---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-base
metrics:
- accuracy
- precision
- recall
- f1
widget:
- text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu
tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan
dengan buku the puppeteer dan sirkus pohon
- text: liverpool sukses di kandang tottenham
- text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran
dulu ya .
- text: sedih kalau umat diprovokasi supaya saling membenci .
- text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung
indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup
luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di
lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi
kuah relatif kurang dan porsi tidak terlalu besar
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with firqaaa/indo-sentence-bert-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7171717171717171
name: Accuracy
- type: precision
value: 0.7171717171717171
name: Precision
- type: recall
value: 0.7171717171717171
name: Recall
- type: f1
value: 0.7171717171717171
name: F1
---
# SetFit with firqaaa/indo-sentence-bert-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 |
- 'nasi campur terkenal di bandung , info nya nasi campur pertama di bandung . mengandung b2 . rasa standar nasi campur . ada babi merah , babi panggang , sate babi manis , bakso goreng , jerohan manis . layanan tidak ramah , maklum masih generasi tua yang beraksi . lokasi makan lumayan bersih tapi tidak berat'
- 'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'
- 'indonesia itu tipe yang kalau sudah down pasti susah bangkit lagi'
|
| 1 | - 'biru ada 4 , hijau ada 4 , merah ada 3 , kuning ada 3'
- 'baik terima kasih banyak'
- 'hai , ya , silakan kamu dapat mencoba lakukan pembayaran pdam di bukalapak .'
|
| 0 | - 'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'
- 'conggo gallrely cafe di bandung utara . cafe nya sih okok saja . yang menarik adalah produksi meja dengan kayu-kayu yang panjang dan tebal khusus untuk meja makan .'
- 'terima kasih mas'
|
## Evaluation
### Metrics
| Label | Accuracy | Precision | Recall | F1 |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.7172 | 0.7172 | 0.7172 | 0.7172 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 22.7917 | 61 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 8 |
| 1 | 8 |
| 2 | 8 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (2, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.3908 | - |
| 0.0833 | 2 | 0.2962 | - |
| 0.125 | 3 | 0.2397 | - |
| 0.1667 | 4 | 0.3493 | - |
| 0.2083 | 5 | 0.2197 | - |
| 0.25 | 6 | 0.3782 | - |
| 0.2917 | 7 | 0.2341 | - |
| 0.3333 | 8 | 0.2166 | - |
| 0.375 | 9 | 0.3381 | - |
| 0.4167 | 10 | 0.1212 | - |
| 0.4583 | 11 | 0.1849 | - |
| 0.5 | 12 | 0.1796 | - |
| 0.5417 | 13 | 0.2027 | - |
| 0.5833 | 14 | 0.1824 | - |
| 0.625 | 15 | 0.1242 | - |
| 0.6667 | 16 | 0.1071 | - |
| 0.7083 | 17 | 0.1324 | - |
| 0.75 | 18 | 0.0667 | - |
| 0.7917 | 19 | 0.1095 | - |
| 0.8333 | 20 | 0.1277 | - |
| 0.875 | 21 | 0.0506 | - |
| 0.9167 | 22 | 0.0661 | - |
| 0.9583 | 23 | 0.0776 | - |
| 1.0 | 24 | 0.0371 | 0.2406 |
| 1.0417 | 25 | 0.0652 | - |
| 1.0833 | 26 | 0.0698 | - |
| 1.125 | 27 | 0.0775 | - |
| 1.1667 | 28 | 0.052 | - |
| 1.2083 | 29 | 0.0399 | - |
| 1.25 | 30 | 0.0189 | - |
| 1.2917 | 31 | 0.0341 | - |
| 1.3333 | 32 | 0.0259 | - |
| 1.375 | 33 | 0.0844 | - |
| 1.4167 | 34 | 0.0322 | - |
| 1.4583 | 35 | 0.0186 | - |
| 1.5 | 36 | 0.0328 | - |
| 1.5417 | 37 | 0.0107 | - |
| 1.5833 | 38 | 0.027 | - |
| 1.625 | 39 | 0.0311 | - |
| 1.6667 | 40 | 0.0244 | - |
| 1.7083 | 41 | 0.0277 | - |
| 1.75 | 42 | 0.0132 | - |
| 1.7917 | 43 | 0.0153 | - |
| 1.8333 | 44 | 0.0147 | - |
| 1.875 | 45 | 0.0074 | - |
| 1.9167 | 46 | 0.0142 | - |
| 1.9583 | 47 | 0.0189 | - |
| **2.0** | **48** | **0.0095** | **0.2139** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```