--- tags: - generated_from_trainer datasets: - contratos_tceal metrics: - precision - recall - f1 - accuracy model-index: - name: ner-bert-large-cased-pt-contratos_tceal results: - task: name: Token Classification type: token-classification dataset: name: contratos_tceal type: contratos_tceal config: contratos_tceal split: validation args: contratos_tceal metrics: - name: Precision type: precision value: 0.9134177215189874 - name: Recall type: recall value: 0.9168996188055909 - name: F1 type: f1 value: 0.9151553582752061 - name: Accuracy type: accuracy value: 0.9556322655972385 --- # ner-bert-large-cased-pt-contratos_tceal This model was trained from scratch on the contratos_tceal dataset. It achieves the following results on the evaluation set: - Loss: 0.3141 - Precision: 0.9134 - Recall: 0.9169 - F1: 0.9152 - Accuracy: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 252 | 0.2193 | 0.9026 | 0.8948 | 0.8987 | 0.9488 | | 0.2496 | 2.0 | 504 | 0.2110 | 0.8957 | 0.9098 | 0.9027 | 0.9494 | | 0.2496 | 3.0 | 756 | 0.2098 | 0.9166 | 0.9105 | 0.9136 | 0.9531 | | 0.1666 | 4.0 | 1008 | 0.2063 | 0.9221 | 0.9146 | 0.9183 | 0.9559 | | 0.1666 | 5.0 | 1260 | 0.2165 | 0.9219 | 0.9146 | 0.9182 | 0.9562 | | 0.1255 | 6.0 | 1512 | 0.2143 | 0.9175 | 0.9133 | 0.9154 | 0.9555 | | 0.1255 | 7.0 | 1764 | 0.2278 | 0.9181 | 0.9146 | 0.9164 | 0.9559 | | 0.092 | 8.0 | 2016 | 0.2404 | 0.9188 | 0.9174 | 0.9181 | 0.9561 | | 0.092 | 9.0 | 2268 | 0.2538 | 0.9133 | 0.9100 | 0.9117 | 0.9533 | | 0.069 | 10.0 | 2520 | 0.2654 | 0.9132 | 0.9118 | 0.9125 | 0.9543 | | 0.069 | 11.0 | 2772 | 0.2796 | 0.9085 | 0.9133 | 0.9109 | 0.9527 | | 0.0498 | 12.0 | 3024 | 0.2827 | 0.9130 | 0.9149 | 0.9139 | 0.9552 | | 0.0498 | 13.0 | 3276 | 0.2869 | 0.9127 | 0.9144 | 0.9135 | 0.9557 | | 0.0397 | 14.0 | 3528 | 0.2993 | 0.9123 | 0.9093 | 0.9108 | 0.9546 | | 0.0397 | 15.0 | 3780 | 0.2951 | 0.9056 | 0.9144 | 0.9100 | 0.9547 | | 0.0312 | 16.0 | 4032 | 0.2989 | 0.9092 | 0.9136 | 0.9114 | 0.9566 | | 0.0312 | 17.0 | 4284 | 0.3104 | 0.9115 | 0.9113 | 0.9114 | 0.9554 | | 0.0257 | 18.0 | 4536 | 0.3098 | 0.9143 | 0.9161 | 0.9152 | 0.9564 | | 0.0257 | 19.0 | 4788 | 0.3129 | 0.9141 | 0.9166 | 0.9154 | 0.9556 | | 0.0207 | 20.0 | 5040 | 0.3141 | 0.9134 | 0.9169 | 0.9152 | 0.9556 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0