amarsaikhan's picture
End of training
39de3ab verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: food_classifier_2025_01_31_00_04
    results: []

food_classifier_2025_01_31_00_04

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4920
  • Accuracy: 0.8763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 2048
  • total_eval_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9401 1.0 37 3.1519 0.7044
1.5951 2.0 74 1.1581 0.7973
0.916 3.0 111 0.7583 0.8228
0.7189 4.0 148 0.6624 0.8371
0.5926 5.0 185 0.6070 0.8476
0.5456 6.0 222 0.5709 0.8553
0.4675 7.0 259 0.5564 0.8572
0.4246 8.0 296 0.5465 0.8602
0.3732 9.0 333 0.5401 0.8627
0.333 10.0 370 0.5197 0.8671
0.3067 11.0 407 0.5077 0.8712
0.2872 12.0 444 0.5090 0.8702
0.2537 13.0 481 0.5066 0.8761
0.2496 14.0 518 0.5004 0.8750
0.2282 15.0 555 0.4920 0.8763

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.21.0