|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: firqaaa/indo-sentence-bert-base |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu |
|
tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan |
|
dengan buku the puppeteer dan sirkus pohon |
|
- text: liverpool sukses di kandang tottenham |
|
- text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran |
|
dulu ya . |
|
- text: sedih kalau umat diprovokasi supaya saling membenci . |
|
- text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung |
|
indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup |
|
luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di |
|
lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi |
|
kuah relatif kurang dan porsi tidak terlalu besar |
|
pipeline_tag: text-classification |
|
inference: true |
|
model-index: |
|
- name: SetFit with firqaaa/indo-sentence-bert-base |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7171717171717171 |
|
name: Accuracy |
|
- type: precision |
|
value: 0.7171717171717171 |
|
name: Precision |
|
- type: recall |
|
value: 0.7171717171717171 |
|
name: Recall |
|
- type: f1 |
|
value: 0.7171717171717171 |
|
name: F1 |
|
--- |
|
|
|
# SetFit with firqaaa/indo-sentence-bert-base |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2 | <ul><li>'nasi campur terkenal di bandung , info nya nasi campur pertama di bandung . mengandung b2 . rasa standar nasi campur . ada babi merah , babi panggang , sate babi manis , bakso goreng , jerohan manis . layanan tidak ramah , maklum masih generasi tua yang beraksi . lokasi makan lumayan bersih tapi tidak berat'</li><li>'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'</li><li>'indonesia itu tipe yang kalau sudah down pasti susah bangkit lagi'</li></ul> | |
|
| 1 | <ul><li>'biru ada 4 , hijau ada 4 , merah ada 3 , kuning ada 3'</li><li>'baik terima kasih banyak'</li><li>'hai , ya , silakan kamu dapat mencoba lakukan pembayaran pdam di bukalapak .'</li></ul> | |
|
| 0 | <ul><li>'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'</li><li>'conggo gallrely cafe di bandung utara . cafe nya sih okok saja . yang menarik adalah produksi meja dengan kayu-kayu yang panjang dan tebal khusus untuk meja makan .'</li><li>'terima kasih mas'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | Precision | Recall | F1 | |
|
|:--------|:---------|:----------|:-------|:-------| |
|
| **all** | 0.7172 | 0.7172 | 0.7172 | 0.7172 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot") |
|
# Run inference |
|
preds = model("liverpool sukses di kandang tottenham") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 22.7917 | 61 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 8 | |
|
| 1 | 8 | |
|
| 2 | 8 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 2) |
|
- num_epochs: (2, 16) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:------:|:-------------:|:---------------:| |
|
| 0.0417 | 1 | 0.3908 | - | |
|
| 0.0833 | 2 | 0.2962 | - | |
|
| 0.125 | 3 | 0.2397 | - | |
|
| 0.1667 | 4 | 0.3493 | - | |
|
| 0.2083 | 5 | 0.2197 | - | |
|
| 0.25 | 6 | 0.3782 | - | |
|
| 0.2917 | 7 | 0.2341 | - | |
|
| 0.3333 | 8 | 0.2166 | - | |
|
| 0.375 | 9 | 0.3381 | - | |
|
| 0.4167 | 10 | 0.1212 | - | |
|
| 0.4583 | 11 | 0.1849 | - | |
|
| 0.5 | 12 | 0.1796 | - | |
|
| 0.5417 | 13 | 0.2027 | - | |
|
| 0.5833 | 14 | 0.1824 | - | |
|
| 0.625 | 15 | 0.1242 | - | |
|
| 0.6667 | 16 | 0.1071 | - | |
|
| 0.7083 | 17 | 0.1324 | - | |
|
| 0.75 | 18 | 0.0667 | - | |
|
| 0.7917 | 19 | 0.1095 | - | |
|
| 0.8333 | 20 | 0.1277 | - | |
|
| 0.875 | 21 | 0.0506 | - | |
|
| 0.9167 | 22 | 0.0661 | - | |
|
| 0.9583 | 23 | 0.0776 | - | |
|
| 1.0 | 24 | 0.0371 | 0.2406 | |
|
| 1.0417 | 25 | 0.0652 | - | |
|
| 1.0833 | 26 | 0.0698 | - | |
|
| 1.125 | 27 | 0.0775 | - | |
|
| 1.1667 | 28 | 0.052 | - | |
|
| 1.2083 | 29 | 0.0399 | - | |
|
| 1.25 | 30 | 0.0189 | - | |
|
| 1.2917 | 31 | 0.0341 | - | |
|
| 1.3333 | 32 | 0.0259 | - | |
|
| 1.375 | 33 | 0.0844 | - | |
|
| 1.4167 | 34 | 0.0322 | - | |
|
| 1.4583 | 35 | 0.0186 | - | |
|
| 1.5 | 36 | 0.0328 | - | |
|
| 1.5417 | 37 | 0.0107 | - | |
|
| 1.5833 | 38 | 0.027 | - | |
|
| 1.625 | 39 | 0.0311 | - | |
|
| 1.6667 | 40 | 0.0244 | - | |
|
| 1.7083 | 41 | 0.0277 | - | |
|
| 1.75 | 42 | 0.0132 | - | |
|
| 1.7917 | 43 | 0.0153 | - | |
|
| 1.8333 | 44 | 0.0147 | - | |
|
| 1.875 | 45 | 0.0074 | - | |
|
| 1.9167 | 46 | 0.0142 | - | |
|
| 1.9583 | 47 | 0.0189 | - | |
|
| **2.0** | **48** | **0.0095** | **0.2139** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |