.
74
+ sentences:
75
+ - What are some factors that affect the percentage of service fees charged to customers?
76
+ - What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning the firm's
77
+ financial statements?
78
+ - What were the net revenues for Global Banking & Markets in 2023?
79
+ model-index:
80
+ - name: BGE base Financial Matryoshka
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: dim 768
87
+ type: dim_768
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.6957142857142857
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.8
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.8485714285714285
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.9
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.6957142857142857
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.26666666666666666
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.16971428571428568
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.08999999999999998
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.6957142857142857
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.8
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.8485714285714285
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.9
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.7935293220413043
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.759959183673469
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.7639893123837201
133
+ name: Cosine Map@100
134
+ - task:
135
+ type: information-retrieval
136
+ name: Information Retrieval
137
+ dataset:
138
+ name: dim 512
139
+ type: dim_512
140
+ metrics:
141
+ - type: cosine_accuracy@1
142
+ value: 0.7057142857142857
143
+ name: Cosine Accuracy@1
144
+ - type: cosine_accuracy@3
145
+ value: 0.8014285714285714
146
+ name: Cosine Accuracy@3
147
+ - type: cosine_accuracy@5
148
+ value: 0.8528571428571429
149
+ name: Cosine Accuracy@5
150
+ - type: cosine_accuracy@10
151
+ value: 0.9028571428571428
152
+ name: Cosine Accuracy@10
153
+ - type: cosine_precision@1
154
+ value: 0.7057142857142857
155
+ name: Cosine Precision@1
156
+ - type: cosine_precision@3
157
+ value: 0.2671428571428571
158
+ name: Cosine Precision@3
159
+ - type: cosine_precision@5
160
+ value: 0.17057142857142854
161
+ name: Cosine Precision@5
162
+ - type: cosine_precision@10
163
+ value: 0.09028571428571427
164
+ name: Cosine Precision@10
165
+ - type: cosine_recall@1
166
+ value: 0.7057142857142857
167
+ name: Cosine Recall@1
168
+ - type: cosine_recall@3
169
+ value: 0.8014285714285714
170
+ name: Cosine Recall@3
171
+ - type: cosine_recall@5
172
+ value: 0.8528571428571429
173
+ name: Cosine Recall@5
174
+ - type: cosine_recall@10
175
+ value: 0.9028571428571428
176
+ name: Cosine Recall@10
177
+ - type: cosine_ndcg@10
178
+ value: 0.7983926017556883
179
+ name: Cosine Ndcg@10
180
+ - type: cosine_mrr@10
181
+ value: 0.7656269841269838
182
+ name: Cosine Mrr@10
183
+ - type: cosine_map@100
184
+ value: 0.7693363291720529
185
+ name: Cosine Map@100
186
+ - task:
187
+ type: information-retrieval
188
+ name: Information Retrieval
189
+ dataset:
190
+ name: dim 256
191
+ type: dim_256
192
+ metrics:
193
+ - type: cosine_accuracy@1
194
+ value: 0.6914285714285714
195
+ name: Cosine Accuracy@1
196
+ - type: cosine_accuracy@3
197
+ value: 0.79
198
+ name: Cosine Accuracy@3
199
+ - type: cosine_accuracy@5
200
+ value: 0.8471428571428572
201
+ name: Cosine Accuracy@5
202
+ - type: cosine_accuracy@10
203
+ value: 0.8914285714285715
204
+ name: Cosine Accuracy@10
205
+ - type: cosine_precision@1
206
+ value: 0.6914285714285714
207
+ name: Cosine Precision@1
208
+ - type: cosine_precision@3
209
+ value: 0.2633333333333333
210
+ name: Cosine Precision@3
211
+ - type: cosine_precision@5
212
+ value: 0.16942857142857143
213
+ name: Cosine Precision@5
214
+ - type: cosine_precision@10
215
+ value: 0.08914285714285713
216
+ name: Cosine Precision@10
217
+ - type: cosine_recall@1
218
+ value: 0.6914285714285714
219
+ name: Cosine Recall@1
220
+ - type: cosine_recall@3
221
+ value: 0.79
222
+ name: Cosine Recall@3
223
+ - type: cosine_recall@5
224
+ value: 0.8471428571428572
225
+ name: Cosine Recall@5
226
+ - type: cosine_recall@10
227
+ value: 0.8914285714285715
228
+ name: Cosine Recall@10
229
+ - type: cosine_ndcg@10
230
+ value: 0.7878064776962901
231
+ name: Cosine Ndcg@10
232
+ - type: cosine_mrr@10
233
+ value: 0.7549427437641724
