TRUEnder's picture
Push model using huggingface_hub.
1dac3fc verified
|
raw
history blame
11.8 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-base
metrics:
  - accuracy
  - precision
  - recall
  - f1
widget:
  - text: >-
      halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari
      minggu tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu
      atm bri bersamaan dengan buku the puppeteer dan sirkus pohon
  - text: liverpool sukses di kandang tottenham
  - text: >-
      hai angga , untuk penerbitan tiket reschedule diharuskan melakukan
      pembayaran dulu ya .
  - text: sedih kalau umat diprovokasi supaya saling membenci .
  - text: >-
      berada di lokasi strategis jalan merdeka , berseberangan agak ke samping
      bandung indah plaza , tapat sebelah kanan jalan sebelum traffic light ,
      parkir mobil cukup luas . saus bumbu dan lain-lain disediakan cukup
      lengkap di lantai bawah . di lantai atas suasana agak sepi . bakso cukup
      enak dan terjangkau harga nya tetapi kuah relatif kurang dan porsi tidak
      terlalu besar
pipeline_tag: text-classification
inference: true
model-index:
  - name: SetFit with firqaaa/indo-sentence-bert-base
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.7171717171717171
            name: Accuracy
          - type: precision
            value: 0.7171717171717171
            name: Precision
          - type: recall
            value: 0.7171717171717171
            name: Recall
          - type: f1
            value: 0.7171717171717171
            name: F1

SetFit with firqaaa/indo-sentence-bert-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • 'nasi campur terkenal di bandung , info nya nasi campur pertama di bandung . mengandung b2 . rasa standar nasi campur . ada babi merah , babi panggang , sate babi manis , bakso goreng , jerohan manis . layanan tidak ramah , maklum masih generasi tua yang beraksi . lokasi makan lumayan bersih tapi tidak berat'
  • 'saya di cgv marvel city sby mau verifikasi sms redam , tapi di informasi telkomsel trobel , menyebalkan !'
  • 'indonesia itu tipe yang kalau sudah down pasti susah bangkit lagi'
1
  • 'biru ada 4 , hijau ada 4 , merah ada 3 , kuning ada 3'
  • 'baik terima kasih banyak'
  • 'hai , ya , silakan kamu dapat mencoba lakukan pembayaran pdam di bukalapak .'
0
  • 'nyaman banget kalau lagi nongkrong kenyang di warung upnormal . mulai dari pilihan menu nya yang serius banget digarap , dari pelayan2 nya yang kece , sampai ke interior nya yang super . rekomendasi banget deh kalau mau mengerjakan tugas , arisan , ulang tahun , reunian di sini .'
  • 'conggo gallrely cafe di bandung utara . cafe nya sih okok saja . yang menarik adalah produksi meja dengan kayu-kayu yang panjang dan tebal khusus untuk meja makan .'
  • 'terima kasih mas'

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.7172 0.7172 0.7172 0.7172

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 22.7917 61
Label Training Sample Count
0 8
1 8
2 8

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (2, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.3908 -
0.0833 2 0.2962 -
0.125 3 0.2397 -
0.1667 4 0.3493 -
0.2083 5 0.2197 -
0.25 6 0.3782 -
0.2917 7 0.2341 -
0.3333 8 0.2166 -
0.375 9 0.3381 -
0.4167 10 0.1212 -
0.4583 11 0.1849 -
0.5 12 0.1796 -
0.5417 13 0.2027 -
0.5833 14 0.1824 -
0.625 15 0.1242 -
0.6667 16 0.1071 -
0.7083 17 0.1324 -
0.75 18 0.0667 -
0.7917 19 0.1095 -
0.8333 20 0.1277 -
0.875 21 0.0506 -
0.9167 22 0.0661 -
0.9583 23 0.0776 -
1.0 24 0.0371 0.2406
1.0417 25 0.0652 -
1.0833 26 0.0698 -
1.125 27 0.0775 -
1.1667 28 0.052 -
1.2083 29 0.0399 -
1.25 30 0.0189 -
1.2917 31 0.0341 -
1.3333 32 0.0259 -
1.375 33 0.0844 -
1.4167 34 0.0322 -
1.4583 35 0.0186 -
1.5 36 0.0328 -
1.5417 37 0.0107 -
1.5833 38 0.027 -
1.625 39 0.0311 -
1.6667 40 0.0244 -
1.7083 41 0.0277 -
1.75 42 0.0132 -
1.7917 43 0.0153 -
1.8333 44 0.0147 -
1.875 45 0.0074 -
1.9167 46 0.0142 -
1.9583 47 0.0189 -
2.0 48 0.0095 0.2139
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}