stocks

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6733
  • Accuracy: 0.8109
  • Precision: 0.8127
  • Recall: 0.8109
  • F1: 0.8107
  • Ratio: 0.5378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 2
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
3.8156 0.1626 10 1.9553 0.5378 0.5507 0.5378 0.5064 0.7521
1.3339 0.3252 20 1.2090 0.5546 0.5548 0.5546 0.5543 0.5252
1.103 0.4878 30 0.9577 0.5588 0.5588 0.5588 0.5588 0.5042
0.9108 0.6504 40 0.8881 0.5714 0.5770 0.5714 0.5635 0.6345
0.8716 0.8130 50 0.8426 0.6387 0.6563 0.6387 0.6282 0.6681
0.844 0.9756 60 0.7948 0.7017 0.7233 0.7017 0.6943 0.3445
0.7816 1.1382 70 0.7715 0.7227 0.7660 0.7227 0.7109 0.7017
0.7406 1.3008 80 0.7040 0.8067 0.8099 0.8067 0.8062 0.5504
0.6764 1.4634 90 0.6954 0.8025 0.8104 0.8025 0.8013 0.5798
0.7306 1.6260 100 0.6933 0.8109 0.8209 0.8109 0.8094 0.5882
0.6736 1.7886 110 0.6763 0.8067 0.8089 0.8067 0.8064 0.5420
0.714 1.9512 120 0.6733 0.8109 0.8127 0.8109 0.8107 0.5378

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/2404v1

Finetuned
(30)
this model