234
+ name: Cosine Mrr@10
235
+ - type: cosine_map@100
236
+ value: 0.7595543581664418
237
+ name: Cosine Map@100
238
+ - task:
239
+ type: information-retrieval
240
+ name: Information Retrieval
241
+ dataset:
242
+ name: dim 128
243
+ type: dim_128
244
+ metrics:
245
+ - type: cosine_accuracy@1
246
+ value: 0.6885714285714286
247
+ name: Cosine Accuracy@1
248
+ - type: cosine_accuracy@3
249
+ value: 0.7928571428571428
250
+ name: Cosine Accuracy@3
251
+ - type: cosine_accuracy@5
252
+ value: 0.8385714285714285
253
+ name: Cosine Accuracy@5
254
+ - type: cosine_accuracy@10
255
+ value: 0.8914285714285715
256
+ name: Cosine Accuracy@10
257
+ - type: cosine_precision@1
258
+ value: 0.6885714285714286
259
+ name: Cosine Precision@1
260
+ - type: cosine_precision@3
261
+ value: 0.2642857142857143
262
+ name: Cosine Precision@3
263
+ - type: cosine_precision@5
264
+ value: 0.1677142857142857
265
+ name: Cosine Precision@5
266
+ - type: cosine_precision@10
267
+ value: 0.08914285714285713
268
+ name: Cosine Precision@10
269
+ - type: cosine_recall@1
270
+ value: 0.6885714285714286
271
+ name: Cosine Recall@1
272
+ - type: cosine_recall@3
273
+ value: 0.7928571428571428
274
+ name: Cosine Recall@3
275
+ - type: cosine_recall@5
276
+ value: 0.8385714285714285
277
+ name: Cosine Recall@5
278
+ - type: cosine_recall@10
279
+ value: 0.8914285714285715
280
+ name: Cosine Recall@10
281
+ - type: cosine_ndcg@10
282
+ value: 0.7855455284623294
283
+ name: Cosine Ndcg@10
284
+ - type: cosine_mrr@10
285
+ value: 0.752206916099773
286
+ name: Cosine Mrr@10
287
+ - type: cosine_map@100
288
+ value: 0.7560619398777708
289
+ name: Cosine Map@100
290
+ - task:
291
+ type: information-retrieval
292
+ name: Information Retrieval
293
+ dataset:
294
+ name: dim 64
295
+ type: dim_64
296
+ metrics:
297
+ - type: cosine_accuracy@1
298
+ value: 0.64
299
+ name: Cosine Accuracy@1
300
+ - type: cosine_accuracy@3
301
+ value: 0.7642857142857142
302
+ name: Cosine Accuracy@3
303
+ - type: cosine_accuracy@5
304
+ value: 0.8114285714285714
305
+ name: Cosine Accuracy@5
306
+ - type: cosine_accuracy@10
307
+ value: 0.8671428571428571
308
+ name: Cosine Accuracy@10
309
+ - type: cosine_precision@1
310
+ value: 0.64
311
+ name: Cosine Precision@1
312
+ - type: cosine_precision@3
313
+ value: 0.25476190476190474
314
+ name: Cosine Precision@3
315
+ - type: cosine_precision@5
316
+ value: 0.16228571428571426
317
+ name: Cosine Precision@5
318
+ - type: cosine_precision@10
319
+ value: 0.0867142857142857
320
+ name: Cosine Precision@10
321
+ - type: cosine_recall@1
322
+ value: 0.64
323
+ name: Cosine Recall@1
324
+ - type: cosine_recall@3
325
+ value: 0.7642857142857142
326
+ name: Cosine Recall@3
327
+ - type: cosine_recall@5
328
+ value: 0.8114285714285714
329
+ name: Cosine Recall@5
330
+ - type: cosine_recall@10
331
+ value: 0.8671428571428571
332
+ name: Cosine Recall@10
333
+ - type: cosine_ndcg@10
334
+ value: 0.7491977147487785
335
+ name: Cosine Ndcg@10
336
+ - type: cosine_mrr@10
337
+ value: 0.711975623582766
338
+ name: Cosine Mrr@10
339
+ - type: cosine_map@100
340
+ value: 0.7167882776968978
341
+ name: Cosine Map@100
342
+ ---
343
+
344
+ # BGE base Financial Matryoshka
345
+
346
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
347
+
348
+ ## Model Details
349
+
350
+ ### Model Description
351
+ - **Model Type:** Sentence Transformer
352
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
353
+ - **Maximum Sequence Length:** 512 tokens
354
+ - **Output Dimensionality:** 768 tokens
355
+ - **Similarity Function:** Cosine Similarity
356
+ <!-- - **Training Dataset:** Unknown -->
357
+ - **Language:** en
358
+ - **License:** apache-2.0
359
+
360
+ ### Model Sources
361
+
362
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
363
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
364
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
365
+
366
+ ### Full Model Architecture
367
+
368
+ ```
369
+ SentenceTransformer(
370
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
371
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
372
+ (2): Normalize()
373
+ )
374
+ ```
375
+
376
+ ## Usage
377
+
378
+ ### Direct Usage (Sentence Transformers)
379
+
380
+ First install the Sentence Transformers library:
381
+
382
+ ```bash
383
+ pip install -U sentence-transformers
384
+ ```
385
+
386
+ Then you can load this model and run inference.
