SMG0's picture
T2-usingF1
1340814 verified
metadata
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02-twitter on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0813
  • F1-micro: 0.8359
  • Roc Auc: 0.9123
  • Accuracy: 0.7975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1-micro Roc Auc Accuracy
0.0095 1.0 507 0.0767 0.8272 0.9095 0.7863
0.0108 2.0 1014 0.0763 0.8237 0.9074 0.7842
0.0108 3.0 1521 0.0749 0.8199 0.9029 0.7793
0.0069 4.0 2028 0.0841 0.8299 0.9076 0.7961
0.0057 5.0 2535 0.0835 0.8286 0.9105 0.7947
0.0037 6.0 3042 0.0813 0.8359 0.9123 0.7975
0.0029 7.0 3549 0.0875 0.8240 0.9081 0.7828
0.0023 8.0 4056 0.0928 0.8334 0.9136 0.8010
0.002 9.0 4563 0.0961 0.8159 0.9063 0.7730

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3