begnini's picture
contratos_tceal
2e301a4
|
raw
history blame
3.76 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - contratos_tceal
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner-bert-large-cased-pt-contratos_tceal
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: contratos_tceal
          type: contratos_tceal
          config: contratos_tceal
          split: validation
          args: contratos_tceal
        metrics:
          - name: Precision
            type: precision
            value: 0.9134177215189874
          - name: Recall
            type: recall
            value: 0.9168996188055909
          - name: F1
            type: f1
            value: 0.9151553582752061
          - name: Accuracy
            type: accuracy
            value: 0.9556322655972385

ner-bert-large-cased-pt-contratos_tceal

This model was trained from scratch on the contratos_tceal dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3141
  • Precision: 0.9134
  • Recall: 0.9169
  • F1: 0.9152
  • Accuracy: 0.9556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 252 0.2193 0.9026 0.8948 0.8987 0.9488
0.2496 2.0 504 0.2110 0.8957 0.9098 0.9027 0.9494
0.2496 3.0 756 0.2098 0.9166 0.9105 0.9136 0.9531
0.1666 4.0 1008 0.2063 0.9221 0.9146 0.9183 0.9559
0.1666 5.0 1260 0.2165 0.9219 0.9146 0.9182 0.9562
0.1255 6.0 1512 0.2143 0.9175 0.9133 0.9154 0.9555
0.1255 7.0 1764 0.2278 0.9181 0.9146 0.9164 0.9559
0.092 8.0 2016 0.2404 0.9188 0.9174 0.9181 0.9561
0.092 9.0 2268 0.2538 0.9133 0.9100 0.9117 0.9533
0.069 10.0 2520 0.2654 0.9132 0.9118 0.9125 0.9543
0.069 11.0 2772 0.2796 0.9085 0.9133 0.9109 0.9527
0.0498 12.0 3024 0.2827 0.9130 0.9149 0.9139 0.9552
0.0498 13.0 3276 0.2869 0.9127 0.9144 0.9135 0.9557
0.0397 14.0 3528 0.2993 0.9123 0.9093 0.9108 0.9546
0.0397 15.0 3780 0.2951 0.9056 0.9144 0.9100 0.9547
0.0312 16.0 4032 0.2989 0.9092 0.9136 0.9114 0.9566
0.0312 17.0 4284 0.3104 0.9115 0.9113 0.9114 0.9554
0.0257 18.0 4536 0.3098 0.9143 0.9161 0.9152 0.9564
0.0257 19.0 4788 0.3129 0.9141 0.9166 0.9154 0.9556
0.0207 20.0 5040 0.3141 0.9134 0.9169 0.9152 0.9556

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0