387
+ ```python
388
+ from sentence_transformers import SentenceTransformer
389
+
390
+ # Download from the 🤗 Hub
391
+ model = SentenceTransformer("bhlim/bge-base-financial-matryoshka")
392
+ # Run inference
393
+ sentences = [
394
+ 'Our revenue consists of service fees, net of incentives and refunds, charged to our customers. For stays, service fees, which are charged to customers as a percentage of the value of the booking, excluding taxes, vary based on factors specific to the booking, such as booking value, the duration of the booking, geography, and Host type.',
395
+ 'What are some factors that affect the percentage of service fees charged to customers?',
396
+ "What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning the firm's financial statements?",
397
+ ]
398
+ embeddings = model.encode(sentences)
399
+ print(embeddings.shape)
400
+ # [3, 768]
401
+
402
+ # Get the similarity scores for the embeddings
403
+ similarities = model.similarity(embeddings, embeddings)
404
+ print(similarities.shape)
405
+ # [3, 3]
406
+ ```
407
+
408
+ <!--
409
+ ### Direct Usage (Transformers)
410
+
411
+ <details><summary>Click to see the direct usage in Transformers</summary>
412
+
413
+ </details>
414
+ -->
415
+
416
+ <!--
417
+ ### Downstream Usage (Sentence Transformers)
418
+
419
+ You can finetune this model on your own dataset.
420
+
421
+ <details><summary>Click to expand</summary>
422
+
423
+ </details>
424
+ -->
425
+
426
+ <!--
427
+ ### Out-of-Scope Use
428
+
429
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
430
+ -->
431
+
432
+ ## Evaluation
433
+
434
+ ### Metrics
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_768`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:----------|
442
+ | cosine_accuracy@1 | 0.6957 |
443
+ | cosine_accuracy@3 | 0.8 |
444
+ | cosine_accuracy@5 | 0.8486 |
445
+ | cosine_accuracy@10 | 0.9 |
446
+ | cosine_precision@1 | 0.6957 |
447
+ | cosine_precision@3 | 0.2667 |
448
+ | cosine_precision@5 | 0.1697 |
449
+ | cosine_precision@10 | 0.09 |
450
+ | cosine_recall@1 | 0.6957 |
451
+ | cosine_recall@3 | 0.8 |
452
+ | cosine_recall@5 | 0.8486 |
453
+ | cosine_recall@10 | 0.9 |
454
+ | cosine_ndcg@10 | 0.7935 |
455
+ | cosine_mrr@10 | 0.76 |
456
+ | **cosine_map@100** | **0.764** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_512`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.7057 |
465
+ | cosine_accuracy@3 | 0.8014 |
466
+ | cosine_accuracy@5 | 0.8529 |
467
+ | cosine_accuracy@10 | 0.9029 |
468
+ | cosine_precision@1 | 0.7057 |
469
+ | cosine_precision@3 | 0.2671 |
470
+ | cosine_precision@5 | 0.1706 |
471
+ | cosine_precision@10 | 0.0903 |
472
+ | cosine_recall@1 | 0.7057 |
473
+ | cosine_recall@3 | 0.8014 |
474
+ | cosine_recall@5 | 0.8529 |
475
+ | cosine_recall@10 | 0.9029 |
476
+ | cosine_ndcg@10 | 0.7984 |
477
+ | cosine_mrr@10 | 0.7656 |
478
+ | **cosine_map@100** | **0.7693** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_256`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.6914 |
487
+ | cosine_accuracy@3 | 0.79 |
488
+ | cosine_accuracy@5 | 0.8471 |
489
+ | cosine_accuracy@10 | 0.8914 |
490
+ | cosine_precision@1 | 0.6914 |
491
+ | cosine_precision@3 | 0.2633 |
492
+ | cosine_precision@5 | 0.1694 |
493
+ | cosine_precision@10 | 0.0891 |
494
+ | cosine_recall@1 | 0.6914 |
495
+ | cosine_recall@3 | 0.79 |
496
+ | cosine_recall@5 | 0.8471 |
497
+ | cosine_recall@10 | 0.8914 |
498
+ | cosine_ndcg@10 | 0.7878 |
