|
--- |
|
base_model: akhooli/sbert_ar_nli_500k_norm |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: الطريقة الأفضل لتحصل على ريتويت ولايك هل ايام تقتطع جزء من مقابلة للوزير |
|
باسيل طبعا جزء غير مكتمل ثم تغرد به وتقول جبران مع التطبيع |
|
- text: ما بعرف كيف بدي خبركن ياها بس غير إنو واطي طلع عرص |
|
- text: سد نيعك يا صرمايت بشار |
|
- text: بتفهّم فهم وحدة فهما متدنّي هههه 😎 |
|
- text: للاسف لدينا في الخليج بعض من الكتاب والدكاتره والمحللين كالبغال والجحاش ينهق |
|
ويهرف بما لايعرف |
|
inference: true |
|
model-index: |
|
- name: SetFit with akhooli/sbert_ar_nli_500k_norm |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8544600938967136 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with akhooli/sbert_ar_nli_500k_norm |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| negative | <ul><li>'كلامي ان حزب الله الحامي الوحيد للبنان معناه ان في لبنان'</li><li>'يا غايظهن يا جبران باسيل انت حبيب القلب'</li><li>'يسعد صباحك معالي الوزير'</li></ul> | |
|
| positive | <ul><li>'الى وزير خارجية لبنان جبران باسيل اذا أردت ان تكون مثل الشيخ بشير الجميل عليك ان تستشهد الآن يا اخي فقط إستشهد و لك'</li><li>'شو ضعيف وشو مقهور ومش قادر تعمل شيطز فيكم كلكن كلكن بتصبوا بخانة الكذب والنفاق بتدعسوا عا الناس لمصالحهم وفسادكم'</li><li>'ولك الله انتو شعب بجم روح جبلي مصاري للشعب بعدين احكي'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8545 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs") |
|
# Run inference |
|
preds = model("سد نيعك يا صرمايت بشار") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 12.2912 | 52 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| negative | 2015 | |
|
| positive | 2800 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (1, 1) |
|
- max_steps: 8000 |
|
- sampling_strategy: undersampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- run_name: setfit_hate_25kv8 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0003 | 1 | 0.3359 | - | |
|
| 0.025 | 100 | 0.2843 | - | |
|
| 0.05 | 200 | 0.2376 | - | |
|
| 0.075 | 300 | 0.2067 | - | |
|
| 0.1 | 400 | 0.1591 | - | |
|
| 0.125 | 500 | 0.108 | - | |
|
| 0.15 | 600 | 0.0736 | - | |
|
| 0.175 | 700 | 0.0513 | - | |
|
| 0.2 | 800 | 0.0384 | - | |
|
| 0.225 | 900 | 0.0364 | - | |
|
| 0.25 | 1000 | 0.0296 | - | |
|
| 0.275 | 1100 | 0.0207 | - | |
|
| 0.3 | 1200 | 0.0212 | - | |
|
| 0.325 | 1300 | 0.0164 | - | |
|
| 0.35 | 1400 | 0.0122 | - | |
|
| 0.375 | 1500 | 0.0163 | - | |
|
| 0.4 | 1600 | 0.01 | - | |
|
| 0.425 | 1700 | 0.0085 | - | |
|
| 0.45 | 1800 | 0.0081 | - | |
|
| 0.475 | 1900 | 0.0083 | - | |
|
| 0.5 | 2000 | 0.0057 | - | |
|
| 0.525 | 2100 | 0.0061 | - | |
|
| 0.55 | 2200 | 0.0046 | - | |
|
| 0.575 | 2300 | 0.0049 | - | |
|
| 0.6 | 2400 | 0.007 | - | |
|
| 0.625 | 2500 | 0.0048 | - | |
|
| 0.65 | 2600 | 0.0057 | - | |
|
| 0.675 | 2700 | 0.0058 | - | |
|
| 0.7 | 2800 | 0.0046 | - | |
|
| 0.725 | 2900 | 0.0044 | - | |
|
| 0.75 | 3000 | 0.0042 | - | |
|
| 0.775 | 3100 | 0.0042 | - | |
|
| 0.8 | 3200 | 0.0057 | - | |
|
| 0.825 | 3300 | 0.003 | - | |
|
| 0.85 | 3400 | 0.0041 | - | |
|
| 0.875 | 3500 | 0.0052 | - | |
|
| 0.9 | 3600 | 0.004 | - | |
|
| 0.925 | 3700 | 0.0042 | - | |
|
| 0.95 | 3800 | 0.0058 | - | |
|
| 0.975 | 3900 | 0.0049 | - | |
|
| 1.0 | 4000 | 0.0052 | - | |
|
| 1.025 | 4100 | 0.0031 | - | |
|
| 1.05 | 4200 | 0.0025 | - | |
|
| 1.075 | 4300 | 0.003 | - | |
|
| 1.1 | 4400 | 0.0018 | - | |
|
| 1.125 | 4500 | 0.0015 | - | |
|
| 1.15 | 4600 | 0.0038 | - | |
|
| 1.175 | 4700 | 0.0033 | - | |
|
| 1.2 | 4800 | 0.0031 | - | |
|
| 1.225 | 4900 | 0.0022 | - | |
|
| 1.25 | 5000 | 0.0023 | - | |
|
| 1.275 | 5100 | 0.0022 | - | |
|
| 1.3 | 5200 | 0.0027 | - | |
|
| 1.325 | 5300 | 0.0017 | - | |
|
| 1.35 | 5400 | 0.0027 | - | |
|
| 1.375 | 5500 | 0.0019 | - | |
|
| 1.4 | 5600 | 0.0024 | - | |
|
| 1.425 | 5700 | 0.0015 | - | |
|
| 1.45 | 5800 | 0.0023 | - | |
|
| 1.475 | 5900 | 0.0021 | - | |
|
| 1.5 | 6000 | 0.0009 | - | |
|
| 1.525 | 6100 | 0.0015 | - | |
|
| 1.55 | 6200 | 0.0009 | - | |
|
| 1.575 | 6300 | 0.001 | - | |
|
| 1.6 | 6400 | 0.0002 | - | |
|
| 1.625 | 6500 | 0.0004 | - | |
|
| 1.65 | 6600 | 0.0012 | - | |
|
| 1.675 | 6700 | 0.0011 | - | |
|
| 1.7 | 6800 | 0.0008 | - | |
|
| 1.725 | 6900 | 0.0013 | - | |
|
| 1.75 | 7000 | 0.0004 | - | |
|
| 1.775 | 7100 | 0.0004 | - | |
|
| 1.8 | 7200 | 0.0008 | - | |
|
| 1.825 | 7300 | 0.0007 | - | |
|
| 1.85 | 7400 | 0.0007 | - | |
|
| 1.875 | 7500 | 0.001 | - | |
|
| 1.9 | 7600 | 0.001 | - | |
|
| 1.925 | 7700 | 0.0002 | - | |
|
| 1.95 | 7800 | 0.0005 | - | |
|
| 1.975 | 7900 | 0.0009 | - | |
|
| 2.0 | 8000 | 0.0002 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- SetFit: 1.2.0.dev0 |
|
- Sentence Transformers: 3.2.1 |
|
- Transformers: 4.45.1 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |