|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: wav2vec2-base-finetuned-iemocap-fin |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-finetuned-iemocap-fin |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1760 |
|
- Accuracy: 0.5839 |
|
- F1: 0.5773 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.2283 | 1.0 | 102 | 1.2181 | 0.4840 | 0.4756 | |
|
| 1.124 | 2.0 | 204 | 1.1143 | 0.5015 | 0.4808 | |
|
| 1.062 | 3.0 | 306 | 1.1103 | 0.5189 | 0.5067 | |
|
| 0.9863 | 4.0 | 408 | 1.0813 | 0.5189 | 0.5152 | |
|
| 0.9689 | 5.0 | 510 | 1.0689 | 0.5403 | 0.5318 | |
|
| 0.8722 | 6.0 | 612 | 1.0976 | 0.5296 | 0.4992 | |
|
| 0.8757 | 7.0 | 714 | 1.0409 | 0.5606 | 0.5518 | |
|
| 0.8548 | 8.0 | 816 | 1.0479 | 0.5694 | 0.5636 | |
|
| 0.838 | 9.0 | 918 | 1.1700 | 0.5422 | 0.5109 | |
|
| 0.7536 | 10.0 | 1020 | 1.0743 | 0.5674 | 0.5681 | |
|
| 0.6557 | 11.0 | 1122 | 1.1487 | 0.5616 | 0.5495 | |
|
| 0.6193 | 12.0 | 1224 | 1.1239 | 0.5849 | 0.5815 | |
|
| 0.5742 | 13.0 | 1326 | 1.1793 | 0.5742 | 0.5617 | |
|
| 0.5717 | 14.0 | 1428 | 1.1548 | 0.5868 | 0.5809 | |
|
| 0.5929 | 15.0 | 1530 | 1.1760 | 0.5839 | 0.5773 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|