|
--- |
|
license: apache-2.0 |
|
base_model: projecte-aina/roberta-base-ca-v2-cased-te |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: stocks |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stocks |
|
|
|
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6733 |
|
- Accuracy: 0.8109 |
|
- Precision: 0.8127 |
|
- Recall: 0.8109 |
|
- F1: 0.8107 |
|
- Ratio: 0.5378 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 20 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- lr_scheduler_warmup_steps: 4 |
|
- num_epochs: 2 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| 3.8156 | 0.1626 | 10 | 1.9553 | 0.5378 | 0.5507 | 0.5378 | 0.5064 | 0.7521 | |
|
| 1.3339 | 0.3252 | 20 | 1.2090 | 0.5546 | 0.5548 | 0.5546 | 0.5543 | 0.5252 | |
|
| 1.103 | 0.4878 | 30 | 0.9577 | 0.5588 | 0.5588 | 0.5588 | 0.5588 | 0.5042 | |
|
| 0.9108 | 0.6504 | 40 | 0.8881 | 0.5714 | 0.5770 | 0.5714 | 0.5635 | 0.6345 | |
|
| 0.8716 | 0.8130 | 50 | 0.8426 | 0.6387 | 0.6563 | 0.6387 | 0.6282 | 0.6681 | |
|
| 0.844 | 0.9756 | 60 | 0.7948 | 0.7017 | 0.7233 | 0.7017 | 0.6943 | 0.3445 | |
|
| 0.7816 | 1.1382 | 70 | 0.7715 | 0.7227 | 0.7660 | 0.7227 | 0.7109 | 0.7017 | |
|
| 0.7406 | 1.3008 | 80 | 0.7040 | 0.8067 | 0.8099 | 0.8067 | 0.8062 | 0.5504 | |
|
| 0.6764 | 1.4634 | 90 | 0.6954 | 0.8025 | 0.8104 | 0.8025 | 0.8013 | 0.5798 | |
|
| 0.7306 | 1.6260 | 100 | 0.6933 | 0.8109 | 0.8209 | 0.8109 | 0.8094 | 0.5882 | |
|
| 0.6736 | 1.7886 | 110 | 0.6763 | 0.8067 | 0.8089 | 0.8067 | 0.8064 | 0.5420 | |
|
| 0.714 | 1.9512 | 120 | 0.6733 | 0.8109 | 0.8127 | 0.8109 | 0.8107 | 0.5378 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|