File size: 1,378 Bytes
9ff6a7b 71a85c4 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
pipeline_tag: tabular-regression
---
# TabPFN v2: A Tabular Foundation Model
TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
## Installation
```bash
pip install tabpfn
```
## Model Details
- **Developed by:** Prior Labs
- **Model type:** Transformer-based foundation model for tabular data
- **License:** TBD
- **Paper:** Published in Nature (January 2024)
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
### Citation
TBD
## Quick Start
```python
from tabpfn import TabPFNRegressor
# Initialize model
regressor = TabPFNRegressor()
regressor.fit(X_train, y_train)
predictions = regressor.predict(X_test)
```
## Technical Requirements
- Python ≥ 3.9
- PyTorch ≥ 2.1
- scikit-learn ≥ 1.0
- Hardware: 16GB+ RAM, CPU (GPU optional)
## Limitations
- Not designed for very large datasets
- Not suitable for non-tabular data formats
## Resources
- **Documentation:** https://priorlabs.ai/docs
- **Source:** https://github.com/priorlabs/tabpfn
- **Paper:** https://doi.org/10.1038/s41586-024-08328-6
### Team
- Noah Hollmann
- Samuel Müller
- Lennart Purucker
- Arjun Krishnakumar
- Max Körfer
- Shi Bin Hoo
- Robin Tibor Schirrmeister
- Frank Hutter
- Eddie Bergman |