--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: stocks results: [] --- # stocks This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6733 - Accuracy: 0.8109 - Precision: 0.8127 - Recall: 0.8109 - F1: 0.8107 - Ratio: 0.5378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 2 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 3.8156 | 0.1626 | 10 | 1.9553 | 0.5378 | 0.5507 | 0.5378 | 0.5064 | 0.7521 | | 1.3339 | 0.3252 | 20 | 1.2090 | 0.5546 | 0.5548 | 0.5546 | 0.5543 | 0.5252 | | 1.103 | 0.4878 | 30 | 0.9577 | 0.5588 | 0.5588 | 0.5588 | 0.5588 | 0.5042 | | 0.9108 | 0.6504 | 40 | 0.8881 | 0.5714 | 0.5770 | 0.5714 | 0.5635 | 0.6345 | | 0.8716 | 0.8130 | 50 | 0.8426 | 0.6387 | 0.6563 | 0.6387 | 0.6282 | 0.6681 | | 0.844 | 0.9756 | 60 | 0.7948 | 0.7017 | 0.7233 | 0.7017 | 0.6943 | 0.3445 | | 0.7816 | 1.1382 | 70 | 0.7715 | 0.7227 | 0.7660 | 0.7227 | 0.7109 | 0.7017 | | 0.7406 | 1.3008 | 80 | 0.7040 | 0.8067 | 0.8099 | 0.8067 | 0.8062 | 0.5504 | | 0.6764 | 1.4634 | 90 | 0.6954 | 0.8025 | 0.8104 | 0.8025 | 0.8013 | 0.5798 | | 0.7306 | 1.6260 | 100 | 0.6933 | 0.8109 | 0.8209 | 0.8109 | 0.8094 | 0.5882 | | 0.6736 | 1.7886 | 110 | 0.6763 | 0.8067 | 0.8089 | 0.8067 | 0.8064 | 0.5420 | | 0.714 | 1.9512 | 120 | 0.6733 | 0.8109 | 0.8127 | 0.8109 | 0.8107 | 0.5378 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1