499
+ | cosine_mrr@10 | 0.7549 |
500
+ | **cosine_map@100** | **0.7596** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_128`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.6886 |
509
+ | cosine_accuracy@3 | 0.7929 |
510
+ | cosine_accuracy@5 | 0.8386 |
511
+ | cosine_accuracy@10 | 0.8914 |
512
+ | cosine_precision@1 | 0.6886 |
513
+ | cosine_precision@3 | 0.2643 |
514
+ | cosine_precision@5 | 0.1677 |
515
+ | cosine_precision@10 | 0.0891 |
516
+ | cosine_recall@1 | 0.6886 |
517
+ | cosine_recall@3 | 0.7929 |
518
+ | cosine_recall@5 | 0.8386 |
519
+ | cosine_recall@10 | 0.8914 |
520
+ | cosine_ndcg@10 | 0.7855 |
521
+ | cosine_mrr@10 | 0.7522 |
522
+ | **cosine_map@100** | **0.7561** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_64`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.64 |
531
+ | cosine_accuracy@3 | 0.7643 |
532
+ | cosine_accuracy@5 | 0.8114 |
533
+ | cosine_accuracy@10 | 0.8671 |
534
+ | cosine_precision@1 | 0.64 |
535
+ | cosine_precision@3 | 0.2548 |
536
+ | cosine_precision@5 | 0.1623 |
537
+ | cosine_precision@10 | 0.0867 |
538
+ | cosine_recall@1 | 0.64 |
539
+ | cosine_recall@3 | 0.7643 |
540
+ | cosine_recall@5 | 0.8114 |
541
+ | cosine_recall@10 | 0.8671 |
542
+ | cosine_ndcg@10 | 0.7492 |
543
+ | cosine_mrr@10 | 0.712 |
544
+ | **cosine_map@100** | **0.7168** |
545
+
546
+ <!--
547
+ ## Bias, Risks and Limitations
548
+
549
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
550
+ -->
551
+
552
+ <!--
553
+ ### Recommendations
554
+
555
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
556
+ -->
557
+
558
+ ## Training Details
559
+
560
+ ### Training Dataset
561
+
562
+ #### Unnamed Dataset
563
+
564
+
565
+ * Size: 6,300 training samples
566
+ * Columns: <code>positive</code> and <code>anchor</code>
567
+ * Approximate statistics based on the first 1000 samples:
568
+ | | positive | anchor |
569
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
570
+ | type | string | string |
571
+ | details | <ul><li>min: 8 tokens</li><li>mean: 46.18 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.64 tokens</li><li>max: 42 tokens</li></ul> |
572
+ * Samples:
573
+ | positive | anchor |
574
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
575
+ | <code>Within the contiguous U.S., FedEx Freight offers FedEx Freight Priority, when speed is critical to meet a customer’s supply chain needs.</code> | <code>How does FedEx Freight accommodate rapid delivery needs?</code> |
576
+ | <code>For purposes of our goodwill impairment evaluation, the reporting units are Family Dollar, Dollar Tree and Dollar Tree Canada.</code> | <code>What reporting units are used for the goodwill impairment evaluation?</code> |
577
+ | <code>In 2024, AT&T Inc. expects a long-term rate of return of 7.75% on pension plan assets, reflecting an increase of 0.25%. This adjustment in expected returns is based on economic forecasts and changes in the asset mix.</code> | <code>What will AT&T Inc.'s expected long-term rate of return be on pension plan assets in 2024?</code> |
578
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
579
+ ```json
580
+ {
581
+ "loss": "MultipleNegativesRankingLoss",
582
+ "matryoshka_dims": [
583
+ 768,
584
+ 512,
585
+ 256,
586
+ 128,
587
+ 64
588
+ ],
589
+ "matryoshka_weights": [
590
+ 1,
591
+ 1,
592
+ 1,
593
+ 1,
594
+ 1
595
+ ],
596
+ "n_dims_per_step": -1
597
+ }
598
+ ```
599
+
600
+ ### Training Hyperparameters
601
