End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-224-in21k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: food_classifier_2025_01_31_00_04
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# food_classifier_2025_01_31_00_04
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4920
|
22 |
+
- Accuracy: 0.8763
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0005
|
42 |
+
- train_batch_size: 128
|
43 |
+
- eval_batch_size: 128
|
44 |
+
- seed: 42
|
45 |
+
- distributed_type: multi-GPU
|
46 |
+
- num_devices: 4
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 2048
|
49 |
+
- total_eval_batch_size: 512
|
50 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 15
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
59 |
+
| 3.9401 | 1.0 | 37 | 3.1519 | 0.7044 |
|
60 |
+
| 1.5951 | 2.0 | 74 | 1.1581 | 0.7973 |
|
61 |
+
| 0.916 | 3.0 | 111 | 0.7583 | 0.8228 |
|
62 |
+
| 0.7189 | 4.0 | 148 | 0.6624 | 0.8371 |
|
63 |
+
| 0.5926 | 5.0 | 185 | 0.6070 | 0.8476 |
|
64 |
+
| 0.5456 | 6.0 | 222 | 0.5709 | 0.8553 |
|
65 |
+
| 0.4675 | 7.0 | 259 | 0.5564 | 0.8572 |
|
66 |
+
| 0.4246 | 8.0 | 296 | 0.5465 | 0.8602 |
|
67 |
+
| 0.3732 | 9.0 | 333 | 0.5401 | 0.8627 |
|
68 |
+
| 0.333 | 10.0 | 370 | 0.5197 | 0.8671 |
|
69 |
+
| 0.3067 | 11.0 | 407 | 0.5077 | 0.8712 |
|
70 |
+
| 0.2872 | 12.0 | 444 | 0.5090 | 0.8702 |
|
71 |
+
| 0.2537 | 13.0 | 481 | 0.5066 | 0.8761 |
|
72 |
+
| 0.2496 | 14.0 | 518 | 0.5004 | 0.8750 |
|
73 |
+
| 0.2282 | 15.0 | 555 | 0.4920 | 0.8763 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.48.1
|
79 |
+
- Pytorch 2.5.1
|
80 |
+
- Datasets 2.19.1
|
81 |
+
- Tokenizers 0.21.0
|