food_classifier_2025_01_31_00_04

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4920
  • Accuracy: 0.8763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 2048
  • total_eval_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9401 1.0 37 3.1519 0.7044
1.5951 2.0 74 1.1581 0.7973
0.916 3.0 111 0.7583 0.8228
0.7189 4.0 148 0.6624 0.8371
0.5926 5.0 185 0.6070 0.8476
0.5456 6.0 222 0.5709 0.8553
0.4675 7.0 259 0.5564 0.8572
0.4246 8.0 296 0.5465 0.8602
0.3732 9.0 333 0.5401 0.8627
0.333 10.0 370 0.5197 0.8671
0.3067 11.0 407 0.5077 0.8712
0.2872 12.0 444 0.5090 0.8702
0.2537 13.0 481 0.5066 0.8761
0.2496 14.0 518 0.5004 0.8750
0.2282 15.0 555 0.4920 0.8763

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.21.0
Downloads last month
190
Safetensors
Model size
85.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for amarsaikhan/food_classifier_2025_01_31_00_04

Finetuned
(1867)
this model

Space using amarsaikhan/food_classifier_2025_01_31_00_04 1