Push model using huggingface_hub.
Browse files- README.md +102 -122
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -10,13 +10,13 @@ tags:
|
|
10 |
- text-classification
|
11 |
- generated_from_setfit_trainer
|
12 |
widget:
|
13 |
-
- text:
|
14 |
-
|
15 |
-
- text:
|
16 |
-
- text:
|
17 |
-
- text:
|
18 |
-
|
19 |
-
|
20 |
inference: true
|
21 |
model-index:
|
22 |
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
|
@@ -30,7 +30,7 @@ model-index:
|
|
30 |
split: test
|
31 |
metrics:
|
32 |
- type: accuracy
|
33 |
-
value: 0.
|
34 |
name: Accuracy
|
35 |
---
|
36 |
|
@@ -62,17 +62,17 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
62 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
|
64 |
### Model Labels
|
65 |
-
| Label | Examples
|
66 |
-
|
67 |
-
| negative | <ul><li>'
|
68 |
-
| positive | <ul><li>'
|
69 |
|
70 |
## Evaluation
|
71 |
|
72 |
### Metrics
|
73 |
| Label | Accuracy |
|
74 |
|:--------|:---------|
|
75 |
-
| **all** | 0.
|
76 |
|
77 |
## Uses
|
78 |
|
@@ -92,7 +92,7 @@ from setfit import SetFitModel
|
|
92 |
# Download from the 🤗 Hub
|
93 |
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
|
94 |
# Run inference
|
95 |
-
preds = model("
|
96 |
```
|
97 |
|
98 |
<!--
|
@@ -124,17 +124,17 @@ preds = model("لعمي")
|
|
124 |
### Training Set Metrics
|
125 |
| Training set | Min | Median | Max |
|
126 |
|:-------------|:----|:--------|:----|
|
127 |
-
| Word count | 1 | 12.
|
128 |
|
129 |
| Label | Training Sample Count |
|
130 |
|:---------|:----------------------|
|
131 |
-
| negative |
|
132 |
-
| positive |
|
133 |
|
134 |
### Training Hyperparameters
|
135 |
- batch_size: (32, 32)
|
136 |
- num_epochs: (1, 1)
|
137 |
-
- max_steps:
|
138 |
- sampling_strategy: undersampling
|
139 |
- body_learning_rate: (2e-05, 1e-05)
|
140 |
- head_learning_rate: 0.01
|
@@ -146,114 +146,94 @@ preds = model("لعمي")
|
|
146 |
- warmup_proportion: 0.1
|
147 |
- l2_weight: 0.01
|
148 |
- seed: 42
|
149 |
-
- run_name:
|
150 |
- eval_max_steps: -1
|
151 |
- load_best_model_at_end: False
|
152 |
|
153 |
### Training Results
|
154 |
-
| Epoch | Step
|
155 |
-
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0
|
197 |
-
|
|
198 |
-
|
|
199 |
-
|
|
200 |
-
|
|
201 |
-
|
|
202 |
-
|
|
203 |
-
|
|
204 |
-
|
|
205 |
-
|
|
206 |
-
| 1.
|
207 |
-
| 1.
|
208 |
-
| 1.
|
209 |
-
| 1.
|
210 |
-
| 1.
|
211 |
-
| 1.
|
212 |
-
| 1.
|
213 |
-
| 1.
|
214 |
-
| 1.
|
215 |
-
| 1.
|
216 |
-
| 1.
|
217 |
-
| 1.
|
218 |
-
| 1.
|
219 |
-
| 1.
|
220 |
-
| 1.
|
221 |
-
| 1.
|
222 |
-
| 1.
|
223 |
-
| 1.
|
224 |
-
| 1.
|
225 |
-
| 1.
|
226 |
-
| 1.
|
227 |
-
| 1.
|
228 |
-
| 1.
|
229 |
-
| 1.
|
230 |
-
| 1.
|
231 |
-
| 1.
|
232 |
-
| 1.
|
233 |
-
| 1.
|
234 |
-
| 1.
