--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy model-index: - name: Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T2-ArabertTv2-Bas-WS-A100/runs/ewc3vyii) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T2-ArabertTv2-Bas-WS-A100/runs/ewc3vyii) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T2-ArabertTv2-Bas-WS-A100/runs/ewc3vyii) [Visualize in Weights & Biases](https://wandb.ai/so/Model4-with-add-clasess-T2-ArabertTv2-Bas-WS-A100/runs/ewc3vyii) # Model4_withclasess-arabertv2_base_T2_WS_A100v2_F1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0813 - F1-micro: 0.8359 - Roc Auc: 0.9123 - Accuracy: 0.7975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-micro | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:--------:| | 0.0095 | 1.0 | 507 | 0.0767 | 0.8272 | 0.9095 | 0.7863 | | 0.0108 | 2.0 | 1014 | 0.0763 | 0.8237 | 0.9074 | 0.7842 | | 0.0108 | 3.0 | 1521 | 0.0749 | 0.8199 | 0.9029 | 0.7793 | | 0.0069 | 4.0 | 2028 | 0.0841 | 0.8299 | 0.9076 | 0.7961 | | 0.0057 | 5.0 | 2535 | 0.0835 | 0.8286 | 0.9105 | 0.7947 | | 0.0037 | 6.0 | 3042 | 0.0813 | 0.8359 | 0.9123 | 0.7975 | | 0.0029 | 7.0 | 3549 | 0.0875 | 0.8240 | 0.9081 | 0.7828 | | 0.0023 | 8.0 | 4056 | 0.0928 | 0.8334 | 0.9136 | 0.8010 | | 0.002 | 9.0 | 4563 | 0.0961 | 0.8159 | 0.9063 | 0.7730 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3