+ #### Non-Default Hyperparameters
602
+
603
+ - `eval_strategy`: epoch
604
+ - `per_device_train_batch_size`: 32
605
+ - `per_device_eval_batch_size`: 16
606
+ - `gradient_accumulation_steps`: 16
607
+ - `learning_rate`: 2e-05
608
+ - `num_train_epochs`: 4
609
+ - `lr_scheduler_type`: cosine
610
+ - `warmup_ratio`: 0.1
611
+ - `bf16`: True
612
+ - `tf32`: True
613
+ - `load_best_model_at_end`: True
614
+ - `optim`: adamw_torch_fused
615
+ - `batch_sampler`: no_duplicates
616
+
617
+ #### All Hyperparameters
618
+ <details><summary>Click to expand</summary>
619
+
620
+ - `overwrite_output_dir`: False
621
+ - `do_predict`: False
622
+ - `eval_strategy`: epoch
623
+ - `prediction_loss_only`: True
624
+ - `per_device_train_batch_size`: 32
625
+ - `per_device_eval_batch_size`: 16
626
+ - `per_gpu_train_batch_size`: None
627
+ - `per_gpu_eval_batch_size`: None
628
+ - `gradient_accumulation_steps`: 16
629
+ - `eval_accumulation_steps`: None
630
+ - `learning_rate`: 2e-05
631
+ - `weight_decay`: 0.0
632
+ - `adam_beta1`: 0.9
633
+ - `adam_beta2`: 0.999
634
+ - `adam_epsilon`: 1e-08
635
+ - `max_grad_norm`: 1.0
636
+ - `num_train_epochs`: 4
637
+ - `max_steps`: -1
638
+ - `lr_scheduler_type`: cosine
639
+ - `lr_scheduler_kwargs`: {}
640
+ - `warmup_ratio`: 0.1
641
+ - `warmup_steps`: 0
642
+ - `log_level`: passive
643
+ - `log_level_replica`: warning
644
+ - `log_on_each_node`: True
645
+ - `logging_nan_inf_filter`: True
646
+ - `save_safetensors`: True
647
+ - `save_on_each_node`: False
648
+ - `save_only_model`: False
649
+ - `restore_callback_states_from_checkpoint`: False
650
+ - `no_cuda`: False
651
+ - `use_cpu`: False
652
+ - `use_mps_device`: False
653
+ - `seed`: 42
654
+ - `data_seed`: None
655
+ - `jit_mode_eval`: False
656
+ - `use_ipex`: False
657
+ - `bf16`: True
658
+ - `fp16`: False
659
+ - `fp16_opt_level`: O1
660
+ - `half_precision_backend`: auto
661
+ - `bf16_full_eval`: False
662
+ - `fp16_full_eval`: False
663
+ - `tf32`: True
664
+ - `local_rank`: 0
665
+ - `ddp_backend`: None
666
+ - `tpu_num_cores`: None
667
+ - `tpu_metrics_debug`: False
668
+ - `debug`: []
669
+ - `dataloader_drop_last`: False
670
+ - `dataloader_num_workers`: 0
671
+ - `dataloader_prefetch_factor`: None
672
+ - `past_index`: -1
673
+ - `disable_tqdm`: False
674
+ - `remove_unused_columns`: True
675
+ - `label_names`: None
676
+ - `load_best_model_at_end`: True
677
+ - `ignore_data_skip`: False
678
+ - `fsdp`: []
679
+ - `fsdp_min_num_params`: 0
680
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
681
+ - `fsdp_transformer_layer_cls_to_wrap`: None
682
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
683
+ - `deepspeed`: None
684
+ - `label_smoothing_factor`: 0.0
685
+ - `optim`: adamw_torch_fused
686
+ - `optim_args`: None
687
+ - `adafactor`: False
688
+ - `group_by_length`: False
689
+ - `length_column_name`: length
690
+ - `ddp_find_unused_parameters`: None
691
+ - `ddp_bucket_cap_mb`: None
692
+ - `ddp_broadcast_buffers`: False
693
+ - `dataloader_pin_memory`: True
694
+ - `dataloader_persistent_workers`: False
695
+ - `skip_memory_metrics`: True
696
+ - `use_legacy_prediction_loop`: False
697
+ - `push_to_hub`: False
698
+ - `resume_from_checkpoint`: None
699
+ - `hub_model_id`: None
700
+ - `hub_strategy`: every_save
701
+ - `hub_private_repo`: False
702
+ - `hub_always_push`: False
703
+ - `gradient_checkpointing`: False
704
+ - `gradient_checkpointing_kwargs`: None
705