|
235 |
-
| 1.
|
236 |
-
|
|
237 |
-
| 1.62 | 8100 | 0.0 | - |
|
238 |
-
| 1.6400 | 8200 | 0.0002 | - |
|
239 |
-
| 1.6600 | 8300 | 0.0002 | - |
|
240 |
-
| 1.6800 | 8400 | 0.0 | - |
|
241 |
-
| 1.7 | 8500 | 0.0 | - |
|
242 |
-
| 1.72 | 8600 | 0.0002 | - |
|
243 |
-
| 1.74 | 8700 | 0.0002 | - |
|
244 |
-
| 1.76 | 8800 | 0.0002 | - |
|
245 |
-
| 1.78 | 8900 | 0.0002 | - |
|
246 |
-
| 1.8 | 9000 | 0.0 | - |
|
247 |
-
| 1.8200 | 9100 | 0.0004 | - |
|
248 |
-
| 1.8400 | 9200 | 0.0 | - |
|
249 |
-
| 1.8600 | 9300 | 0.0002 | - |
|
250 |
-
| 1.88 | 9400 | 0.0002 | - |
|
251 |
-
| 1.9 | 9500 | 0.0 | - |
|
252 |
-
| 1.92 | 9600 | 0.0003 | - |
|
253 |
-
| 1.94 | 9700 | 0.0 | - |
|
254 |
-
| 1.96 | 9800 | 0.0 | - |
|
255 |
-
| 1.98 | 9900 | 0.0 | - |
|
256 |
-
| 2.0 | 10000 | 0.0 | - |
|
257 |
|
258 |
### Framework Versions
|
259 |
- Python: 3.10.14
|
|
|
10 |
- text-classification
|
11 |
- generated_from_setfit_trainer
|
12 |
widget:
|
13 |
+
- text: الطريقة الأفضل لتحصل على ريتويت ولايك هل ايام تقتطع جزء من مقابلة للوزير
|
14 |
+
باسيل طبعا جزء غير مكتمل ثم تغرد به وتقول جبران مع التطبيع
|
15 |
+
- text: ما بعرف كيف بدي خبركن ياها بس غير إنو واطي طلع عرص
|
16 |
+
- text: سد نيعك يا صرمايت بشار
|
17 |
+
- text: بتفهّم فهم وحدة فهما متدنّي هههه 😎
|
18 |
+
- text: للاسف لدينا في الخليج بعض من الكتاب والدكاتره والمحللين كالبغال والجحاش ينهق
|
19 |
+
ويهرف بما لايعرف
|
20 |
inference: true
|
21 |
model-index:
|
22 |
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
|
|
|
30 |
split: test
|
31 |
metrics:
|
32 |
- type: accuracy
|
33 |
+
value: 0.8544600938967136
|
34 |
name: Accuracy
|
35 |
---
|
36 |
|
|
|
62 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
|
64 |
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| negative | <ul><li>'كلامي ان حزب الله الحامي الوحيد للبنان معناه ان في لبنان'</li><li>'يا غايظهن يا جبران باسيل انت حبيب القلب'</li><li>'يسعد صباحك معالي الوزير'</li></ul> |
|
68 |
+
| positive | <ul><li>'الى وزير خارجية لبنان جبران باسيل اذا أردت ان تكون مثل الشيخ بشير الجميل عليك ان تستشهد الآن يا اخي فقط إستشهد و لك'</li><li>'شو ضعيف وشو مقهور ومش قادر تعمل شيطز فيكم كلكن كلكن بتصبوا بخانة الكذب والنفاق بتدعسوا عا الناس لمصالحهم وفسادكم'</li><li>'ولك الله انتو شعب بجم روح جبلي مصاري للشعب بعدين احكي'</li></ul> |
|
69 |
|
70 |
## Evaluation
|
71 |
|
72 |
### Metrics
|
73 |
| Label | Accuracy |
|
74 |
|:--------|:---------|
|
75 |
+
| **all** | 0.8545 |
|
