Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02-twitter on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0813
  • F1-micro: 0.8359
  • Roc Auc: 0.9123
  • Accuracy: 0.7975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1-micro Roc Auc Accuracy
0.0095 1.0 507 0.0767 0.8272 0.9095 0.7863
0.0108 2.0 1014 0.0763 0.8237 0.9074 0.7842
0.0108 3.0 1521 0.0749 0.8199 0.9029 0.7793
0.0069 4.0 2028 0.0841 0.8299 0.9076 0.7961
0.0057 5.0 2535 0.0835 0.8286 0.9105 0.7947
0.0037 6.0 3042 0.0813 0.8359 0.9123 0.7975
0.0029 7.0 3549 0.0875 0.8240 0.9081 0.7828
0.0023 8.0 4056 0.0928 0.8334 0.9136 0.8010
0.002 9.0 4563 0.0961 0.8159 0.9063 0.7730

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
103
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SMG0/Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1

Finetuned
(12)
this model