wav2vec2-base-finetuned-iemocap-fin

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1760
  • Accuracy: 0.5839
  • F1: 0.5773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2283 1.0 102 1.2181 0.4840 0.4756
1.124 2.0 204 1.1143 0.5015 0.4808
1.062 3.0 306 1.1103 0.5189 0.5067
0.9863 4.0 408 1.0813 0.5189 0.5152
0.9689 5.0 510 1.0689 0.5403 0.5318
0.8722 6.0 612 1.0976 0.5296 0.4992
0.8757 7.0 714 1.0409 0.5606 0.5518
0.8548 8.0 816 1.0479 0.5694 0.5636
0.838 9.0 918 1.1700 0.5422 0.5109
0.7536 10.0 1020 1.0743 0.5674 0.5681
0.6557 11.0 1122 1.1487 0.5616 0.5495
0.6193 12.0 1224 1.1239 0.5849 0.5815
0.5742 13.0 1326 1.1793 0.5742 0.5617
0.5717 14.0 1428 1.1548 0.5868 0.5809
0.5929 15.0 1530 1.1760 0.5839 0.5773

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zahra99/wav2vec2-base-finetuned-iemocap-fin

Finetuned
(691)
this model