+ - `include_inputs_for_metrics`: False
706
+ - `eval_do_concat_batches`: True
707
+ - `fp16_backend`: auto
708
+ - `push_to_hub_model_id`: None
709
+ - `push_to_hub_organization`: None
710
+ - `mp_parameters`:
711
+ - `auto_find_batch_size`: False
712
+ - `full_determinism`: False
713
+ - `torchdynamo`: None
714
+ - `ray_scope`: last
715
+ - `ddp_timeout`: 1800
716
+ - `torch_compile`: False
717
+ - `torch_compile_backend`: None
718
+ - `torch_compile_mode`: None
719
+ - `dispatch_batches`: None
720
+ - `split_batches`: None
721
+ - `include_tokens_per_second`: False
722
+ - `include_num_input_tokens_seen`: False
723
+ - `neftune_noise_alpha`: None
724
+ - `optim_target_modules`: None
725
+ - `batch_eval_metrics`: False
726
+ - `batch_sampler`: no_duplicates
727
+ - `multi_dataset_batch_sampler`: proportional
728
+
729
+ </details>
730
+
731
+ ### Training Logs
732
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
733
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
734
+ | 0.8122 | 10 | 1.5825 | - | - | - | - | - |
735
+ | 0.9746 | 12 | - | 0.7349 | 0.7502 | 0.7566 | 0.6910 | 0.7566 |
736
+ | 1.6244 | 20 | 0.6595 | - | - | - | - | - |
737
+ | 1.9492 | 24 | - | 0.7508 | 0.7583 | 0.7648 | 0.7142 | 0.7615 |
738
+ | 2.4365 | 30 | 0.4717 | - | - | - | - | - |
739
+ | **2.9239** | **36** | **-** | **0.7562** | **0.7616** | **0.7692** | **0.7178** | **0.7622** |
740
+ | 3.2487 | 40 | 0.4059 | - | - | - | - | - |
741
+ | 3.8985 | 48 | - | 0.7561 | 0.7596 | 0.7693 | 0.7168 | 0.7640 |
742
+
743
+ * The bold row denotes the saved checkpoint.
744
+
745
+ ### Framework Versions
746
+ - Python: 3.10.12
747
+ - Sentence Transformers: 3.0.1
748
+ - Transformers: 4.41.2
749
+ - PyTorch: 2.3.1+cu121
750
+ - Accelerate: 0.32.1
751
+ - Datasets: 2.19.1
752
+ - Tokenizers: 0.19.1
753
+
754
+ ## Citation
755
+
756
+ ### BibTeX
757
+
758
+ #### Sentence Transformers
759
+ ```bibtex
760
+ @inproceedings{reimers-2019-sentence-bert,
761
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
762
+ author = "Reimers, Nils and Gurevych, Iryna",
763
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
764
+ month = "11",
765
+ year = "2019",
766
+ publisher = "Association for Computational Linguistics",
767
+ url = "https://arxiv.org/abs/1908.10084",
768
+ }
769
+ ```
770
+
771
+ #### MatryoshkaLoss
772
+ ```bibtex
773
+ @misc{kusupati2024matryoshka,
774
+ title={Matryoshka Representation Learning},
775
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
776
+ year={2024},
777
+ eprint={2205.13147},
778
+ archivePrefix={arXiv},
779
+ primaryClass={cs.LG}
780
+ }
781
+ ```
782
+
783
+ #### MultipleNegativesRankingLoss
784
+ ```bibtex
785
+ @misc{henderson2017efficient,
786
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
787
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
788
+ year={2017},
789
+ eprint={1705.00652},
790
+ archivePrefix={arXiv},
791
+ primaryClass={cs.CL}
792
+ }
793
+ ```
794
+
795
+ <!--
796
+ ## Glossary
797
+
798
+ *Clearly define terms in order to be accessible across audiences.*
799
+ -->
800
+
801
+ <!--
802
+ ## Model Card Authors
803
+
804
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
805
+ -->
806
+
807
+ <!--
808
+ ## Model Card Contact
809
+
810
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
811
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af79a0e657e0f1693cd5f8cbf3e5e69d2f08dbf27248cce4a45d0c840e94f88
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff