File size: 2,542 Bytes
912f5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wav2vec2-base-finetuned-iemocap-fin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-iemocap-fin

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1760
- Accuracy: 0.5839
- F1: 0.5773

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.2283        | 1.0   | 102  | 1.2181          | 0.4840   | 0.4756 |
| 1.124         | 2.0   | 204  | 1.1143          | 0.5015   | 0.4808 |
| 1.062         | 3.0   | 306  | 1.1103          | 0.5189   | 0.5067 |
| 0.9863        | 4.0   | 408  | 1.0813          | 0.5189   | 0.5152 |
| 0.9689        | 5.0   | 510  | 1.0689          | 0.5403   | 0.5318 |
| 0.8722        | 6.0   | 612  | 1.0976          | 0.5296   | 0.4992 |
| 0.8757        | 7.0   | 714  | 1.0409          | 0.5606   | 0.5518 |
| 0.8548        | 8.0   | 816  | 1.0479          | 0.5694   | 0.5636 |
| 0.838         | 9.0   | 918  | 1.1700          | 0.5422   | 0.5109 |
| 0.7536        | 10.0  | 1020 | 1.0743          | 0.5674   | 0.5681 |
| 0.6557        | 11.0  | 1122 | 1.1487          | 0.5616   | 0.5495 |
| 0.6193        | 12.0  | 1224 | 1.1239          | 0.5849   | 0.5815 |
| 0.5742        | 13.0  | 1326 | 1.1793          | 0.5742   | 0.5617 |
| 0.5717        | 14.0  | 1428 | 1.1548          | 0.5868   | 0.5809 |
| 0.5929        | 15.0  | 1530 | 1.1760          | 0.5839   | 0.5773 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0