TabPFN-v2-reg / README.md
noahho's picture
Update README.md
71a85c4 verified
|
raw
history blame
1.38 kB
metadata
pipeline_tag: tabular-regression

TabPFN v2: A Tabular Foundation Model

TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.

Installation

pip install tabpfn

Model Details

  • Developed by: Prior Labs
  • Model type: Transformer-based foundation model for tabular data
  • License: TBD
  • Paper: Published in Nature (January 2024)
  • Repository: GitHub - priorlabs/tabpfn

Citation

TBD

Quick Start

from tabpfn import TabPFNRegressor

# Initialize model
regressor = TabPFNRegressor()
regressor.fit(X_train, y_train)
predictions = regressor.predict(X_test)

Technical Requirements

  • Python ≥ 3.9
  • PyTorch ≥ 2.1
  • scikit-learn ≥ 1.0
  • Hardware: 16GB+ RAM, CPU (GPU optional)

Limitations

  • Not designed for very large datasets
  • Not suitable for non-tabular data formats

Resources

Team

  • Noah Hollmann
  • Samuel Müller
  • Lennart Purucker
  • Arjun Krishnakumar
  • Max Körfer
  • Shi Bin Hoo
  • Robin Tibor Schirrmeister
  • Frank Hutter
  • Eddie Bergman