76 |
|
77 |
## Uses
|
78 |
|
|
|
92 |
# Download from the 🤗 Hub
|
93 |
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
|
94 |
# Run inference
|
95 |
+
preds = model("سد نيعك يا صرمايت بشار")
|
96 |
```
|
97 |
|
98 |
<!--
|
|
|
124 |
### Training Set Metrics
|
125 |
| Training set | Min | Median | Max |
|
126 |
|:-------------|:----|:--------|:----|
|
127 |
+
| Word count | 1 | 12.2912 | 52 |
|
128 |
|
129 |
| Label | Training Sample Count |
|
130 |
|:---------|:----------------------|
|
131 |
+
| negative | 2015 |
|
132 |
+
| positive | 2800 |
|
133 |
|
134 |
### Training Hyperparameters
|
135 |
- batch_size: (32, 32)
|
136 |
- num_epochs: (1, 1)
|
137 |
+
- max_steps: 8000
|
138 |
- sampling_strategy: undersampling
|
139 |
- body_learning_rate: (2e-05, 1e-05)
|
140 |
- head_learning_rate: 0.01
|
|
|
146 |
- warmup_proportion: 0.1
|
147 |
- l2_weight: 0.01
|
148 |
- seed: 42
|
149 |
+
- run_name: setfit_hate_25kv8
|
150 |
- eval_max_steps: -1
|
151 |
- load_best_model_at_end: False
|
152 |
|
153 |
### Training Results
|
154 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
155 |
+
|:------:|:----:|:-------------:|:---------------:|
|
156 |
+
| 0.0003 | 1 | 0.3359 | - |
|
157 |
+
| 0.025 | 100 | 0.2843 | - |
|
158 |
+
| 0.05 | 200 | 0.2376 | - |
|
159 |
+
| 0.075 | 300 | 0.2067 | - |
|
160 |
+
| 0.1 | 400 | 0.1591 | - |
|
161 |
+
| 0.125 | 500 | 0.108 | - |
|
162 |
+
| 0.15 | 600 | 0.0736 | - |
|
163 |
+
| 0.175 | 700 | 0.0513 | - |
|
164 |
+
| 0.2 | 800 | 0.0384 | - |
|
165 |
+
| 0.225 | 900 | 0.0364 | - |
|
166 |
+
| 0.25 | 1000 | 0.0296 | - |
|
167 |
+
| 0.275 | 1100 | 0.0207 | - |
|
168 |
+
| 0.3 | 1200 | 0.0212 | - |
|
169 |
+
| 0.325 | 1300 | 0.0164 | - |
|
170 |
+
| 0.35 | 1400 | 0.0122 | - |
|
171 |
+
| 0.375 | 1500 | 0.0163 | - |
|
172 |
+
| 0.4 | 1600 | 0.01 | - |
|
173 |
+
| 0.425 | 1700 | 0.0085 | - |
|
174 |
+
| 0.45 | 1800 | 0.0081 | - |
|
175 |
+
| 0.475 | 1900 | 0.0083 | - |
|
176 |
+
| 0.5 | 2000 | 0.0057 | - |
|
177 |
+
| 0.525 | 2100 | 0.0061 | - |
|
178 |
+
| 0.55 | 2200 | 0.0046 | - |
|
179 |
+
| 0.575 | 2300 | 0.0049 | - |
|
180 |
+
| 0.6 | 2400 | 0.007 | - |
|
181 |
+
| 0.625 | 2500 | 0.0048 | - |
|
182 |
+
| 0.65 | 2600 | 0.0057 | - |
|
183 |
+
| 0.675 | 2700 | 0.0058 | - |
|
184 |
+
| 0.7 | 2800 | 0.0046 | - |
|
185 |
+
| 0.725 | 2900 | 0.0044 | - |
|
186 |
+
| 0.75 | 3000 | 0.0042 | - |
|
187 |
+
| 0.775 | 3100 | 0.0042 | - |
|
188 |
