metadata
base_model: akhooli/sbert_ar_nli_500k_norm
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
الطريقة الأفضل لتحصل على ريتويت ولايك هل ايام تقتطع جزء من مقابلة للوزير
باسيل طبعا جزء غير مكتمل ثم تغرد به وتقول جبران مع التطبيع
- text: ما بعرف كيف بدي خبركن ياها بس غير إنو واطي طلع عرص
- text: سد نيعك يا صرمايت بشار
- text: بتفهّم فهم وحدة فهما متدنّي هههه 😎
- text: >-
للاسف لدينا في الخليج بعض من الكتاب والدكاتره والمحللين كالبغال والجحاش
ينهق ويهرف بما لايعرف
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8544600938967136
name: Accuracy
SetFit with akhooli/sbert_ar_nli_500k_norm
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert_ar_nli_500k_norm as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: akhooli/sbert_ar_nli_500k_norm
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8545 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
preds = model("سد نيعك يا صرمايت بشار")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 12.2912 | 52 |
Label | Training Sample Count |
---|---|
negative | 2015 |
positive | 2800 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: 8000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_hate_25kv8
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3359 | - |
0.025 | 100 | 0.2843 | - |
0.05 | 200 | 0.2376 | - |
0.075 | 300 | 0.2067 | - |
0.1 | 400 | 0.1591 | - |
0.125 | 500 | 0.108 | - |
0.15 | 600 | 0.0736 | - |
0.175 | 700 | 0.0513 | - |
0.2 | 800 | 0.0384 | - |
0.225 | 900 | 0.0364 | - |
0.25 | 1000 | 0.0296 | - |
0.275 | 1100 | 0.0207 | - |
0.3 | 1200 | 0.0212 | - |
0.325 | 1300 | 0.0164 | - |
0.35 | 1400 | 0.0122 | - |
0.375 | 1500 | 0.0163 | - |
0.4 | 1600 | 0.01 | - |
0.425 | 1700 | 0.0085 | - |
0.45 | 1800 | 0.0081 | - |
0.475 | 1900 | 0.0083 | - |
0.5 | 2000 | 0.0057 | - |
0.525 | 2100 | 0.0061 | - |
0.55 | 2200 | 0.0046 | - |
0.575 | 2300 | 0.0049 | - |
0.6 | 2400 | 0.007 | - |
0.625 | 2500 | 0.0048 | - |
0.65 | 2600 | 0.0057 | - |
0.675 | 2700 | 0.0058 | - |
0.7 | 2800 | 0.0046 | - |
0.725 | 2900 | 0.0044 | - |
0.75 | 3000 | 0.0042 | - |
0.775 | 3100 | 0.0042 | - |
0.8 | 3200 | 0.0057 | - |
0.825 | 3300 | 0.003 | - |
0.85 | 3400 | 0.0041 | - |
0.875 | 3500 | 0.0052 | - |
0.9 | 3600 | 0.004 | - |
0.925 | 3700 | 0.0042 | - |
0.95 | 3800 | 0.0058 | - |
0.975 | 3900 | 0.0049 | - |
1.0 | 4000 | 0.0052 | - |
1.025 | 4100 | 0.0031 | - |
1.05 | 4200 | 0.0025 | - |
1.075 | 4300 | 0.003 | - |
1.1 | 4400 | 0.0018 | - |
1.125 | 4500 | 0.0015 | - |
1.15 | 4600 | 0.0038 | - |
1.175 | 4700 | 0.0033 | - |
1.2 | 4800 | 0.0031 | - |
1.225 | 4900 | 0.0022 | - |
1.25 | 5000 | 0.0023 | - |
1.275 | 5100 | 0.0022 | - |
1.3 | 5200 | 0.0027 | - |
1.325 | 5300 | 0.0017 | - |
1.35 | 5400 | 0.0027 | - |
1.375 | 5500 | 0.0019 | - |
1.4 | 5600 | 0.0024 | - |
1.425 | 5700 | 0.0015 | - |
1.45 | 5800 | 0.0023 | - |
1.475 | 5900 | 0.0021 | - |
1.5 | 6000 | 0.0009 | - |
1.525 | 6100 | 0.0015 | - |
1.55 | 6200 | 0.0009 | - |
1.575 | 6300 | 0.001 | - |
1.6 | 6400 | 0.0002 | - |
1.625 | 6500 | 0.0004 | - |
1.65 | 6600 | 0.0012 | - |
1.675 | 6700 | 0.0011 | - |
1.7 | 6800 | 0.0008 | - |
1.725 | 6900 | 0.0013 | - |
1.75 | 7000 | 0.0004 | - |
1.775 | 7100 | 0.0004 | - |
1.8 | 7200 | 0.0008 | - |
1.825 | 7300 | 0.0007 | - |
1.85 | 7400 | 0.0007 | - |
1.875 | 7500 | 0.001 | - |
1.9 | 7600 | 0.001 | - |
1.925 | 7700 | 0.0002 | - |
1.95 | 7800 | 0.0005 | - |
1.975 | 7900 | 0.0009 | - |
2.0 | 8000 | 0.0002 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.2.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}