File size: 29,408 Bytes
8be2049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: As of December 31, 2023, Hilton franchised 6,679 hotels and resorts,
    with 914,974 rooms.
  sentences:
  - What does Google's new model 'Gemini' aim to achieve?
  - What is the total number of rooms in Hilton's franchised hotels as of December
    31, 2023?
  - How much is the Company agreed to pay under the opioid settlement to resolve all
    lawsuits and future claims by government entities nationwide?
- source_sentence: Under the Biologics Price Competition and Innovation Act, innovator
    biologics are granted a regulatory exclusivity period of 12 years.
  sentences:
  - What are the primary goals of the asset allocation strategy for USRIP's plan,
    and what standards must investment managers follow?
  - How long is the regulatory exclusivity period for innovator biologics under the
    Biologics Price Competition and Innovation Act?
  - By what percentage did the office loans increase in exposure during 2023?
- source_sentence: Amounts recorded in a business combination may change during the
    measurement period, which is a period not to exceed one year from the date of
    acquisition, as additional information about conditions that existed at the acquisition
    date becomes available.
  sentences:
  - What is considered during the measurement period in a business combination?
  - What was the primary reason for the increase in other costs of $15.3 million reported?
  - How is the stock-based compensation expense determined for service-based and performance
    or market condition awards at Hewlett Packard Enterprise?
- source_sentence: 'The Be Human pillar of our Impact Agenda sets out our focus areas
    with respect to human capital, including: •Inclusion, Diversity, Equity, and Action
    (“IDEA”); •Employee empowerment; and •Fair labor practices and the well-being
    of the people who make our products.'
  sentences:
  - How did Hilton Worldwide Holdings Inc.'s accumulated deficit change from December
    31, 2022, to December 31, 2023?
  - What primarily caused the decrease in the Company's effective income tax rate
    in 2023?
  - What is the objective of the Be Human pillar in the company's Impact Agenda?
- source_sentence: Our revenue consists of service fees, net of incentives and refunds,
    charged to our customers. For stays, service fees, which are charged to customers
    as a percentage of the value of the booking, excluding taxes, vary based on factors
    specific to the booking, such as booking value, the duration of the booking, geography,
    and Host type.
  sentences:
  - What are some factors that affect the percentage of service fees charged to customers?
  - What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning the firm's
    financial statements?
  - What were the net revenues for Global Banking & Markets in 2023?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6957142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6957142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6957142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7935293220413043
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.759959183673469
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7639893123837201
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7057142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8014285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8528571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9028571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7057142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2671428571428571
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17057142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09028571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7057142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8014285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8528571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9028571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7983926017556883
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7656269841269838
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7693363291720529
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6914285714285714
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.79
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8471428571428572
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8914285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6914285714285714
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2633333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16942857142857143
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08914285714285713
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6914285714285714
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.79
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8471428571428572
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8914285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7878064776962901
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7549427437641724
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7595543581664418
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6885714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7928571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8385714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8914285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6885714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2642857142857143
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1677142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08914285714285713
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6885714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7928571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8385714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8914285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7855455284623294
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.752206916099773
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7560619398777708
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.64
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7642857142857142
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8114285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8671428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.64
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25476190476190474