+
| 0.8 | 3200 | 0.0057 | - |
|
189 |
+
| 0.825 | 3300 | 0.003 | - |
|
190 |
+
| 0.85 | 3400 | 0.0041 | - |
|
191 |
+
| 0.875 | 3500 | 0.0052 | - |
|
192 |
+
| 0.9 | 3600 | 0.004 | - |
|
193 |
+
| 0.925 | 3700 | 0.0042 | - |
|
194 |
+
| 0.95 | 3800 | 0.0058 | - |
|
195 |
+
| 0.975 | 3900 | 0.0049 | - |
|
196 |
+
| 1.0 | 4000 | 0.0052 | - |
|
197 |
+
| 1.025 | 4100 | 0.0031 | - |
|
198 |
+
| 1.05 | 4200 | 0.0025 | - |
|
199 |
+
| 1.075 | 4300 | 0.003 | - |
|
200 |
+
| 1.1 | 4400 | 0.0018 | - |
|
201 |
+
| 1.125 | 4500 | 0.0015 | - |
|
202 |
+
| 1.15 | 4600 | 0.0038 | - |
|
203 |
+
| 1.175 | 4700 | 0.0033 | - |
|
204 |
+
| 1.2 | 4800 | 0.0031 | - |
|
205 |
+
| 1.225 | 4900 | 0.0022 | - |
|
206 |
+
| 1.25 | 5000 | 0.0023 | - |
|
207 |
+
| 1.275 | 5100 | 0.0022 | - |
|
208 |
+
| 1.3 | 5200 | 0.0027 | - |
|
209 |
+
| 1.325 | 5300 | 0.0017 | - |
|
210 |
+
| 1.35 | 5400 | 0.0027 | - |
|
211 |
+
| 1.375 | 5500 | 0.0019 | - |
|
212 |
+
| 1.4 | 5600 | 0.0024 | - |
|
213 |
+
| 1.425 | 5700 | 0.0015 | - |
|
214 |
+
| 1.45 | 5800 | 0.0023 | - |
|
215 |
+
| 1.475 | 5900 | 0.0021 | - |
|
216 |
+
| 1.5 | 6000 | 0.0009 | - |
|
217 |
+
| 1.525 | 6100 | 0.0015 | - |
|
218 |
+
| 1.55 | 6200 | 0.0009 | - |
|
219 |
+
| 1.575 | 6300 | 0.001 | - |
|
220 |
+
| 1.6 | 6400 | 0.0002 | - |
|
221 |
+
| 1.625 | 6500 | 0.0004 | - |
|
222 |
+
| 1.65 | 6600 | 0.0012 | - |
|
223 |
+
| 1.675 | 6700 | 0.0011 | - |
|
224 |
+
| 1.7 | 6800 | 0.0008 | - |
|
225 |
+
| 1.725 | 6900 | 0.0013 | - |
|
226 |
+
| 1.75 | 7000 | 0.0004 | - |
|
227 |
+
| 1.775 | 7100 | 0.0004 | - |
|
228 |
+
| 1.8 | 7200 | 0.0008 | - |
|
229 |
+
| 1.825 | 7300 | 0.0007 | - |
|
230 |
+
| 1.85 | 7400 | 0.0007 | - |
|
231 |
+
| 1.875 | 7500 | 0.001 | - |
|
232 |
+
| 1.9 | 7600 | 0.001 | - |
|
233 |
+
| 1.925 | 7700 | 0.0002 | - |
|
234 |
+
| 1.95 | 7800 | 0.0005 | - |
|
235 |
+
| 1.975 | 7900 | 0.0009 | - |
|
236 |
+
| 2.0 | 8000 | 0.0002 | - |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
### Framework Versions
|
239 |
- Python: 3.10.14
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 540795752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:678a7f619051ccc59a3d4a33ef126ead20b3b4b7a45177e6a7024f02ad35d6ca
|
3 |
size 540795752
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7007
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9158c10a5c23a616473aec6c99ed9b519ad054e3997daa39c67b366378de63d6
|
3 |
size 7007
|