begnini's picture
contratos_tceal
2e301a4
|
raw
history blame
3.76 kB
---
tags:
- generated_from_trainer
datasets:
- contratos_tceal
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner-bert-large-cased-pt-contratos_tceal
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: contratos_tceal
type: contratos_tceal
config: contratos_tceal
split: validation
args: contratos_tceal
metrics:
- name: Precision
type: precision
value: 0.9134177215189874
- name: Recall
type: recall
value: 0.9168996188055909
- name: F1
type: f1
value: 0.9151553582752061
- name: Accuracy
type: accuracy
value: 0.9556322655972385
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-bert-large-cased-pt-contratos_tceal
This model was trained from scratch on the contratos_tceal dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3141
- Precision: 0.9134
- Recall: 0.9169
- F1: 0.9152
- Accuracy: 0.9556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 252 | 0.2193 | 0.9026 | 0.8948 | 0.8987 | 0.9488 |
| 0.2496 | 2.0 | 504 | 0.2110 | 0.8957 | 0.9098 | 0.9027 | 0.9494 |
| 0.2496 | 3.0 | 756 | 0.2098 | 0.9166 | 0.9105 | 0.9136 | 0.9531 |
| 0.1666 | 4.0 | 1008 | 0.2063 | 0.9221 | 0.9146 | 0.9183 | 0.9559 |
| 0.1666 | 5.0 | 1260 | 0.2165 | 0.9219 | 0.9146 | 0.9182 | 0.9562 |
| 0.1255 | 6.0 | 1512 | 0.2143 | 0.9175 | 0.9133 | 0.9154 | 0.9555 |
| 0.1255 | 7.0 | 1764 | 0.2278 | 0.9181 | 0.9146 | 0.9164 | 0.9559 |
| 0.092 | 8.0 | 2016 | 0.2404 | 0.9188 | 0.9174 | 0.9181 | 0.9561 |
| 0.092 | 9.0 | 2268 | 0.2538 | 0.9133 | 0.9100 | 0.9117 | 0.9533 |
| 0.069 | 10.0 | 2520 | 0.2654 | 0.9132 | 0.9118 | 0.9125 | 0.9543 |
| 0.069 | 11.0 | 2772 | 0.2796 | 0.9085 | 0.9133 | 0.9109 | 0.9527 |
| 0.0498 | 12.0 | 3024 | 0.2827 | 0.9130 | 0.9149 | 0.9139 | 0.9552 |
| 0.0498 | 13.0 | 3276 | 0.2869 | 0.9127 | 0.9144 | 0.9135 | 0.9557 |
| 0.0397 | 14.0 | 3528 | 0.2993 | 0.9123 | 0.9093 | 0.9108 | 0.9546 |
| 0.0397 | 15.0 | 3780 | 0.2951 | 0.9056 | 0.9144 | 0.9100 | 0.9547 |
| 0.0312 | 16.0 | 4032 | 0.2989 | 0.9092 | 0.9136 | 0.9114 | 0.9566 |
| 0.0312 | 17.0 | 4284 | 0.3104 | 0.9115 | 0.9113 | 0.9114 | 0.9554 |
| 0.0257 | 18.0 | 4536 | 0.3098 | 0.9143 | 0.9161 | 0.9152 | 0.9564 |
| 0.0257 | 19.0 | 4788 | 0.3129 | 0.9141 | 0.9166 | 0.9154 | 0.9556 |
| 0.0207 | 20.0 | 5040 | 0.3141 | 0.9134 | 0.9169 | 0.9152 | 0.9556 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0