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0867142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.64
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7642857142857142
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8114285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8671428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7491977147487785
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.711975623582766
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7167882776968978
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bhlim/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Our revenue consists of service fees, net of incentives and refunds, charged to our customers. For stays, service fees, which are charged to customers as a percentage of the value of the booking, excluding taxes, vary based on factors specific to the booking, such as booking value, the duration of the booking, geography, and Host type.',
    'What are some factors that affect the percentage of service fees charged to customers?',
    "What is the PCAOB ID number for PricewaterhouseCoopers LLP concerning the firm's financial statements?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.6957    |
| cosine_accuracy@3   | 0.8       |
| cosine_accuracy@5   | 0.8486    |
| cosine_accuracy@10  | 0.9       |
| cosine_precision@1  | 0.6957    |
| cosine_precision@3  | 0.2667    |
| cosine_precision@5  | 0.1697    |
| cosine_precision@10 | 0.09      |
| cosine_recall@1     | 0.6957    |
| cosine_recall@3     | 0.8       |
| cosine_recall@5     | 0.8486    |
| cosine_recall@10    | 0.9       |
| cosine_ndcg@10      | 0.7935    |
| cosine_mrr@10       | 0.76      |
| **cosine_map@100**  | **0.764** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7057     |
| cosine_accuracy@3   | 0.8014     |
| cosine_accuracy@5   | 0.8529     |
| cosine_accuracy@10  | 0.9029     |
| cosine_precision@1  | 0.7057     |
| cosine_precision@3  | 0.2671     |
| cosine_precision@5  | 0.1706     |
| cosine_precision@10 | 0.0903     |
| cosine_recall@1     | 0.7057     |
| cosine_recall@3     | 0.8014     |
| cosine_recall@5     | 0.8529     |
| cosine_recall@10    | 0.9029     |
| cosine_ndcg@10      | 0.7984     |
| cosine_mrr@10       | 0.7656     |
| **cosine_map@100**  | **0.7693** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6914     |
| cosine_accuracy@3   | 0.79       |
| cosine_accuracy@5   | 0.8471     |
| cosine_accuracy@10  | 0.8914     |
| cosine_precision@1  | 0.6914     |
| cosine_precision@3  | 0.2633     |
| cosine_precision@5  | 0.1694     |
| cosine_precision@10 | 0.0891     |
| cosine_recall@1     | 0.6914     |
| cosine_recall@3     | 0.79       |
| cosine_recall@5     | 0.8471     |
| cosine_recall@10    | 0.8914     |
| cosine_ndcg@10      | 0.7878     |
| cosine_mrr@10       | 0.7549     |
| **cosine_map@100**  | **0.7596** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6886     |
| cosine_accuracy@3   | 0.7929     |
| cosine_accuracy@5   | 0.8386     |
| cosine_accuracy@10  | 0.8914     |
| cosine_precision@1  | 0.6886     |
| cosine_precision@3  | 0.2643     |
| cosine_precision@5  | 0.1677     |
| cosine_precision@10 | 0.0891     |
| cosine_recall@1     | 0.6886     |
| cosine_recall@3     | 0.7929     |
| cosine_recall@5     | 0.8386     |
| cosine_recall@10    | 0.8914     |
| cosine_ndcg@10      | 0.7855     |
| cosine_mrr@10       | 0.7522     |
| **cosine_map@100**  | **0.7561** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.64       |
| cosine_accuracy@3   | 0.7643     |
| cosine_accuracy@5   | 0.8114     |
| cosine_accuracy@10  | 0.8671     |
| cosine_precision@1  | 0.64       |
| cosine_precision@3  | 0.2548     |
| cosine_precision@5  | 0.1623     |
| cosine_precision@10 | 0.0867     |
| cosine_recall@1     | 0.64       |
| cosine_recall@3     | 0.7643     |
| cosine_recall@5     | 0.8114     |
| cosine_recall@10    | 0.8671     |
| cosine_ndcg@10      | 0.7492     |
| cosine_mrr@10       | 0.712      |
| **cosine_map@100**  | **0.7168** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 46.18 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.64 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                              | anchor                                                                                                  |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
  | <code>Within the contiguous U.S., FedEx Freight offers FedEx Freight Priority, when speed is critical to meet a customer’s supply chain needs.</code>                                                                                 | <code>How does FedEx Freight accommodate rapid delivery needs?</code>                                   |
  | <code>For purposes of our goodwill impairment evaluation, the reporting units are Family Dollar, Dollar Tree and Dollar Tree Canada.</code>                                                                                           | <code>What reporting units are used for the goodwill impairment evaluation?</code>                      |
  | <code>In 2024, AT&T Inc. expects a long-term rate of return of 7.75% on pension plan assets, reflecting an increase of 0.25%. This adjustment in expected returns is based on economic forecasts and changes in the asset mix.</code> | <code>What will AT&T Inc.'s expected long-term rate of return be on pension plan assets in 2024?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5825        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7349                 | 0.7502                 | 0.7566                 | 0.6910                | 0.7566                 |
| 1.6244     | 20     | 0.6595        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7508                 | 0.7583                 | 0.7648                 | 0.7142                | 0.7615                 |
| 2.4365     | 30     | 0.4717        | -                      | -                      | -                      | -                     | -                      |
| **2.9239** | **36** | **-**         | **0.7562**             | **0.7616**             | **0.7692**             | **0.7178**            | **0.7622**             |
| 3.2487     | 40     | 0.4059        | -                      | -                      | -                      | -                     | -                      |
| 3.8985     | 48     | -             | 0.7561                 | 0.7596                 | 0.7693                 | 0.7168                | 0.7640                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->