food_classifier_2025_01_31_00_04
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4920
- Accuracy: 0.8763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 2048
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.9401 | 1.0 | 37 | 3.1519 | 0.7044 |
1.5951 | 2.0 | 74 | 1.1581 | 0.7973 |
0.916 | 3.0 | 111 | 0.7583 | 0.8228 |
0.7189 | 4.0 | 148 | 0.6624 | 0.8371 |
0.5926 | 5.0 | 185 | 0.6070 | 0.8476 |
0.5456 | 6.0 | 222 | 0.5709 | 0.8553 |
0.4675 | 7.0 | 259 | 0.5564 | 0.8572 |
0.4246 | 8.0 | 296 | 0.5465 | 0.8602 |
0.3732 | 9.0 | 333 | 0.5401 | 0.8627 |
0.333 | 10.0 | 370 | 0.5197 | 0.8671 |
0.3067 | 11.0 | 407 | 0.5077 | 0.8712 |
0.2872 | 12.0 | 444 | 0.5090 | 0.8702 |
0.2537 | 13.0 | 481 | 0.5066 | 0.8761 |
0.2496 | 14.0 | 518 | 0.5004 | 0.8750 |
0.2282 | 15.0 | 555 | 0.4920 | 0.8763 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.21.0
- Downloads last month
- 190
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for amarsaikhan/food_classifier_2025_01_31_00_04
Base model
google/vit-base-patch16-224-in21k